Chapter —5
Reliability study of Dragline

5.1 Introduction

The reliability analysis of dragline system using FTA method and BN model has been presented in
this chapter. Initially, the basic topology of BN model is discussed. After that the methodology used
in reliability analysis of the dragline system is also explained that consists of failure inference,
critical subsystem identification and sensitivity analysis. The construction of BN model, mapping
the FT into BN model, estimation of CPT, and reliability assessment of dragline are presented here.
Sensitivity analysis is done to identifying the critical subsystem of the dragline system. Developed

BN model is validated and the results of the analysis have been discussed.
5.2 Fault tree analysis

Fault tree analysis (FTA) is a reliability analysis tool, developed by H. A. Watson at Bell
laboratories in 1962[147]. It is a deductive analytical method that discovers the weak links in the
system by going from the occurrence of an unwelcome event (top event) to the discovery of the root
causes of that event (basic events) [56], [148]. It's a popular technique for both qualitative and
quantitative evaluation. A fault tree helps to determine various fundamental events that could lead
to the top event. This is known as a cut set, which is defined as a set of basic events that lead to the
occurrence of the top event. The chopped groups with the smallest number of items are the most
fascinating. A minimum cut set (MCS) is a combination of basic events that generate the unwanted
occurrence. A minimum cut set can't be decreased further without losing its cut set status [149]. The
minimal cut sets describe the system logic function as Boolean algebra to identify the combination
of basic events in component failure modes. In the quantitative phase, all of the key components are

given a probability of occurrence, and the value of the top event is calculated [150]. The logic gates



in FT connect all of the events, which are essentially: AND gate, where both of the basic events
must occur for the top event to occur, and OR gate, where only one of the basic events must occur
for the top event to occur [52]. The AND gate is the intersection of all input event sets, and its
probability may be computed using equation (1).

P=1ITLP (5.1)
If one of the input events occurs, the OR gate's output occurs, and the probability is calculated using
equation (2).

P=1-[[iz;(1-P) (5.2)
Figure 5.1 presents the FT of a dragline system when the failure of the dragline is the top event.
FTA consists of the following steps as described by Ericson[151]

Step-1 Identify the undesirable event.

Step-2 Identify the basic events of an undesirable event.

Step-3 Provide the probability of basic events.

Step-4 Establish the failure path and their structures.

Step-5 Probabilistic analysis of the system

Failure Probability of the components (basic events) of the dragline has been calculated using the
parameters of the best fit distribution (Table 4.2). Table 5.1 is shown the failure probabilities of the

components of the dragline, at operating time t = 1hr.



Table 5. 1 Failure probabilities of the components of the dragline at t = 1hr.

Components Failure Components Failure Components Failure
Probability Probability Probability
P(X}) P(X;) P(X})
Bucket 0.0072 Drag 0.024938 | Swing motor(X29) | 0.00536
Teeth(X1) socket(X15)
Adapter 0.019938 Dump 0.00149 | Swing motor(X30) | 0.003536
Pins(X2) rope(X16)
Equilisier 0.002245 Dump 0.000003 Exciter 0.002201
Pins(X3) pulley(X17) failure(X31)
Anchor 0.003144 Dump 0.001617 M.G. set 0.022629
Pins(X4) socket(X18) failure(X32)
Hitch 0.009226 Hoist 0.018961 Synchronous 0.045642
shackle(X5) motor(X19) motor failure(X33)
Drag 0.04014 Hoist 0.018961 | DC failure(X34) | 0.013421
Motor(X6) motor(X20)
Drag 0.04014 Hoist control | 0.001792 Power 0.032545
Motor(X7) system(X21) failure(X35)
Drag Control 0.000186 Hoist 0.006965 Trailing cable 0.009588
system(X8) chain(X22) failure(X36)
Drag rope(X9) | 0.003684 Hoist 0.000476 | Compressor(X37) | 0.000004
brake(X23)
Drag 0.002715 Hoist 0.00478 Lubrication 0.00898
Gearbox(X10) rope(X24) system(X38)
Drag 0.001867 | Rotate frame | 0.023569 Guide pulley 0.022438
drum(X11) failure(X25) failure(X39)
Drag 0.005519 Roller 0.007815 Boom Light 0.009226
chain(X12) failure(X26) failure(X40)
Drag 0.028479 Gearbox 0.018032
Brake(X13) failure(X27)
Drag 0.018408 Control 0.000988
Pulley(X14) system(X28)
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Figure 5. 1 The FT of the dragline failure



