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Chapter 4 

RESULTS 

 The results obtained for machine learning algorithms which include Naïve 

Bayes, PART, SMO, Jrip, and Random Forest are presented in section 4.1 and statistical 

techniques (PCA & SSE) has been illustrated in section 4.2. 

4.1 Results for prediction performance of pillar stability using Machine Learning 

 The entire experiment was performed based on the percentage split of 80:20. 

The confusion matrix for Machine learning classification tools Navie Bayes, Jrip, 

Multilayer perception, PART, SMO, and Random Forest models have presented in 

Tables 4.1-4.10. 

Table 4.1: Naive Bayes model’s confusion matrix based on percentage split of 80:20 on the 

original dataset 

 

Pillar Stability Condition 
 

 

Actual 

cases 

Predicted cases 

 

Stable 

cases 

(0) 

Unstable 

cases (1) 

Failed cases 

(2) 

Stable cases (0) 14 12 2 0 

Unstable cases (1) 9 1 7 1 

Failed cases (2) 13 1 4 8 
 

Table 4.2: SMO model’s confusion matrix based on percentage split of 80:20 on the 

original dataset 

 

Pillar Stability 

Condition 
 

 

Actual 

cases 

Predicted cases 

 

Stable 

cases 

(0) 

Unstable 

cases (1) 

Failed 

cases 

(2) 

Stable cases (0) 

 

14 12 1 1 

Unstable cases (1) 

 

9 1 7 1 

Failed cases (2) 13 1 3 9 
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Table 4.3:Jrip model’s confusion matrix based on percentage split of 80:20 on the original 

dataset 

 

Pillar Stability 

Condition 

 

 

Actual 

cases 

Predicted cases 

 

Stable 

cases 

(0) 

Unstable 

cases (1) 

Failed 

cases 

(2) 

Stable cases (0) 14 11 1 2 

Unstable cases 

(1) 
9 2 7 0 

Failed cases (2) 13 1 4 8 
 

Table 4.4: PART model’s confusion matrix based on percentage split of 80:20 on the 

original dataset 

Pillar Stability 

Condition 

 

Actual cases Predicted cases 

Stable 

cases 

(0) 

Unstable cases 

(1) 

Failed 

cases 

(2) 

Stable cases (0) 14 7 6 1 

Unstable cases (1) 9 1 8 0 

Failed cases (2) 13 1 2 10 
 

Table 4.5: RF model’s confusion matrix based on percentage split of 80:20 on the original 

dataset 

 

Pillar Stability 

Condition 

 

 

Actual cases 

Predicted cases 

 

Stable 

cases 

(0) 

Unstable cases 

(1) 

Failed 

cases 

(2) 

Stable cases (0) 14 12 2 0 

Unstable cases (1) 9 2 7 0 

Failed cases (2) 13 1 3 9 
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Table 4.6: Naive Bayes model’s confusion matrix based on percentage split of 80:20 on 

reduced dataset 

Pillar Stability Condition 

 

Actual cases Predicted cases 

Stable 

cases 

(0) 

Unstable 

cases 

(1) 

Failed cases 

(2) 

Stable cases (0) 14 13 0 1 

Unstable cases (1) 9 1 7 1 

Failed cases (2) 13 1 4 8 

 

Table 4.7: SMO model’s confusion matrix based on percentage split of 80:20 on the reduced 

dataset 

Pillar Stability 

Condition 

 

Actual cases Predicted cases 

Stable cases 

(0) 

Unstable cases 

(1) 

Failed cases 

(2) 

Stable cases (0) 14 13 0 1 

Unstable cases (1) 9 1 7 1 

Failed cases (2) 13 1 3 9 
 

Table 4.8:Jrip model’s confusion matrix based on percentage split of 80:20 on the 

reduced dataset 

Pillar Stability 

Condition 

 

Actual cases Predicted cases 

Stable cases 

(0) 

Unstable cases 

(1) 

Failed cases 

(2) 

Stable cases (0) 14 11 1 2 

Unstable cases (1) 9 2 7 0 

Failed cases (2) 13 1 3 9 
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Table 4.9: PART model’s confusion matrix based on percentage split of 80:20 on the 

reduced dataset 

Pillar Stability 

Condition 

 

Actual cases Predicted cases 

Stable cases 

(0) 

Unstable cases 

(1) 

