
Chapter – 5 

Reliability study of Dragline 

 
5.1 Introduction  

The reliability analysis of dragline system using FTA method and BN model has been presented in 

this chapter. Initially, the basic topology of BN model is discussed. After that the methodology used 

in reliability analysis of the dragline system is also explained that consists of failure inference, 

critical subsystem identification and sensitivity analysis. The construction of BN model, mapping 

the FT into BN model, estimation of CPT, and reliability assessment of dragline are presented here. 

Sensitivity analysis is done to identifying the critical subsystem of the dragline system. Developed 

BN model is validated and the results of the analysis have been discussed.  

5.2 Fault tree analysis  

Fault tree analysis (FTA) is a reliability analysis tool, developed by H. A. Watson at Bell 

laboratories in 1962[147]. It is a deductive analytical method that discovers the weak links in the 

system by going from the occurrence of an unwelcome event (top event) to the discovery of the root 

causes of that event (basic events) [56], [148]. It's a popular technique for both qualitative and 

quantitative evaluation. A fault tree helps to determine various fundamental events that could lead 

to the top event. This is known as a cut set, which is defined as a set of basic events that lead to the 

occurrence of the top event. The chopped groups with the smallest number of items are the most 

fascinating. A minimum cut set (MCS) is a combination of basic events that generate the unwanted 

occurrence. A minimum cut set can't be decreased further without losing its cut set status [149]. The 

minimal cut sets describe the system logic function as Boolean algebra to identify the combination 

of basic events in component failure modes. In the quantitative phase, all of the key components are 

given a probability of occurrence, and the value of the top event is calculated [150]. The logic gates 



in FT connect all of the events, which are essentially: AND gate, where both of the basic events 

must occur for the top event to occur, and OR gate, where only one of the basic events must occur 

for the top event to occur [52]. The AND gate is the intersection of all input event sets, and its 

probability may be computed using equation (1).  

𝑃 = ∏ 𝑃𝑖
𝑛
𝑖=1                                                                                                                                     (5.1) 

If one of the input events occurs, the OR gate's output occurs, and the probability is calculated using 

equation (2). 

𝑃 = 1 − ∏ (1 − 𝑃𝑖)𝑛
𝑖=1                                                                                                                    (5.2) 

Figure 5.1 presents the FT of a dragline system when the failure of the dragline is the top event.  

FTA consists of the following steps as described by Ericson[151] 

Step-1 Identify the undesirable event. 

Step-2 Identify the basic events of an undesirable event. 

Step-3 Provide the probability of basic events. 

Step-4 Establish the failure path and their structures. 

Step-5 Probabilistic analysis of the system 

Failure Probability of the components (basic events) of the dragline has been calculated using the 

parameters of the best fit distribution (Table 4.2).  Table 5.1 is shown the failure probabilities of the 

components of the dragline, at operating time 𝑡 = 1ℎ𝑟. 

 

 

 

 

 

 

 

 



 

 

 

Table 5. 1 Failure probabilities of the components of the dragline at 𝑡 = 1ℎ𝑟. 

Components Failure 

Probability

𝑃(𝑋𝑖) 

Components Failure 

Probability

𝑃(𝑋𝑖) 

Components Failure 

Probability

𝑃(𝑋𝑖) 

Bucket 

Teeth(X1) 

0.0072 Drag 

socket(X15) 

0.024938 Swing motor(X29) 0.00536 

Adapter 

Pins(X2) 

0.019938 Dump 

rope(X16) 

0.00149 Swing motor(X30) 0.003536 

Equilisier 

Pins(X3) 

0.002245 Dump 

pulley(X17) 

0.000003 Exciter 

failure(X31) 

0.002201 

Anchor 

Pins(X4) 

0.003144 Dump 

socket(X18) 

0.001617 M.G. set 

failure(X32) 

0.022629 

Hitch 

shackle(X5) 

0.009226 Hoist 

motor(X19) 

0.018961 Synchronous 

motor failure(X33) 

0.045642 

Drag 

Motor(X6) 

