RELIABILITY ANALYSIS OF DRAGLINE USING BAYESIAN NETWORK

Thesis submitted in partial fulfillment for the Award of Degree

Doctor of Philosophy

By

Deepak Kumar

DEPARTMENT OF MINING ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU UNIVERSITY) VARANASI- 221005 INDIA

Roll No. 16151005

2022

Dedicated to my beloved parents and all my gurus who teaches me

तद्विद्धि प्रणिपातेन परिप्रश्नेन सेवया। उपदेक्ष्यन्ति ते ज्ञानं ज्ञानिनस्तत्त्वदर्शिन:।। (अध्याय 4, श्लोक 34, भगवत गीता)

CERTIFICATE

It is certified that the work contained in the thesis titled "RELIABILITY ANALYSIS OF DRAGLINE USING BAYESIAN NETWORK" by "DEEPAK KUMAR" has been carried out under my/our supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Subrakash Gupla (Prof. Suprakash Gupta)

(Prof. Suprakash Gupta) Supervisor Department of Mining Engineering IIT(BHU) Varanasi

Dr. Suprakash Gupta Professor Department of Mining Engineering I.I.T., B H U. Varanasj-221005

DECLARATION BY THE CANDIDATE

I. "DEEPAK KUMAR", certify that the work embodied in this thesis is my own bona fide work and carried out by me under the supervision of "PROF. SUPRAKASH GUPTA" from "JULY 2016" to "DECEMBER 2022", at the "DEPARTMENT OF MINING ENGINEERING", Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date : 24/12/2022

Place: Varanasi

CERTIFICATE BY THE SUPERVISOR(S)

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

Suprokash Gupta (Prof. Suprakash Gupta)r. Suprakash Gupta Professor Supervisor Department of Mining Engineeringent of Mining Engineering Indian Institute of Technology (BHU), Tvaranasi aranasi 221005

Alah

Signature of Head of Department/Coordinator of School "SEAL OF THE DEPARTMENT/SCHOOL"

Dent of Mining Engg. भारतीय प्रोणो Indian Institute of T TELES 1-221012 STAN 1005

194.19 niversity)

Derfut

(Deepak Kumar)

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: "RELIABILITY ANALYSIS OF DRAGLINE USING BAYESIAN NETWORK"

Name of the Student: DEEPAK KUMAR

Copyright Transfer

The undersigned hereby assigns to the Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "**DOCTOR OF PHILOSOPHY**".

Date : December 24, 2022

Place: IIT(BHU) Varanasi

Note: However, the author may reproduce or authorise others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and Institute's copyright notice are indicated.

Derfund

(DEEPAK KUMAR)

ACKNOWLEDGMENT

First and foremost, from the core of my heart I would like to pay homage and tributes, to the great soul of **Mahamana Pandit Madan Mohan Malviya ji**, the revered founder of this beautiful temple of learning. His divine figure has always remained a source of courage, inspiration and motivation, a guiding light and a supreme example of patriotism and willpower in the form of Banaras Hindu University.

I would like to express my deep most sincere gratitude to **Prof. SUPRAKASH GUPTA**, Professor & Head, Department of Mining Engineering, IIT (BHU), Varanasi, for giving me the opportunity to work under his esteemed supervision. His constant encouragement and meaningful suggestions and constructive criticism during the course of my work have been of immense help in completing the thesis in time bound manner.

My deep sense of gratitude is due to all RPEC members **Dr. S.K. Palei**, Department of Mining engineering and **Prof. P. Bhardwaj** Department of Mechanical engineering, IIT (BHU). I am also thankful to all teachers of the department for their moral support, encouragement, and helpful suggestion during my research period.

I take the opportunity to thank the working staff and my lab colleague **Dr. P. K. Yadav**, and **Mr. Debasis Jana** of the department for their suggestions, which helped improve the work.

Last but not least, I would like to thank my beloved parents for always being there throughout my career. I must take the opportunity to give a special thanks to my wife (**Mrs Aishna Roy**). Without her constant inspiration and encouragement throughout this hard time, it was not possible for me to complete the work. I also express my debt to all of my family members and friends for kindly bearing with all my frustrations, desperation and negligence met them at different phases of this work.

Lord Kashi Vishwanath may bless everyone with a happy, healthy, prosperous life.

