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Abstract
In this article, we study the notion of gH -Hadamard derivative for interval-valued functions (IVFs) and apply it to solve
interval optimization problems (IOPs). It is shown that the existence of gH -Hadamard derivative implies the existence
of gH -Fréchet derivative and vise-versa. Further, it is proved that the existence of gH -Hadamard derivative implies the
existence of gH -continuity of IVFs. We found that the composition of a Hadamard differentiable real-valued function and
a gH -Hadamard differentiable IVF is gH -Hadamard differentiable. Further, for finite comparable IVF, we prove that the
gH -Hadamard derivative of the maximum of all finite comparable IVFs is the maximum of their gH -Hadamard derivative.
The proposed derivative is observed to be useful to check the convexity of an IVF and to characterize efficient points of an
optimization problem with IVF. For a convex IVF, we prove that if at a point the gH -Hadamard derivative does not dominate
to zero, then the point is an efficient point. Further, it is proved that at an efficient point, the gH -Hadamard derivative does
not dominate zero and also contains zero. For constraint IOPs, we prove an extended Karush–Kuhn–Tucker condition using
the proposed derivative. The entire study is supported by suitable examples.

Keywords Interval-valued functions · Interval optimization problems · Efficient solutions · gH -Hadamard derivative ·
gH -Fréchet derivative

1 Introduction

In the study of general behavior of a real-world problem,
such as static or dynamic, deterministic or probabilistic,
linear or nonlinear, and convex or nonconvex, several math-
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ematical tools have been developed. In many cases, the
knowledge about the underlying parameters, which influ-
ences the system’s mathematical behavior, is imprecise or
uncertain. Generally, one cannot measure the parameters
affected by imprecision or uncertainties with exact values.
In such situations, the parameters cannot be modeled by
a real number. We usually overcome this deficiency using
fuzzy sets, interval, or stochastic values. Interval analysis is
based on representing an uncertain variable as an interval,
which is a natural way of incorporating the uncertainties of
parameters. As mathematical functions play a crucial role in
modeling realistic problems, we analyze a special derivative
of interval-valued functions (IVFs) in this article.

Three important aspects of a function are monotonicity,
convexity and differentiability. In the study of monotonicity
and convexity Ansari et al. (2013) of an IVF, an appropri-
ate ordering of intervals is the prime issue. Unlike the real
numbers, intervals are not linearly ordered. Due to which the
whole paradigm of analyzing an IVF changes and the devel-
opment of calculus for IVF is not just trivial extensions of
the corresponding counterpart for conventional real-valued
functions. The same reason makes the development of opti-
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mization with IVFs difficult since the very optimality notion
requires an ordering of the function values.

Most often optimization with IVFs Chalco-Cano et al.
(2013), Ghosh et al. (2020), Stefanini and Bede (2009) have
been analyzed with respect to a partial ordering Ishibuchi
and Tanaka (1990). Some researchers Bhurjee and Padhan
(2016), Ghosh et al. (2018), Kumar and Bhurjee (2021) used
ordering relations of intervals based on the parametric com-
parison of intervals. In Ref. Costa et al. (2015), an ordering
relation of intervals is defined by a bijective map from the
set of intervals to R

2. However, the ordering relations of
intervals Bhurjee and Padhan (2016), Ghosh et al. (2018),
Costa et al. (2015); Kumar et al. (2022) can be derived from
the relations described in Ref. Ishibuchi and Tanaka (1990).
Recently, Ghosh et al. (2020) investigated variable ordering
relations for intervals and used them in interval optimization
problems (IOPs).

To observe the properties of an IVF, calculus plays an
essential role. Initially, to develop the calculus of IVFs,
Hukuhara Hukuhara (1967) introduced the concept of dif-
ferentiability of IVFs with the help of H -difference of
intervals. However, the definition of Hukuhara differentia-
bility (H -differentiability) is found to be restrictive (see Ref.
Chalco-Cano et al. (2013)). To remove the deficiencies of
H -differentiability, Bede and Gal (2005) defined strongly
generalized derivative (G-derivative) for IVFs and derived
a Newton–Leibnitz-type formula. In order to formulate the
mean-value theorem for IVFs, Markov (1979) introduced a
new concept of difference of intervals and defined differ-
entiability of IVFs using this difference. In Ref. Stefanini
and Bede (2009), Stefanini and Bede defined the generalized
Hukuhara differentiability (gH -differentiability) of IVFs
using the concept of generalized Hukuhara difference. In
defining the calculus of IVFs, the concepts of gH -derivative,
gH -partial derivative, gH -subderivative, gH -gradient, and
gH -differentiability for IVFs have been developed in Refs.
Ghosh (2017), Stefanini and Bede (2009), Stefanini and
Arana-Jiménez (2019), Ghosh et al. (2022).

