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In this work, an efficient variable order Bernstein collocation technique, which is 
based on Bernstein polynomials, is applied to a non-linear coupled system of vari-
able order reaction-diffusion equations with given initial and boundary conditions. 
The operational matrix of Bernstein polynomials is derived for variable order deriv-
atives w.r.t. time and space. The Bernstein operational matrix and collocation tech-
nique are applied to the concerned non-linear physical model to achieve a system of 
non-linear algebraic equations, which are further solved by using Newton method. A 
few examples are presented to demonstrate the accuracy and stability of the scheme 
by comparing L2 and L∞ norm errors between the obtained numerical solutions and 
existing solutions. The important feature of this article is the graphical exhibitions of 
the effects of variable order derivatives on the solutions of the considered non-linear 
coupled reaction-diffusion equation for different particular cases. 
Key words: variable order derivatives, diffusion equation, Bernstein polynomials, 

convergence analysis, error bounds 

Introduction

Abel and Liouville have developed the fractional calculus theory. The fractional order 
derivative is an extended form of integer order derivative, and the variable order (VO) deriva-
tive is an extension of fractional order derivative. Nowadays, VO PDE have been widely used 
in numerous fields of science. An extensive explanation of fractional calculus can be found 
from the literature, viz., [1-4]. Young scientists, applied mathematicians, engineers, and re-
searchers may find a broad applications of fractional calculus in chemistry, biology, medical, 
image processing, and mathematical physics, etc.

The integer order differentiation is being used to characterize short term memory sys-
tems, and to extend the applications of the derivative to long term systems the fractional order 
derivative is being used. Moreover, to characterize the variable memory systems, the VO de-
rivative is used. Thus the VO differential has many applications to model several physical and 
biological phenomena more accurately.
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The wide applications of fractional derivatives drag the focus of mathematicians 
to find the numerical solutions and exact solutions of the mathematical models of numerous 
non-linear biological and physical processes. The exact solutions of many PDE of fractional 
order do not exist or cannot be found easily, so numerous numerical techniques have been in-
vented to find their approximate solutions [5-9]. The presence of non-linear VO PDE is very 
important in the mathematical structure of several complex physical models. 

Many definitions and properties of VO integration and differentiation can be found 
from literature survey. It becomes a fascinating notion in fractional calculus when we extend 
the concept of fractional constant order derivative to time and space dependent fractional de-
rivative. This novel concept of fractional calculus can be used in several characteristics of me-
chanics, control and signal processing, mathematical physics, etc. [10-12]. Finding the numeri-
cal solutions of PDE with VO derivatives are a little more complicated than fractional constant 
order derivatives due to the VO fractional operators having complex kernels for variable pow-
ers. In Fu et al. [13], a finite difference technique based on the radial basis function is utilized 
for solving constant and VO fractional diffusion equations. Chen et al. [14] have proposed a 
numerical technique based on the implicit numerical method to solve the multi-term space-
time VO fractional advection-diffusion model to describe the underlying transport dynamics. 
A finite difference scheme has been presented in [15] for finding the numerical solution of VO 
fractional differential equations along with stability and convergence analyses of the scheme. 
In addition, many numerical schemes are available in the literature for finding the numerical 
solution of VO fractional differentiation viz., spectral collocation technique, discretization tech-
nique, cubic spline technique, finite difference method, integro quadratic spline interpolations 
techniques, B-linear spline technique, etc.

The system of coupled PDE in porous media describes the interaction and diffusion 
of two solute species. The dealing of mathematical models of such physical phenomena is a 
challenging task. Several systems of coupled PDE have been discussed in constant fractional 
order systems viz., KdV-Burgers’ equation, Boussinesq-Whitham-Broer-Kaup equation, Burg-
ers’ equation, Klein-Gordon-Zakharov equation, etc. These systems have a wide range of appli-
cations in many complex physical processes like plasma physics, fluid mechanics, non-linear 
wave theory, non-linear optics, gas dynamics, non-linear acoustics and shallow water waves, 
etc.

In this scientific research our main aim is to study a special group of non-linear cou-
pled system of variable order reaction-diffusion equation. The main motivation behind the con-
cerned coupled PDE is a vast applications of the model in fluid mechanics, non-linear optics 
and non-linear wave theory, gas dynamics, non-linear acoustics, and shallow water waves, etc. 
Many well-known systems of coupled PDE are particular cases of the concerned model. Our 
considered variable order coupled system of non-linear PDE is given:
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In the concerned mathematical model (1)-(2), µ1(x, t) and µ2(x, t) denote the variable 
order derivatives which depend on space and time such that g – 1 < µ1(x, t), µ2(x, t) < g. Here g is 
the first integer not less than µ1(x, t), µ2(x, t). The other terms pi ′s and p′i ′s denote some physical 
realistic constants, h1(x, t) and h2(x,t) are the source terms.