0.04014 Hoist 

motor(X20) 

0.018961 DC failure(X34) 0.013421 

Drag 

Motor(X7) 

0.04014 Hoist control 

system(X21) 

0.001792 Power 

failure(X35) 

0.032545 

Drag Control 

system(X8) 

0.000186 Hoist 

chain(X22) 

0.006965 Trailing cable 

failure(X36) 

0.009588 

Drag rope(X9) 0.003684 Hoist 

brake(X23) 

0.000476 Compressor(X37) 0.000004 

Drag 

Gearbox(X10) 

0.002715 Hoist 

rope(X24) 

0.00478 Lubrication 

system(X38) 

0.00898 

Drag 

drum(X11) 

0.001867 Rotate frame 

failure(X25) 

0.023569 Guide pulley 

failure(X39) 

0.022438 

Drag 

chain(X12) 

0.005519 Roller 

failure(X26) 

0.007815 Boom Light 

failure(X40) 

0.009226 

Drag 

Brake(X13) 

0.028479 Gearbox 

failure(X27) 

0.018032   

Drag 

Pulley(X14) 

0.018408 Control 

system(X28) 

0.000988   
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Figure 5. 1 The FT of the dragline failure 

 

 

 

 



5.3 Methodology of BN   

The proposed methodology for reliability analysis of a dragline system is outlined in figure 5.2. The 

developed BN model works on the basic mathematical principle of FTA and BN, as discussed 

below. 

Start

Define the boundary and collect the dragline system failure data

Develop the FT diagram of dragline system

Construct the Bayesian Network with CPT and 

Prior Probabilities

Estimate the Reliability of dragline system

Analyse the result and validate 

Mapping the FT  into BN

Stop

Estimate the failure data 

for each parent nodes 

and use as prior 

probability

 Figure 5. 2 Methodology for estimating the reliability of the dragline 

 

 



5.4 Mapping of FT into BN  

Based on the study of Bobbio et al.(2001)[152], any FT has a corresponding BN. The root nodes in 

the BN are the events in the FT, the intermediate events are the intermediate nodes, and the top 

event is the leaf node (child) in the BN, with each node having its CPT. For a more detailed 

explanation, let X, Y, and Z be random variables with two states: 1 indicates that the events happen, 

and 0 indicates that they don't. Figure 5.3 illustrates the fault tree for OR-gate and the accompanying 

BN using the conditional probability table (Table 5.2). In contrast, Figure 5.4 uses the conditional 

probability table (Table 5.3) to display the fault tree for AND-gate and the corresponding BN.  
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Figure 5. 3 Representation of OR gate in FT and BN 

 

Table 5. 2 Conditional probability table corresponding to OR gate 
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Figure 5. 4 Representation of AND gate in FT and BN 

Parents Top event(X) 

P(Z=X,Y) X Y 

0 0 0 

1 0 1 

0 1 1 

1 1 1 



  

 

 

Table 5. 3 Conditional probability table corresponding to AND gate 

Parents Top event(X) 

P(Z=X,Y) 
X Y 

0 0 0 

1 0 0 

0 1 0 

1 1 1 

 

5.5 Bayesian Network Model for reliability study 

Based on probabilistic and uncertain knowledge, BNs are used to build system reliability models, 

risk management, and safety assessments. A Bayesian network is a directed acyclic graph (DAG), 

also known as belief networks. BNs can be made up of qualitative or quantitative components or 

both. It is made of the two components:  structure and parameter. A BN is made out of nodes and 

directed edges (edges for short) [153]. Edges show causal linkages between linked nodes, while 

nodes represent random variables. Each variable has several possible states (e.g., Yes or No; Low, 

Medium or High; 0 or 1).  Parent nodes (the ones that an edge starts with) and child nodes (the ones 

that an edge points to) are the two types of nodes[152]. An edge extending from A to B denotes that 

the value of the child node B is dependent on the value of the parent node A, or that A influences 