5.3 Methodology of BN

The proposed methodology for reliability analysis of a dragline system is outlined in figure 5.2. The
developed BN model works on the basic mathematical principle of FTA and BN, as discussed

below.
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Figure 5. 2 Methodology for estimating the reliability of the dragline



5.4 Mapping of FT into BN

Based on the study of Bobbio et al.(2001)[152], any FT has a corresponding BN. The root nodes in
the BN are the events in the FT, the intermediate events are the intermediate nodes, and the top
event is the leaf node (child) in the BN, with each node having its CPT. For a more detailed
explanation, let X, Y, and Z be random variables with two states: 1 indicates that the events happen,
and 0 indicates that they don't. Figure 5.3 illustrates the fault tree for OR-gate and the accompanying
BN using the conditional probability table (Table 5.2). In contrast, Figure 5.4 uses the conditional

probability table (Table 5.3) to display the fault tree for AND-gate and the corresponding BN.

B x

Figure 5. 3 Representation of OR gate in FT and BN

Table 5. 2 Conditional probability table corresponding to OR gate

Parents Top event(X)
X Y P(Z=X.Y)
0 0 0
1 0 1
0 1 1
1 1 1

Top Event(Z)

OO {

Figure 5. 4 Representation of AND gate in FT and BN




Table 5. 3 Conditional probability table corresponding to AND gate

Parents Top event(X)
< Y P(Z=X,Y)
0 0 0
1 0 0
0 1 0
1 1 1

5.5 Bayesian Network Model for reliability study

Based on probabilistic and uncertain knowledge, BNs are used to build system reliability models,
risk management, and safety assessments. A Bayesian network is a directed acyclic graph (DAG),
also known as belief networks. BNs can be made up of qualitative or quantitative components or
both. It is made of the two components: structure and parameter. A BN is made out of nodes and
directed edges (edges for short) [153]. Edges show causal linkages between linked nodes, while
nodes represent random variables. Each variable has several possible states (e.g., Yes or No; Low,
Medium or High; 0 or 1). Parent nodes (the ones that an edge starts with) and child nodes (the ones
that an edge points to) are the two types of nodes[152]. An edge extending from A to B denotes that
the value of the child node B is dependent on the value of the parent node A, or that A influences
B, and that the strength of the impact is protected by the CPT of node A (parent node) [74]. The arc
is a connecting link between the variables and direction of arc presents the probabilistic dependences
between the variables. The parameter of the BN model presents the prior probability of each root
node for each state and the CPT of each child node given parental states. For the construction of
BN, first generate the influence diagram to describe the system structure and parameters from the
collected historical data. The relationship between system-subsystem-components can be
constructed using the CPT of BN, which can be used to estimate the reliability. The CPT can be
developed through the relationaship in between the nodes and also used to estimate the probability

from the collected data and the causal relationships between parent node and child node [154],



[155], and it has an advantage that it can be regularly updated to generate sufficient information
about the health/condition of the system when the new evidence is observed. For reliability analysis
of dragline system, structure of BN is expressed: the root node, intermediate node and the leaf node.
Root node indicates dragline failure, the intermediate nodes are formed by subsystem failure and

leaf nodes are components failure.

When building the BN model, the Bayesian reasoning process grows exponentially as the
number of variables rises. There are three independence assumptions that help to alleviate the joint
probability distribution calculation's complexity [13]. The initial presumption is that every root node

in the BN is distinct from every other node. In this study, such as

X = (Rl’ Ryroa Ryl b i Ly, I‘2""|‘I°)three sets of variables—denoted system, subsystems,
and components, respectively—are taken into consideration. Here q is the number of system nodes
denoted asR;,R,,...,R,; M is a number of subsystem nodes denoted as |y, I5,...,1,,; and P is the

number of components nodes denoted as L, L2,...Lpand the total number of nodes is n when

(N=9+m+p) in the BN model. The general equation for the calculation joint probability
distribution can be given as a product of the specified conditional probability as presented in Eq.

(5.3) [156], [157]:
P(X) =P(Xy Xz2,..., Xn) ZﬁP(Xi| Parents (Xi)) (5.3)

where X = X1, Xz ..., Xn is a set of variables in the BN model and n is the number of variables.

The joint probability distribution for a given BN model can be calculated using Eq. (5.4) (ref. Figure

5.5).