To derive a Karush–Kuhn–Tucker (KKT) condition for
IOPs, Guo et al. (2019) defined gH -symmetric deriva-
tive for IVFs. Ghosh (2016) analyzed the notion of gH -
differentiability of multi-variable IVFs to propose the New-
ton method for IOPs. The concept of second-order differen-
tiability of IVFs is introduced byVanHoa (2015) to study the
existence of a unique solution of interval differential equa-
tions. Lupulescu (2013) defined delta generalized Hukuhara
differentiability on time scales using gH -difference. Chalco-
Cano et al. (2011) introduced the concept of π -derivative for
IVFs that generalizes Hukuhara derivative and G-derivative,
and proved that this derivative is equivalent to gH -derivative.
InRef. Stefanini andBede (2014), Stefanini andBededefined
level-wise gH -differentiability and generalized fuzzy differ-
entiability by LU-parametric representation for fuzzy-valued

functions. Kalani et al. (2016) analyzed the concept of
interval-valued fuzzy derivative for perfect and semi-perfect
interval-valued fuzzy mappings to derive a method for
solving interval-valued fuzzy differential equations using
the extension principle. Recently, Ghosh et al. (2020) and
Chauhan et al. (2021) have provided the idea of gH -
directional derivative, gH -Gâteaux derivative, gH -Fréchet
derivative, and gH -Clarke derivative of IVFs to derive the
optimality conditions for IOPs.

Despite many attempts to develop calculus for IVFs, the
existing ideas are not adequate to retain two most impor-
tant features of classical differential calculus—linearity of
the derivative with respect to the direction and the chain
rule. Although Ghosh et al. (2020) proposed some optimality
conditions for IOPs using gH -directional and gH -Gâteaux
derivatives, but these derivatives are not sufficient to pre-
serve the continuity of IVFs (see Example 5.1 of Ghosh
et al. (2020)) and chain rule for the composition of IVFs (see
Example 2 of this article). Even though gH -Fréchet deriva-
tive in Ghosh et al. (2020) preserves linearity and continuity
but it does not hold the chain rule for the composition of IVFs
whose lower and upper functions are equal at each points (see
example for Proposition 3.5 Shapiro (1990)). With the help
of the derivative of lower and upper functions, some arti-
cles Wu (2009), Zhang et al. (2014); Ren and Wang (2017)
reported KKT condition to characterize efficient solutions
of constraint IOPs. However, the derivative used in Refs.
Wu (2009), Zhang et al. (2014), Ren and Wang (2017) are
very restrictive because this derivative is very difficult to
calculate even for very simple IVF (see Example 1 of Ref.
Chalco-Cano et al. (2015)).However, in this article,wederive
KKT condition of constraint IOPs by gH -Hadamard deriva-
tive which do not depend on the existence of the Hadamard
derivative of lower and upper functions. In addition, proposed
derivative retains the linearity of the derivative with respect
to direction, the existence of continuity as well as the chain
rule of derivative.

1.1 Motivation and contribution

In conventional nonsmooth optimization theory, one of the
mostly used idea of derivative is Hadamard derivative which
is applied to characterize optimal solutions. An explicit
expression of the derivative of an extremum with respect
to parameters can be obtained with the help of Hadamard
derivative. Therefore, it works well for most differentiable
optimization problems including convex or concave prob-
lems. Correspondingly, in interval analysis and interval
optimization, we expect to have a notion of the Hadamard
derivative for interval-valued functions. In addition, from the
literature on the analysis of IVFs, one cannotice that the study
of Hadamard derivative for IVFs have not been developed so
far. However, the basic properties of this derivative might be
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beneficial for characterizing and capturing the optimal solu-
tions of IOPs.

In this article,wedefine gH -Hadamard derivative of IVFs.
It is proved that if an IVF is gH -Hadamard differentiable,
then IVF is gH -continuous. Using the proposed concept of
gH -Hadamard derivative, we prove that a gH -Fréchet differ-
entiable IVF is gH -Hadamard differentiable and vise-versa.
Further, we characterize the convexity of IVFs with the help
of gH -Hadamard derivative. Besides, with the help of gH -
Hadamard derivative, we provide a necessary and sufficient
condition for characterizing the efficient solutions to IOPs.
Further, for constraint IOPs, we derive the extended KKT
necessary and sufficient condition to characterize the effi-
cient solutions.