B, and that the strength of the impact is protected by the CPT of node A (parent node) [74]. The arc 

is a connecting link between the variables and direction of arc presents the probabilistic dependences 

between the variables. The parameter of the BN model presents the prior probability of each root 

node for each state and the CPT of each child node given parental states. For the construction of 

BN, first generate the influence diagram to describe the system structure and parameters from the 

collected historical data. The relationship between system-subsystem-components can be 

constructed using the CPT of BN, which can be used to estimate the reliability. The CPT can be 

developed through the relationaship in between the nodes and also used to estimate the probability 

from the collected data and the causal relationships between parent node and child node [154], 



[155], and it has an advantage that it can be regularly updated to generate sufficient information 

about the health/condition of the system when the new evidence is observed. For reliability analysis 

of dragline system, structure of BN is expressed: the root node, intermediate node and the leaf node. 

Root node indicates dragline failure, the intermediate nodes are formed by subsystem failure  and 

leaf nodes are components failure.  

      When building the BN model, the Bayesian reasoning process grows exponentially as the 

number of variables rises. There are three independence assumptions that help to alleviate the joint 

probability distribution calculation's complexity [13]. The initial presumption is that every root node 

in the BN is distinct from every other node. In this study, such as 

 pmq LLLIIIRRRX  ,,;,,,;,,, 212121
three sets of variables—denoted system, subsystems, 

and components, respectively—are taken into consideration. Here q is the number of system nodes 

denoted as qRRR ,,, 21  ; m  is a number of subsystem nodes denoted as mIII ,,, 21  ; and 
p

 is the 

number of components nodes denoted as pLLL ,, 21 and the total number of nodes is n when 

 pmqn   in the BN model.  The general equation for the calculation joint probability 

distribution can be given as a product of the specified conditional probability as presented in Eq. 

(5.3) [156], [157]:  

1 2

1

( ) = ( , ,... , ) ( |  (X ))
n

n i i

i

P X P X X X P X Parents


                                           (5.3) 

where X = X1, X2 …, Xn is a set of variables in the BN model and n is the number of variables. 

The joint probability distribution for a given BN model can be calculated using Eq. (5.4) (ref. Figure 

5.5). 

               21143221143211214321 |||,,,,,, IILPRRIPRRIPRPRPRPRPLIIRRRRP 
   (5.4) 
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Figure 5. 5 An example BN 
 

where R1, R2,R3,R4, I1, I2, L1 are set of variables in the given BN model (Figure 5.5) where  (R1, R2, 

R3, R4) represent the components nodes,  (I1, I2) subsystems nodes  and (L1) system nodes,  

respectively and the total number of nodes are five. With the help of joint probability distribution, 

the probability of occurrence of the system failure can be calculated using Eq. (5.5) (refer Figure 

5.5).  
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                                                                                                   (5.5) 

In general, two typical information propagation procedures of BNs are top-down (predictive support 

reasoning) and bottom-up (diagnostic support reasoning) [96]. The joint probability distribution 

𝑃(𝑋) propagates information in the top-down reasoning pattern as follows: 

𝑃(𝑋1, 𝑋2, 𝑋3, … … … , 𝑋𝑛) =
𝑃(𝑋𝑛|𝑋𝑛−1, 𝑋𝑛−2, … . . 𝑋1)𝑃(𝑋𝑛−1|𝑋𝑛−2, 𝑋𝑛−3, … . . 𝑋1) … … …  𝑃(𝑋2|𝑋1)𝑃(𝑋1) =
∏ 𝑃(𝑋𝑖|𝑋𝑖−1, 𝑋𝑖−2, … . . 𝑋𝑖)

𝑛
𝑖=1                                                                                      (5.6) 

 

However, the joint probability distribution 𝑃(𝑋) of BN follow the conditional independence and 

chain rule. Thus, 𝑃(𝑋) of variables 𝑋 = {𝑋1, 𝑋2, 𝑋3, … … . . 𝑋𝑛} is included in the network as[158]. 

𝑃(𝑋) =  ∏ 𝑃 (
𝑋𝑖

𝑃𝑎(𝑋𝑖)
)𝑛

𝑖=1                                                                                                             (5.7) 

Where 𝑃𝑎(𝑋𝑖)are the parents of 𝑋𝑖 in the BN. 