Here, our another aim is to develop a highly efficient and most powerful technique 
viz., the operational matrix method based on Bernstein polynomials to find the approximate 
numerical solution of the considered non-linear VO system of a coupled reaction-diffusion 
equation with given initial and boundary conditions. 

Basic definitions and properties of Bernstein polynomials

Nowadays the Bernstein polynomials are world wide useful in different areas of engi-
neering and applied mathematics [16, 17]. In the unit interval [0, 1], Bernstein polynomials of 
degree l th are defined:
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As 0 ≤ x ≤ 1, we can use binomial expansion in the aforementioned equation:

,
=0

( ) = ( 1) , 0
l p

p s s
p l

s

l l p
B x x x p l

p s

− −   
− ≤ ≤    

     
∑ (44)

or

,
=0

( ) = ( 1) , 0
l p

s p s
p l

s

l l p
B x x p l

p s

−
+−  

− ≤ ≤  
  

∑ (5)

The Bernstein polynomials can be written in the matrix form:

( ) = ( )lx MP xϑ (6)

where
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The format of matrix M reveals that it is an invertible matrix i.e., |M| ≠ 0. Few proper-
ties of Bernstein polynomials are given:

	 , ( ) 0, [0,1]p lB x x≥ ∀ ∈

i.e., Bernstein polynomials are always positive in their domain

 	 , ,(1 ) = ( )p l l p lB x B x−−
 

and 
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Approximations of the unknown functions  ζ(x, t) and ξ (x, t) 

Since the set of Bernstein polynomials forms a complete basis in the Hilbert space 
L2[0, 1] therefore, each function ζ(x) ∈ L2 [0, 1] can be expressed in terms of Bernstein poly-
nomials:
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where BT = [bg] is the unknown constant matrix, which is known as Bernstein coefficients.
Similarly, functions of two variables:
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where the unknown constant matrices B = [bg,h] and B′ = [b′ i,j] are known as Bernstein coeffi-
cients. The initial and boundary conditions can be used to determine these coefficients. 

Operational matrix of the variable order derivative

In this section of the manuscript, the operational matrix for the VO derivative is de-
rived. With the help of eq. (6), the derivative of the vector ϑ(t) can be written:
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where g – 1 ≤  μ(x, t) ≤  g, we take g = ⌈µ(x, t)⌉ and g < r. 
From the aforementioned equation we can write:
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where MΩM–1 is an operational matrix w.r.t. time. The operational matrix for VO derivatives 
w.r.t. x can be obtained in a similar manner. Now, by collocating our considered model (1), and 
initial and boundary conditions (2), we get a system of non-linear algebraic equations which 
help to find the arbitrary constant matrices B and B′ given in eq. (9). 

Convergence analysis of the scheme

Theorem: Let the functions
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where error bounds
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Suppose that yj be the roots of Bernstein Polynomials. For the term (x – x0)r+1–a, 
one can find the following bounds by using the mapping x = (y + 1)/2 between the intervals  
[–1, 1] and [0, 1]:
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Thus form the equation (20), we can write:
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Now taking the square root on both sides of previous equation, we get our desired 
error bound. Similarly, the error bound for ξ(x, t) can be calculated. 

Numerical simulations and error analysis 

In this section, the operational matrix method based on Bernstein polynomials has 
been applied to some non-linear VO coupled PDE to show the accuracy and efficiency of 
the presented numerical technique through error analysis. The software MATHEMATICA 
11.3 is used for the whole numerical computation. The amount of time taken by the pro-
gram code for numerical outputs in MATHEMATICA 11.3 increases slowly as the order of 
approximation r is increased, i.e., time complexity increases with the increase in order of 
approximation.