1.2 Delineation

The rest of the article is demonstrated in the following
sequence. The next section covers some basic terminologies
and notions of convex analysis and interval analysis, fol-
lowed by the convexity and calculus of IVFs. In addition, a
few properties of intervals, gH -directional and gH -Fréchet
derivatives of an IVF are discussed in Sect. 2. In Sect. 3, we
define the gH -Hadamard derivative of IVF and observe that
the existence of gH -Hadamard derivative implies the exis-
tence of gH -Fréchet derivative and vise-versa. Further, it is
found that the existence of gH -Hadamard derivative implies
gH -continuity. In the same section, it is shown that proposed
derivatives are useful to check the convexity of an IVF. In
Sect. 4, we prove that at a point, in which gH -Hadamard
derivative does not dominate zero is an efficient point of an
IVF. Further, it is observed that at an efficient point of IVF,
gH -Hadamard derivative must contain zero. In Sect. 5, a few
properties of the cone of descent direction and cone of fea-
sible direction are given. In addition, we prove the extended
necessary and sufficient optimality condition for constraint
IOPs in the same section. Finally, the last section concludes
and draws future scopes of the study.

2 Preliminaries and terminologies

This section is devoted to some basic notions on intervals.
In addition, we present basic convexity and calculus of IVFs
which will be used throughout the paper. We also use the
following notations.

• X is a real normed linear space with the norm ‖ · ‖
• S is a nonempty subset ofX
• R denotes the set of real numbers
• R+ denotes the set of nonnegative real numbers
• I (R) is the set of all compact intervals (that is, closed
and bounded intervals)

• I (R)n is the set of vectors whose components are com-
pact intervals

2.1 Arithmetic of intervals and their dominance
relation

Throughout the article, we denote the elements of I (R) by
bold capital letters: A,B,C, . . .. We represent an element P
of I (R) in its interval formwith the help of the corresponding
small letter in the following way:

P = [p, p], where p and p are real numbers such that p ≤ p.

Let P,Q ∈ I (R) and λ ∈ R. Moore’s (1966; 1979)
interval addition, subtraction, product, division and scalar
multiplication are denoted by P⊕Q, P�Q, P�Q, P�Q,
and λ�P, respectively. In defining P�Q, it is assumed that
0 /∈ Q.

Since P � P 	= 0 for any nondegenerate interval (whose
lower and upper limits are not equal) P, we use the following
concept of difference of intervals in this article.

Definition 1 Stefanini (2008) Let P and Q be two elements
of I (R). The gH-difference between P and Q, denoted by
P �gH Q, is defined by the interval C such that

P = Q ⊕ C or Q = P � C.

It is to be noted that for P =
[
p, p
]
and Q =

[
q, q
]
,

P �gH Q =
[
min{p − q, p − q},

max{p − q, p − q}
]
and P �gH P = 0.

In the following, we provide a domination relation for
intervals based on a minimization type optimization prob-
lems: a smaller value is better.

Definition 2 Ishibuchi and Tanaka (1990) Let P = [p, p]
and Q = [q, q] be two intervals in I (R).

(i) Q is said to be dominated by P if p ≤ q and p ≤ q ,
and then we write P 
 Q.

(ii) Q is said to be strictly dominated by P if either ‘p ≤ q
and p < q’ or ‘p < q and p ≤ q’, and then we write
P ≺ Q.

(iii) If Q is not dominated by P, then we write P � Q; if Q
is not strictly dominated by P, then we write P ⊀ Q.

(iv) If P is dominated by Q or Q is dominated by P, then P
and Q are said to be comparable.

(v) If P � Q andQ � P, then we say that none of P and
Q dominates the other, or P andQ are not comparable.
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Notice that if Q is strictly dominated by P, then Q is
dominated by P. Moreover, ifQ is not dominated by P, then
Q is not strictly dominated by P.

Lemma 1 For P and Q in I (R),

(i) If Q ⊀ 0 and Q 
 P, then P ⊀ 0,
(ii) If P ⊕ Q ⊀ 0 and Q 
 0, then P ⊀ 0.

Proof See Appendix A �

Definition 3 Chauhan and Ghosh (2021) Let P = [p, ā] =
{a(t) : a(t) = p + t(ā − p), 0 ≤ t ≤ 1} and Q = [q, b̄] =
{b(t) : b(t) = q + t(b̄− q), 0 ≤ t ≤ 1} be two elements of
I (R). Then,Q is said to be better strictly dominated by by P
if a(t) < b(t) for all t ∈ [0, 1], and then we write P < Q.