The probability distribution of a given variable can be derived by marginalizing the joint probability 

distribution about it. This calculation is known as marginalization, and it can be used to calculate 

system reliability[72], [74]. The bottom-up inference procedure follows junction tree or variable 

elimination algorithms. The inference algorithm estimates the posterior probability distribution of a 

particular variable based on Bayes theorem at given evidence (set E) [19]. 
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. In the BN of the case study dragline (Figure 5.6), there are forty component nodes, seven 

subsystems nodes, and one system node. 

 

5.6 Result & Discussion  

In this section, reliability study has been done using the FTA and BN model. Validated this method 

with actual reliability of the dragline. Also, discussed the BN diagnosis of the dragline and identified 

the critical subsystem of the dragline and validated with sensitivity analysis. 

5.6.1 Reliability Analysis  

In the FTA method, the reliability analysis of the dragline system has been estimated through 

equations (5.1) and (5.2). Figure 5.1 depicts FT of the dragline system. . In the FT, dragline failure 

represented as the top event, while subsystems and component failures described intermediate 

events and basic events respectively. Failure probabilities (Table 5.1) at the operating time t=1hr 

have been estimated for the basic events of the FT using the distribution parameters (Table 4.2).  

The failure probability of the ‘Bucket & Accessories’ subsystem is calculated using equation 5.2 

 

𝑃(𝑆1) = 0.9590  

Similarly, failure probability for all the subsystems are calculated as: 

𝑃(𝑆2) = 0.8445  

𝑃(𝑆3) = 0.9951  



𝑃(𝑆4) = 0.9197  

𝑃(𝑆5) = 0.9189  

𝑃(𝑆6) = 0.8997  

𝑃(𝑆7) = 0.9791  

The estimated reliability of the dragline (t=1 hr) is 59.59% 

BN model has also used the failure probability of the dragline subsystem's failure events presented 

in table 5.1. Every major component under the defined subsystem of the dragline has been estimated 

for likelihood of occurrences of failure. These failure probabilities are crucial in evaluating the 

overall system reliability and have been taken as the prior probabilities of the BN model. The 

Bayesian network diagram of the dragline system mapped from the fault tree appears in figure 5.6 

below, when figure 5.7 shows the details of the reliability assessment.  

Figure 5. 6 Bayesian Network of the dragline system mapped from fault tree 

 



CPT of every subsystem shows the causal relationship between the component and subsystem 

failures. Prior probabilities of the subsystems are estimated following equation (5.3). For example,  

Prior probability (t = 1 hr) of the ‘Bucket & Accessories’ subsystem 

𝑃𝑝𝑟𝑖𝑜𝑟(𝑆1) = 𝑃(𝑋1) × 𝑃(𝑋2) × 𝑃(𝑋3) × 𝑃(𝑋4) × 𝑃(5)  

 = 0.9908×0.9928×0.9969×0.9978×0.9801 = 0.9544 

Similarly, the prior probability of the all the subsystems are calculated and presented in table 5.3. 

The BN model estimates the reliability of the dragline system based on the prior probability of the 

components and CPT.  The estimated reliability of the dragline system is 62.03%, at t = 1 hour.  

 
Figure 5. 7 Reliability assessment of the dragline system using BN model 



 

5.6.2 Validation of BN model estimated reliability values  

Figure 5.8 presents a comparative study of actual reliability of the dragline with the estimated 

reliability of the dragline using BN model and FTA.  It is evident from the figure 5.8 that BN model 

estimates reliability much closer to actual reliability than FTA. For example: after 5 hours of 

operation, the actual reliability of the dragline system is 35.25% when the BN model and FTA 

estimate it to be 29.31% and 25.05%, respectively. This work defines error in predication as follows: 

Error is the difference between actual and estimated values [159] and expressed as: 

100*
)(

%
yreliabilit

yreliabilityreliabilit

actual

estimatedactual
error


                                           (5.9)                                                                

Error in reliability prediction by the BN model and FTA has been calculated at different point of 

time as presented in the table 5.4. It is observed that the accuracy of the BN model is 83.15% when 

it is only 71.07% FTA. From the above discussion, it can be concluded that the developed BN model 

estimates the reliability of the dragline system with more than 80% precision on an average, and 

BN model is more precise than the FTA method.  