Example 1. Coupled Whitham-Broer-Kaup (WBK) equations: consider the non-linear 
coupled reaction-diffusion equations with variable order:
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This system of PDE explains many physical phenomena arising in fluid mechanics. 
This equation is known as system of coupled WBK equations. The analytical solutions of this 
coupled system are

 	

[ ]
[ ]{ }2

3exp 2( 3 )4( , ) = and ( , ) =
1 exp(2( 3 )) 1 exp 2( 3 )

x t
x t x t

x t x t
ζ ξ

−

+ − + −

with suitable values of h1(x, t) and h2(x, t). The initial and boundary conditions can be de-
rived from the exact solution of the problem. The L2 norm error and L∞ normed errors between 
the exact solutions and the solutions obtained by our proposed method are shown through  
tabs. 1 and 2 for different values of fractional orders µ1(x, t) and µ2(x, t), respectively at different 
values of time, t, and for different order of approximation r. We can easily find the fact that these 
errors decrease as the order of approximation increases. This error analysis shows the high 
efficiency of the proposed numerical scheme during the computation of numerical solution. 
Hence comparing the numerical solution and exact solution, one can ensure the effectiveness 
and efficiency of this numerical scheme.
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Table 1. Comparison of L∞ and L2 norm errors for ζ(x, t) at t = 0.05 

 1
e cos( , ) =

400

t xx tµ
−

  
1

2cos sin( , ) =
400
x tx tµ +

1
sin e cos( , ) =

300

tt xx tµ
−+

 
r L∞ L2  L∞                     L2 L∞                     L2

4 5.23 ⋅ 10–10 5.42 ⋅ 10–10  5.98 ⋅ 10–10              6.04 ⋅ 10–10 6.24 ⋅ 10–10 6.43 ⋅ 10–10

 5 6.73 ⋅ 10–12 6.92 ⋅ 10–12  2.29 ⋅ 10–12               5.53 ⋅ 10–11 3.67 ⋅ 10–11 6.83 ⋅ 10–11

6 4.20 ⋅ 10–13 8.83 ⋅ 10–13  3.18 ⋅ 10–13             7.64 ⋅ 10–13 7.46 ⋅ 10–13 8.37 ⋅ 10–12

7 1.09 ⋅ 10–16 5.64 ⋅ 10–15  2.78 ⋅ 10–16             4.00 ⋅ 10–16 4.64 ⋅ 10–16 1.02 ⋅ 10–15

Table 2. Comparison of L∞ and L2 norm errors for ξ(x, t) at t = 0.05 

 
 

2
e cos( , ) =

400

t xx tµ
−

2
2cos sin( , ) =

400
x tx tµ +

2
sin e cos( , ) =

300

tt xx tµ
−+

 
r L∞ L2 L∞ L2 L∞ L2

4 5.34 ⋅ 10–10 8.23 ⋅ 10–10 4.24 ⋅ 10–10 5.30 ⋅ 10–10 9.94 ⋅ 10–10 3.03 ⋅ 10–09

5 1.39 ⋅ 10–12 4.54 ⋅ 10–12 4.39 ⋅ 10–12 5.84 ⋅ 10–12 6.43 ⋅ 10–12 5.34 ⋅ 10–11 
6 4.34 ⋅ 10–14 1.09 ⋅ 10–13 1.54 ⋅ 10–13 4.63 ⋅ 10–13 2.12 ⋅ 10–13 4.03 ⋅ 10–13

7 6.33 ⋅ 10–16 7.40 ⋅ 10–16 3.53 ⋅ 10–16 1.43 ⋅ 10–15 1.64 ⋅ 10–16 5.32 ⋅ 10–16

Example 2. Coupled KdV-Burgers equations: Consider a particular case of the model 
(1), which is the following non-linear VO coupled reaction-diffusion equations:

( , ) 3 21

1( , ) 3 21

( , ) 3 22

2( , ) 3 22

( , ) ( , ) ( , ) ( , )( , ) = ( , )

( , ) ( , ) ( , ) ( , )( , ) = ( , )

x t

x t

x t

x t

x t x t x t x tx t h x t
xx xt

x t x t x t x tx t h x t
xx xt

µ

µ

µ

µ

ζ ζ ξ ζζ

ξ ζ ξ ξξ

∂ ∂ ∂ ∂
+ + +

∂∂ ∂∂

∂ ∂ ∂ ∂
+ + +

∂∂ ∂∂

(25)

This system of coupled PDE describes several physical phenomena arising in non-lin-
ear optics and non-linear wave theory. This system is known as system of coupled KdV-Burgers 
equations. The analytical solutions of this coupled system are 

	 ( , ) = exp( )sin( ) and ( , ) = exp( )cos( )x t x t xt x t x t xtζ ξ+ + 	
with suitable values of h1(x, t) and h2(x, t). The error analysis through the comparison of L2 
and L∞ is shown through the tabs. 3 and 4 for different values of fractional order µ1(x, t) and µ2(x, t),  
respectively and for various values of t and r. We can easily find the fact that these errors de-
crease as the order of approximation increases. This error analysis shows the high efficiency 
and accuracy of proposed numerical scheme during the computation of numerical solution. 