Failed cases 

(2) 

Stable cases (0) 14 13 0 1 

Unstable cases (1) 9 2 7 0 

Failed cases (2) 13 2 3 8 
 

Table 4.10: RF model’s confusion matrix based on percentage split of 80:20 on the reduced 

dataset 

Pillar Stability 

Condition 

 

Actual 

cases 

Predicted cases 

Stable 

cases (0) 

Unstable 

cases (1) 

Failed 

cases (2) 

Stable cases (0) 14 12 1 1 

Unstable cases 

(1) 

9 2 7 0 

Failed cases (2) 13 1 1 11 
 

Table 4.11: Performance metrics for different ML tools on the original dataset. 

ML tools Accuracy (%) AUC MCC 

Naive Bayes 75.0 0.890 0.652 

Jrip 72.2 0.810 0.593 

SMO 77.8 0.845 0.674 

PART 69.4 0.813 0.581 

RANDOM FOREST 77.8 0.934 0.691 

 

Table 4.12: Performance metrics for different ML tools on the reduced dataset 

ML tools Accuracy AUC MCC 

Naïve Bayes 77.8 0.912 0.675 

Jrip 75.0 0.827 0.628 

SMO 80.6 0.854 0.711 

PART 77.8 0.877 0.674 

RANDOM FOREST 83.3 0.920 0.748 
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 To rank the features based on their importance in the classification process, a 

feature ranking algorithm was used. The number of characteristics in the order of most 

significant to least significant was then varied in steps of some constant in trials on 

classification algorithms. Based on the results of these tests, it was feasible to identify 

the redundant and non-informative features and, as a consequence, eliminate them from 

the input feature set. When the number of features in the input feature vector is big, this 

strategy is particularly efficient. 

Table 4.13: Ranking of different features based on Fuzzy rough features evaluator 

Features Ranks 

(w/h ) pillar width/pillar height 0.04185 

(𝛔𝐩/𝛔𝐜  ) pillar strength / pillar stress 0.02747 

UCS(MPa)𝛔𝐜 0.00745 

(MPa)𝛔𝐩 0.00566 
 

 On the other hand, the visual representation of various machine learning 

algorithms performed based on AUC were obtained for both original and reduced 

datasets are presented in Figure 4.1 and Figure 4.2. Higher the AUC value i.e. close to 

1, best will be the predictor algorithm. 
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Figure 4.1. AUC for various machine learning algorithms on original dataset 

 

Figure 4.2. AUC for various machine learning algorithms on reduced dataset. 
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4.2 Results of PCA and SSE Techniques 

 The results obtained by both PCA and SSE techniques has been discussed in the 

following section one by one: 

4.2.1. Results of PCA Technique 

 Table 4.14 presents the minimum, maximum and mean values of the seven 

input and an output parameter, Pillar Strength (PS) together with their respective 

symbols. The results of the present study have been discussed in the following sections: 

Table 4.14: Descriptive information of the pillar stability data set indicated in annexure 

B. 

 Sl. 

No. 

Parameters 

 

Symbols Min. Max. Mean 

 

 

 

 

Input 

 

 

 

1 Depth (m) D 42 300 133.20 

2 Gallery Width (m) B 3.0 4.2 3.52 

3 Pillar Width (m) W 9.0 35.5 19.26 

4 Pillar Height (m) H 1.8 3.0 2.63 

5 Pillar Width/Pillar Height 

ratio 
W/H 3.0 16.1 7.63 

6 Uniaxial Compressive 

Strength (MPa) 
UCS 18.3 85.0 47.18 

7 Pillar Load (MPa) PL 1.8 42.6 13.08 

Output Pillar Strength (MPa) PS 7.9 48.0 20.71 

 

PCA resulted in the formation of one principle component group with an 

eigenvalue greater than 1.0, which accounted for 79.80% of the total variance. 

Table 4.15 depicts the data matrix that explains the overall variance as well as 

the number of principal component groups. A total of one principle component 

group with an eigenvalue greater than one has been identified. 
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Table 4.15: Data matrix explaining total variance 

Principal 

Component 

Group 

Initial Eigenvalues 

Total % of 

Variance 

Cumulative % 

 

1 5.586 79.802 79.802 

2 0.953 13.610 93.412 

3 0.329 4.697 98.109 

4 0.102 1.451 99.560 

5 0.017 0.246 99.806 

6 0.010 0.142 99.948 

7 0.004 0.052 100.000 
 

 The P-P plot for the datasets used in the present study has been presented in 

figure 4.3. The R2 value has been found as 0.989, which clearly reveals that the observed 

datasets used to predict the pillar strength (PS) is closely related to the predicted values. 