 
Figure 5. 8 Comparison of dragline’s reliability with different models 
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Table 5. 4 Error in reliability prediction of dragline with different models 
 BN  FTA Actual 

Reliability 

BN FTA 

t R(t) R(t) R(t) R(t) %Error R(t) % Error 

0 100 100 100 0 0 

1 62.03 59.59 70.65 12.20 15.65 

5 29.31 25.05 35.25 16.85 28.93 

10 14.71 10.35 17.68 19.85 41.45 

15 7.95 4.12 11.97 33.58 66.48 

20 4.55 2.65 7.98 42.98 66.79 

25 2.73 2.3 4.87 43.94 52.77 

30 1.72 1.2 2.32 25.86 48.27 

 

 

5.6.3 BN based Failure Diagnosis and importance ranking  

BN helps to diagnose the failure path of a dragline as detailed below: 

Path 1: Dragline  Dragging Mechanism Drag Motor, Drag Brake and Drag Drum along with 

the Gearbox.  

Path 2: Dragline  Electrical Auxiliary  Synchronous motor, DC motor, power system, and the 

MG Set.  

The above diagnostic paths can be decided based on the failure diagnosis of the dragline.   

The diagnosis of the dragline system failure, either due to the failure of individual subsystems or 

the combined subsystem failures, required updating the failure probabilities of the BN nodes (Figure 

5.8). Updated probabilities of the BN nodes will help to find out the contribution of each node (from 

bottom to top) in the system failure events. 

For assessing the contribution of each node to the system failure, the failure probability of the 

dragline system is set to 100%.   Using this initial system probability (100%), the probability values 

of each node in the BN are updated as indicated in Figure 5.9. Thus, posterior probabilities are 

estimated from equation 5.8 using the evidence on the BN model. The prior and posterior 

probabilities information in table 5.3 show the significance of the dragline subsystems/components 

to the system failure. From Table 5.3, it can be seen that the dragging mechanism (S2) is the lowest 

posterior probability (reliability) of 53.04%. While the electrical auxiliary (S6) is the second lowest, 



and the swing mechanism is seen to be the third lowest posterior probability (reliability) subsystem 

with a posterior probability of 68.35% and 77.08%, respectively.  

Table 5. 5 Prior and Posterior probability of the component/subsystems of the dragline 

Node 
Prior 

Probability 

Posterior 

Probability 
Node 

Prior 

Probability 

Posterior 

Probability 

S2 0.8217 0.5304 X5 0.9908 0.9757 

S6 0.8798 0.6835 X38 0.9916 0.9779 

SE1 0.8912 0.7134 X26 0.9922 0.9794 

S5 0.913 0.7708 X1 0.9928 0.981 

S4 0.9184 0.7851 X22 0.993 0.9817 

SE2 0.9294 0.8142 X24 0.9955 0.9882 

X33 0.9544 0.8798 X9 0.9963 0.9903 

S1 0.9544 0.8916 X29 0.9965 0.9907 

SE3 0.9597 0.8938 X30 0.9965 0.9907 

X6 0.9599 0.8943 X4 0.9969 0.9917 

X7 0.9599 0.8943 S3 0.9969 0.9918 

X36 0.9675 0.9143 X10 0.9973 0.9929 

S7 0.9793 0.9193 X3 0.9978 0.9941 

X13 0.9715 0.925 X31 0.9978 0.9942 

X15 0.9751 0.9343 X11 0.9981 0.9951 

X25 0.9764 0.9379 X21 0.9982 0.9953 

X32 0.9774 0.9404 X18 0.9984 0.9957 

X39 0.9776 0.9409 X16 0.9985 0.9961 

X2 0.9801 0.9475 X28 0.999 0.9974 

X19 0.981 0.9501 X23 0.9995 0.9987 

X20 0.981 0.9501 X12 0.9998 0.9995 

X14 0.9816 0.9515 X8 0.9998 0.9995 

X27 0.982 0.9525 X40 1 1 

X34 0.9866 0.9647 X37 1 1 

X35 0.9904 0.9748 X17 1 1 

 