P(Rl, R, Re. R, 115, Ll): P(Rl)P(Rz)P(Ra)P(R4)P(I1 | Rle)P(IZ | R3R4)P(L1 | Ill?) (5.4)
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Figure 5. 5 An example BN

where R1, R2,R3,R4, 11, 12, L1 are set of variables in the given BN model (Figure 5.5) where (Ry, R2,
Rs, Rs4) represent the components nodes, (l1, I2) subsystems nodes and (Li) System nodes,
respectively and the total number of nodes are five. With the help of joint probability distribution,
the probability of occurrence of the system failure can be calculated using Eq. (5.5) (refer Figure

5.5).

P(Lizl): ZP(Rl’Rz’R37R4'L1:1’|1'|2)
RR,RaRs 141, (5.5)

In general, two typical information propagation procedures of BNs are top-down (predictive support
reasoning) and bottom-up (diagnostic support reasoning) [96]. The joint probability distribution

P(X) propagates information in the top-down reasoning pattern as follows:

P(Xl,Xz,Xg, ......... ,Xn) =
P(X | X1, Xz oo X)P Kt | X Xy woe e Xp) o oee o P(X,|X)P(X,) =
e Pl X i1, Xy v X0) (5.6)

However, the joint probability distribution P(X) of BN follow the conditional independence and

chain rule. Thus, P(X) of variables X = {X;,X,, X3, ... ..... X, } is included in the network as[158].
Xi
PO = T, P (5 (Xi)) (5.7)

Where Pa(X;)are the parents of X; in the BN.



The probability distribution of a given variable can be derived by marginalizing the joint probability
distribution about it. This calculation is known as marginalization, and it can be used to calculate
system reliability[72], [74]. The bottom-up inference procedure follows junction tree or variable
elimination algorithms. The inference algorithm estimates the posterior probability distribution of a
particular variable based on Bayes theorem at given evidence (set E) [19].

P(E/X)P(X)  P(X,E)

P(X/E)= PE) > P(X,E)

(5.8)

. In the BN of the case study dragline (Figure 5.6), there are forty component nodes, seven

subsystems nodes, and one system node.

5.6 Result & Discussion

In this section, reliability study has been done using the FTA and BN model. Validated this method
with actual reliability of the dragline. Also, discussed the BN diagnosis of the dragline and identified

the critical subsystem of the dragline and validated with sensitivity analysis.

5.6.1 Reliability Analysis

In the FTA method, the reliability analysis of the dragline system has been estimated through
equations (5.1) and (5.2). Figure 5.1 depicts FT of the dragline system. . In the FT, dragline failure
represented as the top event, while subsystems and component failures described intermediate
events and basic events respectively. Failure probabilities (Table 5.1) at the operating time t=1hr
have been estimated for the basic events of the FT using the distribution parameters (Table 4.2).

The failure probability of the ‘Bucket & Accessories’ subsystem is calculated using equation 5.2

P(51) = 0.9590
Similarly, failure probability for all the subsystems are calculated as:
P(S2) = 0.8445

P(S3) = 0.9951



P(54) = 0.9197
P(S5) = 0.9189
P(S6) = 0.8997
P(S7) = 0.9791
The estimated reliability of the dragline (t=1 hr) is 59.59%

BN model has also used the failure probability of the dragline subsystem's failure events presented
in table 5.1. Every major component under the defined subsystem of the dragline has been estimated
for likelihood of occurrences of failure. These failure probabilities are crucial in evaluating the
overall system reliability and have been taken as the prior probabilities of the BN model. The
Bayesian network diagram of the dragline system mapped from the fault tree appears in figure 5.6

below, when figure 5.7 shows the details of the reliability assessment.

Figure 5. 6 Bayesian Network of the dragline system mapped from fault tree



CPT of every subsystem shows the causal relationship between the component and subsystem
failures. Prior probabilities of the subsystems are estimated following equation (5.3). For example,
Prior probability (t = 1 hr) of the ‘Bucket & Accessories’ subsystem

Porior(S1) = P(X1) x P(X2) X P(X3) x P(X4) X P(5)

= 0.9908x0.9928x0.9969x0.9978x0.9801 = 0.9544

Similarly, the prior probability of the all the subsystems are calculated and presented in table 5.3.
The BN model estimates the reliability of the dragline system based on the prior probability of the

components and CPT. The estimated reliability of the dragline system is 62.03%, at t = 1 hour.