The graph shown in figure 4.3 indicates the normal distribution curve against the 

observed and predicted datasets, which is closely related to each other (as indicated in 

figure 4.3). 

 

Figure 4.3: Probability plot for the datasets by PCA. 
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 Table 4.16 illustrates the one principal component groups with the coefficient of 

determination (R2) for all the pillar design parameters. The principal components of each 

component group were determined based on a greater R2 value. A total number of five 

PCs were identified and extracted from Table 4.16, namely D, W, W/H, UCS, and 

PL, and kept separately in Table 4.17. 

Table 4.16: Identification of principal components. 

Input parameters Component groups with a coefficient 

of determination,  R2 

D 0.991 

B 0.894 

W 0.986 

H -0.460 

W/H 0.991 

UCS 0.935 

PL 0.971 
 

Table 4.17: List of principal components extracted by PCA. 

Principal Component Group-1 D, W, W/H, UCS, PL 

 

MLR analysis for Pillar strength was subsequently carried out by following the  

two steps as listed below: 

1. For the prediction of pillar stability, MLR was carried out for all the 

identified five PCs (D, W, W/H, UCS, and PL). 

2. After eliminating multi-collinearity, MLR analysis for PS prediction was 

carried out for the retained two PCs (W/H and UCS). Table 4.18 

summarizes the MLR analysis for all the identified five PCs. It has been 

found that there is multi-collinearity among some of the principle 

components. 
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Table 4.18: MLR results for all the identified 5 PCs. 

R R2 Adjusted 

R2 

Significance SEE 

(Error) 

0.933 0.870 0.835 0.00 0.65401 
 

 From the analysis, it was found that three out of five PCs were having multi-

collinearity (VIF>10). Therefore, these three PCs were rejected. The multi-

collinearity (VIF>10) among various pillar design parameters is represented in 

Table 4.19. 

Table 4.19: Parameters with VIF>10. 

Sl. No. Input parameters VIF values 

1 D 53.12 

2 W 32.51 

3 PL 21.15 
 

 As a result, the new prediction model was created after deleting the three PCs 

that contained multi-collinearity. Thus, two PCs (W/H and UCS) were selected, free 

from multi-collinearity. Table 4.20 lists the pillar design parameters with VIF <10. 

Table 4.20: Parameters with VIF<10 

Sr.no. Input parameters VIF values 

1 W/H 7.12 

2 UCS 5.75 
 

 The MLR was applied on the selected parameters to develop the model, 

subsequently the unstandardized coefficients of the selected parameters together with 

their significance value and standard error was derived. Table 4.21 presents the 

unstandardized coefficients with the significance, standard error and collinearity 

statistics of the selected parameters. 
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Table 4.21: For developing the equation for PS. 

Model Unstandardized 

Coefficients 

 

Significance Collinearity Statistics 

β Std. Error Tolerance VIF 

(Constant) -7.392 0.532 .001   

W/H 2.338 0.054 .0001 0.406 7.12 

UCS 0.217 0.016 .001 0.406 5.75 
 

 Finally, the model in the form of an equation Eq. 4.1 has been developed 

using β-value associated with the retained PCs (Table 4.22). The MLR analysis 

results for the developed model is presented in Table 4.23. 

392.7217.0338.2  UCS
H

W
PS  

… (4.1) 

 

Table 4.22: MLR results for t he  two  PCs without multi- collinearity for predicting 

PS 

R R2 

 

Adjusted R 2 Significance SSE (Error) F value 

0.927 0.860 0.848 0.001 0.112 3609.11 

 

Figure 4.4: Regression plot between observed and predicted values of PS by PCA 
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 It is clearly illustrated from the figure 4.4, that the value of (𝑅2) for the 

developed model for the prediction of PS by PCA has been found as 0.86 and 

adjusted (𝑅2) is 0.84. This shows that the two retained PCs used in the regression 

analysis had an 86 percent accuracy in predicting PS. The significance level is 0.001 

and the F-value has been observed as 3609.117, which strengthens the obtained 

results. 