Dragline failure following path 1: The updated BN model as presented in figure 5.9, shows that the 

drag motor is one of the significant contributors to failure with a failure probability of 28.66%.  This 

is followed by the drag brake failure with a probability of 15.97%.  

Dragline failure following path 2: The Electrical subsystem has five major components; the 

synchronous motor is attributed to having a failure probability of 12.02%, and thus, makes a 

significant contribution towards the reliability of the dragline system.  The Bayesian network in 



figure 5.10, shows the joint failure probability of the overall dragline and dragging mechanism 

subsystem, when both the dragline system and the dragging mechanism subsystem have failed.  

A similar investigation on the overall dragline and the electrical auxiliary subsystem is shown in 

figure 5.11. The major failed components in the Electrical subsystem are the synchronous motor, 

power supply, DC system and the MG set with a failure probability of 11.17%, 37.98%, 27.08% 

and 18.83%, respectively. 

Based on the relative change in probability (prior and posterior probability), 

subsystems/components of the dragline have been ranked as shown in the table 5.4 and table 5.5 

Table 5. 6 Criticality ranking of the subsystems of the dragline 

Node 
Prior 

Probability 

Posterior 

Probability 
% change in 

Reliability 

Criticality 

Ranking 

S2 0.8217 0.5304 0.35451 1 

S6 0.8798 0.6835 0.22312 2 

S5 0.913 0.7708 0.15575 3 

S4 0.9184 0.7851 0.14514 4 

S1 0.9544 0.8916 0.0658 5 

S7 0.9793 0.9193 0.06127 6 

S3 0.9969 0.9918 0.005116 7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5. 7 Criticality ranking of the components of the dragline 

Node 
%Reliability 

difference 

Criticality 

Ranking 
Node 

%Reliability 

difference 

Criticality 

Ranking 

SE1 0.19950628 1 X1 0.011886 23 

SE2 0.12395094 2 X22 0.01138 24 

X33 0.07816429 3 X24 0.007333 25 

SE3 0.06866729 4 X9 0.006022 26 

X6 0.06834045 5 X29 0.00582 27 

X7 0.06834045 6 X30 0.00582 28 

X36 0.05498708 7 X4 0.005216 29 

X13 0.04786413 8 X10 0.004412 30 

X15 0.04184186 9 X3 0.003708 31 

X25 0.03943056 10 X31 0.003608 32 

X32 0.03785554 11 X11 0.003006 33 

X39 0.03754092 12 X21 0.002905 34 

X2 0.03326191 13 X18 0.002704 35 

X19 0.03149847 14 X16 0.002404 36 

X20 0.03149847 15 X28 0.001602 37 

X14 0.03066422 16 X23 0.0008 38 

X27 0.03004073 17 X12 0.0003 39 

X34 0.02219745 18 X8 0.0003 40 

X35 0.01575121 19 X40 0 41 

X5 0.01524 20 X37 0 42 

X38 0.013816 21 X17 0 43 

X26 0.012901 22    

 

Table 5.4, depicts that dragging mechanism (S2) is the most critical subsystem of the dragline 

system followed by S6, S5, S4, S7, S1 and S3 respectively. Four subsystems namely, (S2, S6, S5, 

and S4) contributes 80 % of dragline failures and are the critical subsystems of the dragline system.  

Similarly, it is also evident from table 5.5 that failure of drag motor system (SE1) is the most critical 

for dragline operation and dump rope failure (X17) has limited impact on dragline failure. Failures 

of SE1, SE2, X33, SE3, X6, X7 and X33 shares 80% of the dragline failures and are critical 

components of the dragline.  