False

9965% I Trve

035%!

&

9575% I Trv:

32541

False

J

due; 0968
9952% I Trve

False

9
fil
Ve 08

Jl1:27 |

6012 I e

Y |

e 0680
76 I Trve

016%]

x
False

|

Ve
2
Fose | | 7745 IR T

i

Vaue: 0990
904% I Trve
v
02%
96.76% I Trve

False

9
i

f

aue: 0961
96:10% MY Trve

0
Fals

Value: 082
fifc |

o I T

45%1

e 0954
9544 I T

m

8

Flse.

False

]
Fase
25%|

Vae 0972
9715% I True

000%!
xm

abe: 1000
10000% I rue

m

Voke: 0820
9%
6209 I

816%0

e 018
9154 I T
T

False

False

99.95% I Trve

955% I (e

016%

e 098
99.64% I Trve

Value: 1000

005%!

e
)
e

9776% I Trve

084%|

e 062
9916% Y Trve

Vake 06
9055 I e
e 0381
5005% I Tre:
T
Vol 087
9059 I 1.2
|

2%

xn
X

Figure 5. 7 Reliability assessment of the dragline system using BN model



5.6.2 Validation of BN model estimated reliability values

Figure 5.8 presents a comparative study of actual reliability of the dragline with the estimated
reliability of the dragline using BN model and FTA. It is evident from the figure 5.8 that BN model
estimates reliability much closer to actual reliability than FTA. For example: after 5 hours of
operation, the actual reliability of the dragline system is 35.25% when the BN model and FTA
estimate it to be 29.31% and 25.05%, respectively. This work defines error in predication as follows:

Error is the difference between actual and estimated values [159] and expressed as:

(aCtuaIreliability - eStirnatedreliabilily)
aCtualreliabilily
Error in reliability prediction by the BN model and FTA has been calculated at different point of

%error= *100 (5.9)

time as presented in the table 5.4. It is observed that the accuracy of the BN model is 83.15% when
itisonly 71.07% FTA. From the above discussion, it can be concluded that the developed BN model
estimates the reliability of the dragline system with more than 80% precision on an average, and

BN model is more precise than the FTA method.
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Figure 5. 8 Comparison of dragline’s reliability with different models



Table 5. 4 Error in reliability prediction of dragline with different models

BN FTA Actual BN FTA
Reliability

t R(t) R(t) R(t) R(t) %Error R(t) % Error
0 100 100 100 0 0
1 62.03 59.59 70.65 12.20 15.65
5 29.31 25.05 35.25 16.85 28.93
10 14.71 10.35 17.68 19.85 41.45
15 7.95 4.12 11.97 33.58 66.48
20 4.55 2.65 7.98 42.98 66.79
25 2.73 2.3 4.87 43.94 52.77
30 1.72 1.2 2.32 25.86 48.27

5.6.3 BN based Failure Diagnosis and importance ranking

BN helps to diagnose the failure path of a dragline as detailed below:

Path 1: Dragline > Dragging Mechanism ->Drag Motor, Drag Brake and Drag Drum along with
the Gearbox.

Path 2: Dragline - Electrical Auxiliary = Synchronous motor, DC motor, power system, and the
MG Set.

The above diagnostic paths can be decided based on the failure diagnosis of the dragline.

The diagnosis of the dragline system failure, either due to the failure of individual subsystems or
the combined subsystem failures, required updating the failure probabilities of the BN nodes (Figure
5.8). Updated probabilities of the BN nodes will help to find out the contribution of each node (from
bottom to top) in the system failure events.

For assessing the contribution of each node to the system failure, the failure probability of the
dragline system is set to 100%. Using this initial system probability (100%), the probability values
of each node in the BN are updated as indicated in Figure 5.9. Thus, posterior probabilities are
estimated from equation 5.8 using the evidence on the BN model. The prior and posterior
probabilities information in table 5.3 show the significance of the dragline subsystems/components
to the system failure. From Table 5.3, it can be seen that the dragging mechanism (S2) is the lowest

posterior probability (reliability) of 53.04%. While the electrical auxiliary (S6) is the second lowest,



and the swing mechanism is seen to be the third lowest posterior probability (reliability) subsystem

with a posterior probability of 68.35% and 77.08%, respectively.