4.2.2 Results of SSE techniques 

 The bivariate correlation approach with Pearson's correlation was used to 

identify the significantly associated pillar design parameters that exhibited significance 

(2-tailed) ≤ 0.05. Table 4.23 illustrates the correlation matrix as well as the parameter 

significance values. 

    Table 4.23:Correlation values and significance level of the parameters. 

Parameters PS Significance N 

Pearson’s correlation (2-tailed) 

D 0.983 0.004 45 

B 0.836 0.001 45 

W 0.965 0.001 45 

H -0.469 0.000 45 

W/H 0.984 0.000 45 

UCS 0.860 0.001 45 

PL -0.696 0.001 45 
 

 The P-P plot for the datasets used in the present study by SSE has been presented 

in figure 4.5. The R2 value has been found as 0.987, which clearly reveals that the 

observed datasets used to predict the pillar strength (PS) is closely related to the 

predicted values. The graph shown in figure 4.5 indicates the normal distribution curve 

against the observed and predicted datasets, which is closely related to each other (as 

indicated in figure 4.5). 
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Figure 4.5: Probability plot for the datasets by SSE 

Seven parameters (D, B, W, H, W/H, UCS and PL) have been selected having 

significance ≤ 0.05, from Table 4.10. MLR for PS prediction has been performed on the 

seven correlated parameters and the results are illustrated in Table 4.24. 

Table 4.24: MLR results for predicting PS using all the identified parameters 

R R 

Square 

Adjusted R 

Square 

Significance SSE 

(Error) 

0.934 0.871 0.855 0.00 0.54463 
 

MLR analysis has revealed that multi-collinearity existed in four out of seven 

parameters. The values of VIF for the four parameters, which showed multi-collinearity 

are given in Table 4.25. 
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Table 4.25: Parameters with VIF>10 

Sl. No. Parameters VIF values 

1 D 16.73 

2 B 145.23 

3 W/H 19.35 

4 PL 69.52 
 

 As a result of selecting and eliminating parameters from the prediction model, 

multi-collinearity was eliminated, and three parameters (W, H, and UCS) were found as 

having no multi-collinearity. Table 4.26 presents the list of selected parameters along 

with their VIF values. 

Table 4.26 Pillar design parameters with VIF<10 

Sl. No. Parameters VIF values 

1 W 4.028 

2 H 1.323 

3 UCS 3.561 
 

 The MLR has been applied on the selected parameters to develop the model, 

subsequently the unstandardized coefficients of the selected parameters together with 

their significance value and standard error have been derived. Table 4.27 presents the 

unstandardized coefficients with the significance, standard error and collinearity 

statistics of the selected pillar design parameters. 

Table 4.27: Table for developing  equation for PS. 

Model Unstandardized 

Coefficients 

Significance Collinearity Statistics 

β Std. Error Tolerance VIF 

(Constant) 13.164 2.356 .000   

W 0.813 0.033 .000 .281 2.178 

H -8.489 0.054 .000 .248 1.816 

UCS 0.302 0.851 .000 .756 6.996 
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 Finally, the model in the form of an equation has been developed using β-

value associated with retained PCs (Table 4.27), which is presented in Eq.4.2. The 

MLR analysis results for the developed model is presented in Table 4.28. 

PS (Pillar strength)= 164.13489.8302.0813.0  HUCSW  …(4.2) 

 

Table 4.28: MLR results for three PCs without multi- collinearity for predicting Pillar 

Strength (PS) 

R R 

Square 

Adjusted R 

Square 

Sig. SSE 

(Error) 

F 

value 

0.920 0.846 0.818 0.00 0.123 2001.36 

 

 

Figure 4.6: Regression plot between observed and predicted values of PS by SSE 

 It is clearly illustrated in the figure 4.6, that the value of (𝑅2) for the 

developed model for the prediction of PS by SSE has been found as 0.84 and 
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adjusted (𝑅2) is 0.81. The value of 𝑅2 was found to be 0.84 implying that with three 

selected parameters having mo any multi-collinearity, the PS has been predicted with 84 

percent accuracy. Apart from the R2 value, the F-ratio has been found as 2001.36 which 

is much > 4 and the significance level was 0.00, which strengthens the obtained results. 

 

 