 

 

 



 

Figure 5. 9 Updated Bayesian network with Dragline failure 



 

Figure 5. 10 Updated Bayesian network with the dragline and Dragging Mechanism failure 



Figure 5. 11 Updated Bayesian network with the Dragline system and Electrical Auxiliary Failure 

 

 



5.6.4 Validation of critically ranking using Sensitivity analysis 

 
In BNs, the sensitivity analysis can be used for verifying the correctness of parameters, and to 

understand whether more precision in estimating them would be useful [160], [161]. To study the 

importance of root nodes, a sensitivity analysis in BN model has been conducted.  

It is a standard practice to study the correlation and covariance between variables to determine their 

relative importance, particularly the target variable. Here a different approach based on information 

theory has been utilized for the sensitivity study. Instead of computing the correlation coefficient, 

how observing a predictor variable affects the states' uncertainty of a to-be-predicted variable has 

been considered. Evaluating Mutual Information (MI) values between pairs of random variables 

reveal the degree of dependence between two random variables. The reasoning behind this approach 

is that the state of one node provides a lot of information about the state of another node if they are 

connected. In other words, these variables are more dependent on one another than any other nodes 

in the network[162]. 

MI between two random variables X and Y is denoted by 𝐼(𝑋; 𝑌), and mathematically defined as 

follows[163]: 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)                                                                                                           (5.10) 

Where 𝐻(𝑋) and 𝐻(𝑌) represent the entropies of random variables X and Y, respectively, and 

𝐻(𝑋|𝑌) represents the conditional entropy of random variable X given Y. The entropy and 

conditional entropy are mathematically defined as follows: 

𝐻(𝑋) = − ∑ 𝑃(𝑋𝑖)log (𝑛
𝑖=1 𝑃(𝑋𝑖))                                                                                               (5.11) 

𝐻(𝑋|𝑌) = − ∑ ∑ 𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑖)
𝑚
𝑗=1

𝑛
𝑖=1 ∗ log (𝑃(𝑋 = 𝑥𝑖|𝑌 = 𝑦𝑖))                          (5.12) 

Where, n and m represent the number of discrete states represented by the random variables X and 

Y; 𝑃(𝑋 = 𝑥𝑖  , 𝑌 = 𝑦𝑖) represents the joint probability distribution of the X and Y. 

Using the concept of Mutual Information (MI) theory the contribution of individual nodes into 

failure of target node has been estimated using equation (5.12).  From figure 5.12 it is clear that, the 



Dragging mechanism (S2) contributes maximum to the overall failure of the Dragline and is the 

most critical subsystem in Dragline. This result supports the result obtained through BN analysis. . 

In comparison, electrical auxiliary subsystem (S6) and swing mechanism contributed around 

18.79% and 13.16% to overall dragline failure. Figure 5.13 shows the top 10 critical components 

and their contribution to dragline failure. It is observed that the drag motor system contributes the 

most with around 16.82% of the dragline failure, followed by the hoist motor system, synchronous 

motor and swing motor system with 10.5%, 6.64% and 5.83%, respectively. This result complies 

with the results obtained in the present study using BN. 

 

Figure 5. 12 Importance of subsystems of dragline 

 

 

Figure 5. 13 Importance of failure components of Dragline 
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To improve the reliability of the dragline, it is necessary to improve the reliability of the dragging 

mechanism, electrical auxiliary subsystem and swing mechanism. Thus, the quality enhancement 

of Dragline depends on the reliability improvement of the components of the subsystems mentioned 

above. Therefore, it should be highlighted that the maintenance methods of various 

components/subsystems vary from one another.       

 5.7 Summary         

 In this chapter, reliability study has been done on the case study dragline using traditional 

FTA method and BN model. Validated the studied model with actual reliability of the dragline 

which was based on the traditional non-parametric model using the operational failure data of the 

dragline. Estimated reliability of the dragline through BN model much precise to the actual 

reliability of the dragline as compared to the FTA. Dragging mechanism has been identified as the 

most critical subsystem of the dragline.   

 