Reifint

Date: 24/12/2022 Place: Varanasi

(Deepak Kumar)

Contents

Certi	ficate	ii
Dedi	cation	iii
Decl	aration by the Candidate	iv
Сору	right Transfer Certificate	V
Ackr	nowledgement	vi
Cont	ents	. vii
List (of Figures	xiii
List	of Abbreviations	xviii
List	of Symbols	XX
Prefa	ice	xxii
Chap	oter -1	1
Intro	duction	1
1.1	Introduction	1
1.2	Statement of the Problem	4
1.3	Significance and Novelty of the Research	5
1.4	Objectives of the Research	6
1.5	Research Questions	7
1.6	Research Methodology	7
1.7	Outline of the Thesis	8
Chap	oter -2	13
Liter	ature Review	13
2.1	Introduction	13
2.2	Reliability Analysis across Industries	13

2.2.1	Reliability Concept	13
2.2.2	Common Mathematical Expressions in Reliability	14
2.3	System Reliability Analysis	16
2.3.1	Fault Tree Analysis (FTA)	18
2.3.2	Markov Analysis	18
2.3.3	Bayesian Network	20
2.3.4	Dynamic Bayesian Network	20
2.4	Maintenance of Systems	22
2.4.1	Classification of maintenance	23
2.5	Reliability and Maintenance Works on Mining Machines	26
2.5.1	Performance studies of dragline	27
2.6	Summary	29
Chapt	er - 3	31
Metho	odology	31
3.1	Introduction	31
3.2	Development of Methodology	31
3.2.1	Reliability analysis of dragline	32
3.2.2	DBN based reliability study of the critical subsystem of the dragline	33
3.2.3	Maintenance scheduling of the components of dragline	34
3.3	Summary	34
Chapt	er - 4	35
Data (Collection & Preliminary Data Analysis	35
4.1	Data Acquisitions	35
4.2	Dragline System	36
4.3	Data Collection	37
4.4	Dragline subsystems and data classification	38

4.4.1.	Bucket & Accessories	40
4.4.2.1	Dragging Mechanism	41
4.4.3 I	Rigging Mechanism	42
4.4.4]	Hoisting Mechanism	42
4.4.5	Swing Mechanism	43
4.4.6 l	Electrical Auxiliary	44
4.4.7 (Others	44
4.5 Cl	eaning and preparation of collected field data	45
4.5.1	Trend Analysis	48
4.6 Pr	eliminary Data Analysis	50
4.6.1 1	Methodology	51
4.6.2]	Identification of the best fit failure distribution and estimation of its parameters	52
4.7 Re	esult	65
4.8 Su	Immary	66
Chapt	er -5	67
Reliab	bility Study of the Dragline	67
5.1	Introduction	67
5.2	Fault tree analysis	67
5.3	Methodology of BN	71
5.4	Mapping of FT into BN	72
5.5	Bayesian Network Model for reliability study	73
5.6	Result & Discussion	77
5.6.1	Reliability Analysis	77
5.6.2	Validation of BN model estimated reliability values	80
5.6.3	BN based Failure Diagnosis and importance ranking	81
5.6.4	Validation of critically ranking using Sensitivity analysis	88

5.7	Summary	90
Chapte	er - 6	91
Reliab	ility Analysis of the Critical Subsystem of the Dragline using DBN	91
6.1	Introduction	91
6.2	Dragging Mechanism	91
6.3	Dynamic Bayesian Network Modelling	92
6.4	Methodology of DBN for reliability analysis	95
6.5	Model Development	96
6.6	Result & Discussion	98
6.6.1	Reliability analysis of dragging mechanism	98
6.6.2	Important analysis	102
6.6.3	Validation of the model	103
6.7	Summary	105
Chapter -7		107
Preventive Maintenance of Critical Subsystem of Dragline		107
7.1	Introduction	107
7.2	Maintenance Model	107
7.2.1	Imperfect Preventive Maintenance Model	107
7.2.2	Preventive replacement model of components	108
7.3	Methodology Of Developing Maintenance Strategy	109
7.3.1	Imperfect PM model of repairable critical components of dragging subsystem	110
7.3.2	Calculation of optimum interval for PM	112
7.3.3	Interval-based preventive replacement of non-repairable components of	dragging
mecha	nism	116
7.4	Result & Discussion	116
7.5	Summary	118

Chapter -8	119
Conclusion	119
8.1 Introduction	119
8.2 Conclusion	119
8.3 Future Scope of Research Work	121
References	123
Appendix- 1	135
Publications	161
A. From this research work	161
B. Other related publication	162