Table 3. Comparison of L∞ and L2 norm errors for ζ(x, t) at t = 0.05

 
 

2

1
cos e sin( , ) =

300

tt xx tµ
−+

 

2

1
e sin( , ) =

400

t xx tµ
−

1
sin e cos( , ) =

400

tt xx tµ
−+

 
r  L∞ L2 L∞ L2 L∞ L2

4  1.06 ⋅ 10–10 2.13 ⋅ 10–10  2.74 ⋅ 10–10 7.75 ⋅ 10–10  6.86 ⋅ 10–10 8.63 ⋅ 10–10

5  3.76 ⋅ 10–11 4.86 ⋅ 10–11  4.86 ⋅ 10–11 5.84 ⋅ 10–11  1.53 ⋅ 10–11 5.95 ⋅ 10–11

6  7.54 ⋅ 10–13 8.26 ⋅ 10–13  5.85 ⋅ 10–13  7.28 ⋅ 10–12  5.86 ⋅ 10–13 7.73 ⋅ 10–13

7  9.86 ⋅ 10–15 9.94 ⋅ 10–15  2.96 ⋅ 10–15 4.86 ⋅ 10–15  1.56 ⋅ 10–15 8.86 ⋅ 10–14
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Table 4. Comparison of L∞ and L2 norm errors for ξ(x, t) at t = 0.05

 
  

2

2
cos e sin( , ) =

300

tt xx tµ
−+ 2

2
e sin( , ) =

400

t xx tµ
−

  
2

sin e cos( , ) =
400

tt xx tµ
−+

r  L∞ L2  L∞ L2 L∞ L2

4  7.93 ⋅ 10–10 7.98 ⋅ 10–10 4.32 ⋅ 10–10 6.42 ⋅ 10–10 1.02 ⋅ 10–10 1.64 ⋅ 10–10

5  6.41 ⋅ 10–11 4.32 ⋅ 10–10 4.22 ⋅ 10–11 8.94 ⋅ 10–11 6.42 ⋅ 10–11 8.43 ⋅ 10–11

6  4.32 ⋅ 10–13 6.34 ⋅ 10–12 8.53 ⋅ 10–13 9.64 ⋅ 10–13 5.75 ⋅ 10–13 7.33 ⋅ 10–13

7 6.48 ⋅ 10–15 3.42 ⋅ 10–14 6.34 ⋅ 10–15 7.53 ⋅ 10–15 1.53 ⋅ 10–15 6.34 ⋅ 10–15 

Example 3. Coupled Burgers equation: here a particular case of the model (1) is con-
sidered:

[ ]

[ ]

( , ) 21

1( , ) 21

( , ) 22

2( , ) 22

( , ) ( , )( , ) ( , ) ( , )2 ( , ) = ( , )

( , ) ( , )( , ) ( , ) ( , )2 ( , ) = ( , )

x t

x t

x t

x t

x t x tx t x t x tx t h x t
x xxt

x t x tx t x t x tx t h x t
x xxt

µ

µ

µ

µ

ζ ξζ ζ ζζ

ζ ξζ ξ ξξ

∂∂ ∂ ∂
− − +

∂ ∂∂∂

∂∂ ∂ ∂
− − +

∂ ∂∂∂

(26)

This system of coupled PDE has wide range of applications in several physical phe-
nomena like fluid mechanics, gas dynamics, non-linear acoustics. This equation is known as 
system of coupled Burgers equation. The analytical solutions of this coupled system are:

	 ( , ) = e sin and ( , ) = e sint tx t x x t xζ ξ− −

with suitable values of h1(x, t) and h2(x, t). The error analysis through the comparison of L2 and 
L∞ is shown through tabs. 5 and 6 for different values of µ1(x, t) and µ2(x, t), respectively, and 
for different values of t and r. It is seen that the errors decrease as the order of approximation in-
creases. This error analysis shows the high efficiency of the proposed numerical scheme during 
the computation of numerical solution.

