LIST OF TABLES | | Page No. | |--|----------| | | | | Table 1.1: Various types of adsorption isotherms | 41 | | Table 1.2: Literature survey: DFT methods in corrosion inhibition | 49 | | Table 2.1.1: The molecular structure and IUPAC name of synthesized Pyranopyrazoles | 63 | | Table 2.1.2: The molecular structure and IUPAC name of synthesized pyridine based Schiff bases derivatives. | 66 | | Table 2.1.3: The molecular structure and IUPAC name of synthesized Imidazole derivatives. | 69 | | Table 2.1.4: The molecular structure and IUPAC name of synthesized Pyrazolo-pyridine derivatives | 71 | | Table 3.1.1: IUPAC name, molecular structure, abbreviation and analytical data of the studied inhibitor molecules (EPPs) | 82 | | Table 3.1.2: The gravimetric measurement parameters obtained for mild steel in 1 M HCl containing different concentrations of EPPs | 86 | | Table 3.1.3: Variation of C_R and η % with temperature in absence and presence of optimum concentration of EPPs in 1M HCl | 88 | | Table 3.1.4: The values of $K_{\rm ads}$, $\Delta G^{\circ}_{\rm ads}$ and $E_{\rm a}$ for mild steel in the absence and presence of optimum concentration of EPPs in 1M HCl at 308K | 91 | | Table 3.1.5: Potentiodynamic polarization parameters (±SD) for mild steel in 1M HCl in absence and presence of optimum concentration (100 mg L ⁻¹) of EPPs at 308K | 95 | | Table 3.1.6: Electrochemical impedance parameters (±SD) for mild steel in 1M HCl in absence and presence of optimum concentration (100 mg L ⁻¹) of EPPs at 308K | 96 | |---|-----| | Table 3.1.7: Quantum chemical parameters derived from the B3LYP/6-31+G (d,p) method of the studied compounds. | 103 | | Table 3.1.8: Calculated Fukui functions for the studied inhibitor molecules in neutral forms | 106 | | Table 3.1.9: Outputs and descriptors calculated by the Monte Carlo simulation for the most stable adsorption configurations of EPP-1, EPP-2 and EPP-3 on Fe (110) surface (all units in kJ/mol) in vacuum phase and aqueous phase. | 110 | | Table 3.2.1: molecular structure and analytical data of DAPs | 112 | | Table 3.2.2: gravimetric measurements (±SD) for MS in the Absence and Presence of DAPs in 1 M HCl at 308 K | 115 | | Table 3.2.3: Thermodynamic parameters for the adsorption of inhibitor on mild steel in 1 M HCl at optimum concentration (40 mgL ⁻¹) of DAPs at 308 K | 118 | | Table 3.2.4: Electrochemical impedance parameters (±SD) for mild steel in 1M HCl in absence and presence of optimum concentration (40 mg L ⁻¹) of DAPs at 308K | 124 | | Table 3.2.5: Potentiodynamic polarization parameters (±SD) for mild steel in 1M HCl in absence and presence of optimum concentration (40 mg L ⁻¹) of DAPs at 308K | 125 | | Table 3.2.6: Calculated quantum chemical parameters for DAPs derived from the B3LYP/6-31+G(d,p)method | 134 | | Table 3.2.7: Calculated Fukui functions for the studied neutral inhibitor molecules | 134 | | Table 3.2.8: Interaction energies between the inhibitors and Fe (110) surface | 138 | (kJ/mol) | Table 3.3.1: IUPAC name, molecular structure, abbreviation and analytical data of the studied inhibitor molecules (IMs) | 141 | |---|-----| | Table 3.3.2: The weight loss parameters obtained for mild steel in 1 M HCl containing different concentrations of IMs | 143 | | Table 3.3.3: Thermodynamic parameters for mild steel dissolution in 1M HCl in the absence and presence of optimum (100 mgL ⁻¹) concentration of inhibitors | 145 | | Table 3.3.4: Adsorption parameters for IMs calculated from the different isotherms for mild steel in 1M HCl solution. | 147 | | Table 3.3.5: Electrochemical impedance parameters (±SD) for mild steel in 1M HCl in absence and presence of optimum concentration (100 mg L ⁻¹) of inhibitors | 149 | | Table 3.3.6: Potentiodynamic polarization parameters (±SD) for mild steel in 1M HCl in absence and presence of optimum concentration (100mgL ⁻¹) of inhibitors | 153 | | Table 3.3.7: Calculated quantum chemical parameters of neutral and protonated IMs in gas phase. | 160 | | Table 3.3.8. Selected energy parameters obtained from MD simulations for adsorption of inhibitors on Fe (110) surface | 163 | | Table 3.4.1 IUPAC Name, molecular structure and abbreviation of the condensed Pyrazolopyridine used | 167 | | Table 3.4.2: Corrosion parameters for the mild steel in 1 M HCl containing various concentrations of the PPs at 308 K obtained from gravimetric measurements | 169 | | Table 3.4.3: Thermodynamic parameters for the adsorption of inhibitor on mild steel in 1M HCl at optimum concentration of PPs | 171 | | Table 3.4.4: Adsorption parameters for PPs calculated from different adsorption | 172 | |--|-----| | isotherm for mild steel in 1M HCl solution at 308K | | | Table 3.4.5: Electrochemical impedance parameters (±SD) for mild steel in 1M HCl in absence and presence of optimum concentration (100 mg L ⁻¹) of PPs at 308K | 177 | | Table 3.4.6: Potentiodynamic polarization parameters (±SD) for mild steel in 1M HCl in absence and presence of optimum concentration (100 mg L ⁻¹) of PPs at 308K | 178 | | Table 3.4.7: Calculated quantum chemical parameters of neutral and protonated PPs DFT (6-31G, d, p) | 184 | | Table 3.4.8: Calculated Fukui functions for the studied inhibitor molecules in neutral | 188 | | Table 3.4.9: Interaction energies between the inhibitors and Fe (110) surface (kJ/mol) in gas phase | 190 | | Table 3.4.10. The diffusion coefficient of Cl^- and $H O^+$ at 303 K | 194 | ## **ABBREVIATIONS** η % = Percentage of inhibition efficiency $C_{\rm R}$ = Corrosion rate (mgcm⁻²h⁻¹) $C_{\rm R}^{\rm o}$ = Corrosion rate in uninhibited system (mgcm⁻²h⁻¹) $C_{\rm R}^{\rm i}$ = Corrosion rate in inhibited system (mgcm⁻²h⁻¹)