Preface

The ideas of reliability, availability, and maintainability aid in the development of methods for enhancing system performance and safety. To keep pace with the increasing demand for raw materials, the mining industry is rapidly expanding with intense mechanization and automation, which urgesdue importance on reliability, availability, and maintainability. While maintenance analysis deals with the cost implications across the operating life of the system or product, reliability analysis helps to manage system failures. Draglines are popular capital-intensive equipment in high productive surface mines and failures of a dragline have a significant impact on mine productivity. Draglines should have higher reliability for the smooth operation of opencast mines. This research aimed at the reliability study and failure diagnosis of draglines using a Bayesian Network (BN) model and identified the critical subsystems that affect the reliability. The reliability of the critical subsystem has been studied using the Dynamic Bayesian Network (DBN) model and the critical components of the subsystem are recognised.A preventive maintenance policy has been established for the components of the critical subsystems which helps to schedule the maintenance of the components and enhanced the overall reliability and performance of the dragline. The proposed methodology has been illustrated with a case study.

Failure data for the period January 2011 to April 2015of the dragline 'X', operating in an Indian surface coal mine, were collected for the present analysis. The dragline was decomposed into seven subsystems called bucket & accessories, dragging, rigging, hoisting, swinging, electrical auxiliary, and others. Data have been classified to calculate Time to Failures (TTF) data of each subsystem and component of the dragline. Statistical analysis of TTF data gives the parameters

of the best fit theoretical distribution. The reliability of a draglines system has been evaluated using the Bayesian network model mapped from the Fault tree. The prior probability of each component (parent) node in the BN model is calculated using the parameters of the Weibull distribution's at time t=1hrs. The reliability of the dragline system has been estimated based on BN forward inference. The joint probability distribution for the developed BN model estimates reliability of the dragline system 62.03%, at t = 1 hour. The posterior probabilities are estimated from backward inference using the evidence on the BN model. . It can be seen that the dragging mechanism is the most critical subsystem having the lowest posterior probability (reliability) of 53.04%. While the electrical auxiliary is the second most critical subsystem, and the swing mechanism is seen to be the third most critical subsystem with a posterior probability of 68.35% and 77.08%, respectively. The accuracy of the BN model is 83.15% when it is only 71.07% in FTA. The dragging mechanism is the most critical subsystem to operate the dragline smoothly. The Dynamic Bayesian Network (DBN) model of the dragging mechanism has been mapped from the Fault tree. The overall reliability of the dragging mechanism is 84.29% at 1hr running of the case study dragline. It has been observed that the Drag motors contributes about 26% of drag mechanism failures, while the failures of power supply, drag brake and drag socket share 18.04%, 15.72% and 13.6%) respectively. The DBN model has been validated using a threeaxiom-based validation approach.

Maintenance is a crucial part of ensuring the equipment operates normally. Maintenance policy has been framed for the components of the critical subsystem. An imperfect PM model for repairable components and an interval-based reliability-centred preventive replacement of nonrepairable components are recommended. A cost rate optimization model has been used to estimate the optimum frequency of maintenance at a minimum cost rate, and the preventive maintenance interval is prescribed. . Using Monte Carlo simulation, it has been estimated that within a limited use time, the optimum maintenance frequency is 2 when the cost rate reaches a minimum, of Rs. 37548 per hr for drag motors. Thus the corresponding maintenance interval is 4000hrs. A replacement policy for a non-repairable component has been established using the characteristic life and MTTF of the component. This study suggests the interval between characteristic life and mean life of a component is a favourable time for opportunistic preventive replacement and scheduled preventive replacement thereafter. The characteristic life of the drag rope and chain has been estimated using the parameters of the best fit Weibull distribution and are 751.4251hrs and 433.3874hrs respectively while the MTTF value of the drag rope and drag chain are 4508.55hrs and 2600.25hrs, respectively. This study suggests an opportunistic preventive replacement of the drag rope between 751hr – 4508 hrs. Otherwise, components replace drag ropes after 4508 hrs of use to avoid undue down time. These results are useful information for inventory management.