Table 5. 5 Prior and Posterior probability of the component/subsystems of the dragline

Prior Posterior Node Prior Posterior
Probability | Probability Probability | Probability

S2 0.8217 0.5304 X5 0.9908 0.9757
S6 0.8798 0.6835 X38 | 0.9916 0.9779
SE1 |0.8912 0.7134 X26 | 0.9922 0.9794
S5 0.913 0.7708 X1 0.9928 0.981

S4 0.9184 0.7851 X22 10.993 0.9817
SE2 ] 0.9294 0.8142 X24 | 0.9955 0.9882
X33 ]0.9544 0.8798 X9 0.9963 0.9903
S1 0.9544 0.8916 X29 | 0.9965 0.9907
SE3 [ 0.9597 0.8938 X30 |0.9965 0.9907
X6 0.9599 0.8943 X4 0.9969 0.9917
X7 0.9599 0.8943 S3 0.9969 0.9918
X36 | 0.9675 0.9143 X10 | 0.9973 0.9929
S7 0.9793 0.9193 X3 0.9978 0.9941
X13 |[0.9715 0.925 X31 |0.9978 0.9942
X15 [0.9751 0.9343 X11 |0.9981 0.9951
X25 10.9764 0.9379 X21 |0.9982 0.9953
X32 10.9774 0.9404 X18 | 0.9984 0.9957
X39 |[0.9776 0.9409 X16 | 0.9985 0.9961

Node

X2 0.9801 0.9475 X28 |0.999 0.9974
X19 |[0.981 0.9501 X23 [0.9995 0.9987
X20 ]0.981 0.9501 X12 | 0.9998 0.9995
X14 ] 0.9816 0.9515 X8 0.9998 0.9995
X27 |0.982 0.9525 X40 |1 1
X34 | 0.9866 0.9647 X37 |1 1
X35 1 0.9904 0.9748 X17 |1 1

Dragline failure following path 1: The updated BN model as presented in figure 5.9, shows that the
drag motor is one of the significant contributors to failure with a failure probability of 28.66%. This

is followed by the drag brake failure with a probability of 15.97%.

Dragline failure following path 2: The Electrical subsystem has five major components; the
synchronous motor is attributed to having a failure probability of 12.02%, and thus, makes a

significant contribution towards the reliability of the dragline system. The Bayesian network in



figure 5.10, shows the joint failure probability of the overall dragline and dragging mechanism
subsystem, when both the dragline system and the dragging mechanism subsystem have failed.

A similar investigation on the overall dragline and the electrical auxiliary subsystem is shown in
figure 5.11. The major failed components in the Electrical subsystem are the synchronous motor,
power supply, DC system and the MG set with a failure probability of 11.17%, 37.98%, 27.08%
and 18.83%, respectively.

Based on the relative change in probability (prior and posterior probability),
subsystems/components of the dragline have been ranked as shown in the table 5.4 and table 5.5

Table 5. 6 Criticality ranking of the subsystems of the dragline

Prior Posterior | % change in | Criticality

Node | b opapility | Probability | Refibility | Ranking

S2 0.8217 0.5304 0.35451
S6 0.8798 0.6835 0.22312
S5 0.913 0.7708 0.15575
S4 0.9184 0.7851 0.14514
S1 0.9544 0.8916 0.0658
S7 0.9793 0.9193 0.06127
S3 0.9969 0.9918 0.005116

N|jojun bW IN (K-




Table 5. 7 Criticality ranking of the components of the dragline

Node | Gicnes | Ranking’ | NOGE | Gitcarce | manking
SE1l 0.19950628 | 1 X1 0.011886 | 23
SE2 0.12395094 | 2 X22 0.01138 | 24
X33 0.07816429 | 3 X24 0.007333 | 25
SE3 0.06866729 | 4 X9 0.006022 | 26
X6 0.06834045 | 5 X29 0.00582 | 27
X7 0.06834045 | 6 X30 0.00582 | 28
X36 0.05498708 | 7 X4 0.005216 | 29
X13 0.04786413 | 8 X10 0.004412 | 30
X15 0.04184186 | 9 X3 0.003708 | 31
X25 0.03943056 | 10 X31 0.003608 | 32
X32 0.03785554 | 11 X11 0.003006 | 33
X39 0.03754092 | 12 X21 0.002905 | 34
X2 0.03326191 | 13 X18 0.002704 | 35
X19 0.03149847 | 14 X16 0.002404 | 36
X20 0.03149847 | 15 X28 0.001602 | 37
X14 0.03066422 | 16 X23 0.0008 | 38
X27 0.03004073 | 17 X12 0.0003 | 39
X34 0.02219745 | 18 X8 0.0003 | 40
X35 0.01575121 | 19 X40 0|41
X5 0.01524 20 X37 0|42
X38 0.013816 21 X17 0|43
X26 0.012901 22