Table 5. Comparison of L∞ and L2 norm errors for ζ(x, t) at t = 0.05 

 
2

1
2cos e sin 2( , ) =

300

tt xx tµ
−+ 2

1
2e cos( , ) =

400

t xx tµ
−

 
1

sin 2 2e cos( , ) =
400

tt xx tµ
−+

 
 r L∞ L2 L∞ L2 L∞ L2

4 9.02 ⋅ 10–10 1.83 ⋅ 10–09 2.56 ⋅ 10–10 4.38 ⋅ 10–10 1.17 ⋅ 10–10 4.27 ⋅ 10–10

 5 5.26 ⋅ 10–11 8.51 ⋅ 10–11 1.03 ⋅ 10–11 4.32 ⋅ 10–11 2.14 ⋅ 10–11 4.63 ⋅ 10–11

6 1.86 ⋅ 10–13 3.94 ⋅ 10–13 7.54 ⋅ 10–14 1.76 ⋅ 10–13 6.86 ⋅ 10–13 5.43 ⋅ 10–12

7 5.34 ⋅ 10–16 6.45 ⋅ 10–16 5.04 ⋅ 10–16 3.85 ⋅ 10–15 7.54 ⋅ 10–16 9.54 ⋅ 10–15

Table 6. Comparison of L∞ and L2 norm errors for ξ(x, t) at t = 0.05 

 
2

2
2cos e sin 2( , ) =

300

tt xx tµ
−+ 2

2
2e cos( , ) =

400

t xx tµ
−

2
sin 2 2e cos( , ) =

400

tt xx tµ
−+

 r L∞ L2 L∞ L2 L∞ L2

4 1.75⋅ 10–10 7.58⋅ 10–10 1.65⋅ 10–10 8.56⋅ 10–10 8.98⋅ 10–10 9.48⋅ 10–10

 5 4.42⋅ 10–12 1.49⋅ 10–11 4.04⋅ 10–12 9.70⋅ 10–11 6.43⋅ 10–11 9.73⋅ 10–11

6 7.95⋅ 10–13 1.03⋅ 10–13 7.53⋅ 10–13 8.09⋅ 10–13 5.81⋅ 10–13 8.41⋅ 10–12

7 5.73⋅ 10–15 6.75⋅ 10–15 3.90⋅ 10–15 1.86⋅ 10–14 1.62⋅ 10–15 9.76⋅ 10–15
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Results and discussion

After the validation of the efficiency of the proposed numerical method through ap-
plying it on three given examples in the previous section, the authors have made an endeavour 
to apply it in the considered mathematical models (1) and (2) for different particular values of 
the parameters. The behaviors of solute concentration for different variable order are shown in 
the following figures for different values of constant coefficients. 

Figure 1. Plots of ζ (x, t) vs. x for different fractional variable order for (a) p1 = –1 and (b) p1 = 1

 
Figure 2. Plots of ξ(x, t) vs. x for different fractional variable order for  
(a) p′ 3 = 1 and (b) p′ 3 = –1 

The overshoots of solute profiles ζ(x, t) and ξ(x, t) for different variable orders  
µ1(x, t) and µ2(x, t) at t = 1 are shown through the figs. 1 and 2. Figures 1(a) and 1(b) are the 
plots of solute profile ζ(x, t) vs. spatial variable x for p1 = 1 and p1 = –1, respectively, when other 
constant coefficients are taken as

 	 2 4 2 4 3 5 6 1 3 5 6= 1.2 = = = , = 1 = = = = = =p p p p p p p p p p p′ ′ ′ ′ ′ ′

Figsures 2(a) and 2(b) are the plots of solute profile ξ(x, t) vs. spatial variable x for p′3 = 1 and  
p′3 = –1, respectively when other constant coefficients are taken as 	
	 2 4 2 4 1 3 5 6 1 5 6= 1.2 = = = , = 1 = = = = = =p p p p p p p p p p p′ ′ ′ ′ ′

The effects of advection term are also justified from variations of the solute profile as 
shown in the said figures. 

Conclusions

Present research manuscript provides three useful consequences, are as follows. 
yy The derivation of Bernstein operational matrices of VO derivatives w.r.t. time and space. 
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yy The proper utilisation of the collocation technique with the Bernstein polynomials to solve 
the non-linear VO coupled system of a reaction-diffusion equation with the prescribed initial 
and boundary conditions. 

yy Finding the error bounds and stability analysis for the approximation and demonstration of 
error analysis. Overshoots of solute concentration have also been justified in the article. The 
authors are optimist that in future, their proposed efficient technique can be applied to solve 
more complex physical models like 2-D non-linear VO reaction-advection-diffusion and the 
2-D VO coupled system of equations.
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