List of Abbreviations

Artificial intelligence	AI
Artificial neural network	ANN
Bayesian network	BN
Condition based maintenance	CBM
Conditional probability table	CPT
Corrective maintenance	СМ
Cumulative Mean Time to Failures	CMTF
Cumulative Mean Time to repairs	CMTR
Cumulative Number of Failures	CNF
Directed acyclic graph	DAG
Dynamic bayesian network	DBN
Dynamic object oriented Bayesian Network	DOOBN
Dynamic object oriented Bayesian Network Failure mode and effects analysis	DOOBN FMEA
Failure mode and effects analysis	FMEA
Failure mode and effects analysis Failure modes, effects and critically analysis	FMEA FMECA
Failure mode and effects analysis Failure modes, effects and critically analysis Fault tree	FMEA FMECA FT
Failure mode and effects analysis Failure modes, effects and critically analysis Fault tree Fault tree analysis	FMEA FMECA FT FTA
Failure mode and effects analysis Failure modes, effects and critically analysis Fault tree Fault tree analysis Genetic algorithm	FMEA FMECA FT FTA GA
Failure mode and effects analysis Failure modes, effects and critically analysis Fault tree Fault tree analysis Genetic algorithm Heavy earth-moving machinery	FMEA FMECA FT FTA GA HEMM
Failure mode and effects analysis Failure modes, effects and critically analysis Fault tree Fault tree analysis Genetic algorithm Heavy earth-moving machinery Hidden Markov model	FMEA FMECA FT FTA GA HEMM HMM

Iot-based running time monitoring system	Ι
Machine-learning	ML
Markov chain	MC
Mean time between failure	MTBF
Mean time to failure	MTTF
Minimum cut set	MCS
Mutual information	MI
Non-homogenous Poisson process	NHPP
Northern Coalfield limited	NCL
Ordinary renewal process	ORP
Over burden	OB
Pair-wise comparison nonparametric test	PCNT
Preventive maintenance	PM
Probability density function	PDF
Reliability based maintenance	RBM
Reliability block diagram	RBD
Reliability, availability, maintainability and safety	RAMS
Renewal process	RP
Risk priority number	RPN
Support vector machine	SVM
Time to failure	TTF

List of Figures

Figure 2. 1 Types of maintenance	24
Figure 3. 1 Flowchart of the research methodology	32
figure 4. 1 A snapshot of the case study dragline operation	38
Figure 4. 2 Failure Number distribution for the Dragline	39
Figure 4. 3 Share of subsystems to the repair time of the dragline	40
Figure 4. 4 Failure frequency of different components of bucket & accessories	41
Figure 4. 5 Failure frequency of different components of dragging mechanism	41
Figure 4. 6 Failure frequency of different components of rigging mechanism	42
Figure 4. 7 Failure frequency of different components of Hoist mechanism 43	
Figure 4. 8 Failure frequency of different components of Swing mechanism	43
Figure 4. 9 Failure frequency of different components of electrical auxiliary	44
Figure 4. 10 Failure frequency of different components of others	45
Figure 4. 11 Boxplot of the TTFs of components of Bucket & Accessories subsystem	46
Figure 4. 12Boxplot of the TTFs of components of dragging mechanism	46
Figure 4. 13 boxplot of the TTFs of components of rigging mechanism	47
Figure 4. 14 Boxplot of the TTFs of components of hoisting mechanism	47
Figure 4. 15 Boxplot of the TTFs of components of swinging mechanism subsystem	47
Figure 4. 16 Boxplot of the TTFs of components of electrical auxiliary subsystem	48
Figure 4. 17 Boxplot of the TTFs of components of others subsystem	48
Figure 4. 18 Sample plot of CFN versus CTTF	49
Figure 4. 19 A flowchart of the methodology for preliminary data analysis[42]	51
Figure 4. 20 Trend and correlation graph of teeth	53

Figure 4. 21 Trend and correlation graph of Adapter pin	53
Figure 4. 22 Trend and correlation graph of equiliser pins	53
Figure 4. 23 Trend and correlation graph of anchor pins	54
Figure 4. 24 Trend and correlation graph of hitch shackle	54
Figure 4. 25 Trend and correlation graph of dump rope	54
Figure 4. 26 Trend and correlation graph of dump socket	55
Figure 4. 27 Trend and correlation graph of dump pulley	55
Figure 4. 28 Trend and correlation graph of drag rope	55
Figure 4. 29 Trend and correlation graph of drag rope	56
figure 4. 30 Trend and correlation graph of drag drum	56
figure 4. 31 Trend and correlation graph of drag chain	56
Figure 4. 32Figure 4.26 Trend and correlation graph of drag motor	57
Figure 4. 33 Trend and correlation graph of drag gearbox	57
Figure 4. 34 Trend and correlation graph of drag control system	57
Figure 4. 35.Trend and correlation graph of drag brake	58
Figure 4. 36 Trend and correlation graph of drag pulley	58
Figure 4. 37 Trend and correlation graph of hoist chain	59
Figure 4. 38 Trend and correlation graph of hoist motor	59
Figure 4. 39 Trend and correlation graph of hoist brake	59
Figure 4. 40 Trend and correlation graph of hoist control system	60
Figure 4. 41 Trend and correlation graph of hoist rope	60
figure 4. 42 Trend and correlation graph of swing motor	60
Figure 4. 43 Trend and correlation graph of swing control system	61
Figure 4. 44 Trend and correlation graph of trailing cable	61
Figure 4. 45 Trend and correlation graph of MG set	61