Table 5.4, depicts that dragging mechanism (S2) is the most critical subsystem of the dragline
system followed by S6, S5, S4, S7, S1 and S3 respectively. Four subsystems namely, (S2, S6, S5,

and S4) contributes 80 % of dragline failures and are the critical subsystems of the dragline system.

Similarly, it is also evident from table 5.5 that failure of drag motor system (SE1) is the most critical
for dragline operation and dump rope failure (X17) has limited impact on dragline failure. Failures

of SE1, SE2, X33, SE3, X6, X7 and X33 shares 80% of the dragline failures and are critical

components of the dragline.
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Figure 5. 9 Updated Bayesian network with Dragline failure
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Figure 5. 10 Updated Bayesian network with the dragline and Dragging Mechanism failure
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Figure 5. 11 Updated Bayesian network with the Dragline system and Electrical Auxiliary Failure




5.6.4 Validation of critically ranking using Sensitivity analysis

In BNs, the sensitivity analysis can be used for verifying the correctness of parameters, and to
understand whether more precision in estimating them would be useful [160], [161]. To study the

importance of root nodes, a sensitivity analysis in BN model has been conducted.

It is a standard practice to study the correlation and covariance between variables to determine their
relative importance, particularly the target variable. Here a different approach based on information
theory has been utilized for the sensitivity study. Instead of computing the correlation coefficient,
how observing a predictor variable affects the states' uncertainty of a to-be-predicted variable has
been considered. Evaluating Mutual Information (MI) values between pairs of random variables
reveal the degree of dependence between two random variables. The reasoning behind this approach
is that the state of one node provides a lot of information about the state of another node if they are
connected. In other words, these variables are more dependent on one another than any other nodes
in the network[162].

MI between two random variables X and Y is denoted by I(X;Y), and mathematically defined as
follows[163]:

I(X;Y) = HX) — H(X|Y) (5.10)
Where H(X) and H(Y) represent the entropies of random variables X and Y, respectively, and
H(X|Y) represents the conditional entropy of random variable X given Y. The entropy and
conditional entropy are mathematically defined as follows:

H(X) = = Xi-; P(X)log(P (X)) (5.11)
HX|Y) = =YL 1 X7e  PX = x;, Y = y) *log(P(X = x;|Y = y,)) (5.12)
Where, n and m represent the number of discrete states represented by the random variables X and
Y; P(X = x;,Y = y;) represents the joint probability distribution of the X and Y.

Using the concept of Mutual Information (MI) theory the contribution of individual nodes into

failure of target node has been estimated using equation (5.12). From figure 5.12 it is clear that, the



Dragging mechanism (S2) contributes maximum to the overall failure of the Dragline and is the
most critical subsystem in Dragline. This result supports the result obtained through BN analysis. .
In comparison, electrical auxiliary subsystem (S6) and swing mechanism contributed around
18.79% and 13.16% to overall dragline failure. Figure 5.13 shows the top 10 critical components
and their contribution to dragline failure. It is observed that the drag motor system contributes the
most with around 16.82% of the dragline failure, followed by the hoist motor system, synchronous
motor and swing motor system with 10.5%, 6.64% and 5.83%, respectively. This result complies

with the results obtained in the present study using BN.
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To improve the reliability of the dragline, it is necessary to improve the reliability of the dragging
mechanism, electrical auxiliary subsystem and swing mechanism. Thus, the quality enhancement
of Dragline depends on the reliability improvement of the components of the subsystems mentioned
above. Therefore, it should be highlighted that the maintenance methods of various

components/subsystems vary from one another.

5.7 Summary

In this chapter, reliability study has been done on the case study dragline using traditional
FTA method and BN model. Validated the studied model with actual reliability of the dragline
which was based on the traditional non-parametric model using the operational failure data of the
dragline. Estimated reliability of the dragline through BN model much precise to the actual
reliability of the dragline as compared to the FTA. Dragging mechanism has been identified as the

most critical subsystem of the dragline.