Figure 4. 46 Trend and correlation graph of power supply failure	62
Figure 4. 47 Trend and correlation graph of exciter failure	62
Figure 4. 48 Trend and correlation graph of DC failure	62
Figure 4. 49 Trend and correlation graph of lubrication failure	63
Figure 5. 1 The FT of the dragline failure	70
Figure 5. 2 Methodology for estimating the reliability of the dragline	71
Figure 5. 3 Representation of OR gate in FT and BN	72
Figure 5. 4 Representation of AND gate in FT and BN	73
igure 5. 6 Bayesian Network of the dragline system mapped from fault tree	78
Figure 5. 7 Reliability assessment of the dragline system using BN model	79
Figure 5. 8 Comparison of dragline's reliability with different models	80
Figure 5. 9 Updated Bayesian network with Dragline failure	85
Figure 5. 10 Updated Bayesian network with the dragline and Dragging Mechanism failu	
	86
Figure 5. 11 Updated Bayesian network with the Dragline system and Electrical Auxilian Failure	ry 87
Figure 5. 12 Importance of subsystems of dragline	89
Figure 5. 13 Importance of failure components of Dragline	90
Figure 6. 1 Schematic diagram of Dragging Mechanism	92
Figure 6. 2 Example of a DBN	94
Figure 6. 3 Flowchart of the DBN model	96
Figure 6. 4 Developed DBN model of dragging mechanism	97
Figure 6. 5 Reliability assessment of drag Mechanism at time t0	100

Figure 6. 6 Initial reliability and reliability at $t = 1$ with unroll condition of DBN of dragg mechanism	ing 101
Figure 6. 7 Reliability curve of dragging mechanism using DBN	101
Figure 6. 8 Reliability curve of dragging mechanism including components using DBN	102
Figure 6. 9 Unroll condition of dragging mechanism with failure	103
Figure 6. 10 Percentage increase in failure probability for components	103
Figure 6. 11 Probability of drag pulley given 100% reliability	104
Figure 6. 12 Probability of drag pulley and brake given 100% reliability	104

ure 7. 1 flowcharts for the preventive maintenance of the dragline's subsystem/components	
	110
Figure 7. 2 Schematic diagram of the imperfect preventive maintenance model	111
Figure 7. 3 Flow chart of the cost rate optimization method	115
Figure 7.4 The relationship between the number of drag motor maintenance N and cost rate	
	117

List of Symbols

Symbol	Abbrevation
R(t)	Survival function
f(t)	Probability density function
$\lambda(t)$	Failure rate function
F(t)	Failure function
E(T)	Mean time to Failure
H(t)	Cumulative failure rate
heta	Shape parameter
β	Scale parameter
P(X)	Probability of X components
$P(X_a)$	Parent node probability of X
P(E)	Probability of evidence
H(X)	Entropy of X
H(Y)	Entropy of Y
X _i (t)	ith Components at time t
$lpha_i$	Age reduction factor
ψ_i	Failure rate increasing factor
C _P	Cost of preventive maintenance
C _d	Cost of downtime maintenance
T _P	Total Preventive maintenance time
E(N)	Cost rate

C_{Total} Total cost

T_{Total} Total time

List of Tables

Table 1. 1Reported studies on the failure mechanism of various components of dragline	e 5
Table 2. 1 Important works on different relibility models	19
Table 2. 2 Reliability analysis across industries using BN and DBN	21
Table 2. 3 Important studies on maintenance policies of various systems	25
Table 2. 4 Various methods of Reliability and maintenance used on the draglines	28
Table 4. 1 Subsystems and important components of the dragline	39
Table 4. 2 Result of statistical analysis of TTF data of various components of dragline	64
Table 5. 1 Failure probabilities of the components of the dragline at t=1hr.	69
Table 5. 2 Conditional probability table corresponding to OR gate	72
Table 5. 3 Conditional probability table corresponding to AND gate	73
Table 5. 4 Error in reliability prediction of dragline with different models	80
Table 5. 5 Prior and Posterior probability of the component/subsystems of the dragline	82
Table 5. 6 Criticality ranking of the subsystems of the dragline	83
Table 5. 7 Criticality ranking of the components of the dragline	83
Table 6. 1 Basic events and their parameters	97
Table 6. 2 Transition probabilities of various components	98