Lemma 2 Chauhan and Ghosh (2021) Let P = [p, p] and
Q = [q, q] be in I (R). Then, P < Q if and only if p < q
and p < q.

Definition 4 Moore (1966)A function ‖·‖I (R) : I (R) → R+
defined by

‖P‖I (R) = max{|p|, | p̄|}, for all P = [p, p] ∈ I (R),

is called a norm on I (R).

Definition 5 For two comparable intervals P and Q of I (R)

with P 
 Q, their maximum is max{P,Q} = Q.

2.2 Convexity and calculus of IVFs

A function � : S → I (R) is known as an IVF. For each
x ∈ S , � can be presented by the following interval:

�(t) = [�(t), �(t)
]
,

where � and � are real-valued functions on S such that
�(t) ≤ �(t) for all t ∈ S . In addition, � is said to be
degenerate IVF if �(t) = �(t) for all t ∈ S .

If S is convex, then the IVF � is said to be convex Wu
(2007) on S if for any t1, t2 ∈ S ,

�(λ1t1 + λ2t2) 
 λ1 � �(t1)

⊕λ2 � �(t2) for all λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1.

The IVF� : S → I (R) is said to be gH -continuousGhosh
(2017) at a point t̄ of S if

lim‖d‖→0
t̄+d∈S

(
�(t̄ + d) �gH �(t̄)

) = 0.

If � is gH -continuous at each point t in S , then � is said
to be gH -continuous onS .

Definition 6 Ghosh et al. (2020) An IVF � : S → I (R)

is said to be gH -Lipschitz continuous on S ⊆ R
n if there

exists M > 0 such that

‖�(t1) �gH �(t2)‖I (R)
≤ M‖t1 − t2‖S for all t1, t2 ∈ S .

The constant M is called a Lipschitz constant.

Lemma 3 Wu (2007)� is a convex IVF on a convex setS ⊆
X if and only if � and � are convex on S .

Definition 7 Ghosh et al. (2020) LetS be a linear subspace
of X . The function � : S → I (R) is said to be linear if

(i) �(λt) = λ � �(t) for all t ∈ S and all λ ∈ R, and
(ii) for all t, y ∈ S ,

‘either �(t) ⊕ �(y) = �(t + y)’ or ‘none of �(t)

⊕�(y) and �(t + y) dominates the other ’.

Lemma 4 Let S be a linear subspace of X and � : S →
I (R) be a linear IVF. Then, the following results hold.

(i) If �(t) ⊀ 0 for all t ∈ S , then 0 and �(t) are not
comparable.

(ii) If �(t) 
 0 for all t ∈ S , then �(t) = 0.

Proof See Appendix B �

Definition 8 Ghosh et al. (2020) LetS be a nonempty subset
of R

n and � : R
n → I (R) be an IVF. A point t̄ ∈ S is said

to be an efficient point of the IOP

min
t∈S⊂Rn

�(t) (2.1)

if �(t) ⊀ �(t̄) for all t ∈ S .

Definition 9 Ghosh et al. (2020) Let � be an IVF on a
nonempty subset S of X . Let t̄ ∈ S and h ∈ X . If the
limit

lim
λ→0+

1

λ
� (�(t̄ + λh) �gH �(t̄)

)

exists finitely, then the limit is said to be gH-directional
derivative of � at t̄ in the direction h, and it is denoted by
�D (t̄)(h).

Definition 10 Chauhan et al. (2021) Let� be an IVF defined
on a nonempty subset S of X . For t̄ ∈ S and h ∈ X , if
the limit superior

lim sup
t→t̄

λ→0+

1

λ
� (�(t + λh) �gH �(t)

)
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= lim
δ→0

(
sup

t∈B(t̄,δ)∩S , λ∈(0,δ)

1

λ
� (�(t + λh) �gH �(t)

))

exists finitely, then the limit superior value is called upper
gH-Clarke derivative of � at t̄ in the direction h, and it
is denoted by �C (t̄)(h). If this limit superior exists for all
h ∈ X , then� is said to be upper gH-Clarke differentiable
at t̄ .

Definition 11 Ghosh et al. (2020) LetS be a nonempty open
subset ofX ,� : S → I (R) be an IVF and t̄ ∈ S . Suppose
that there exists a gH -continuous and linear mapping G :
X → I (R) with the following property:

lim‖h‖→0

‖�(t̄ + h) �gH �(t̄) �gH G(h)‖I (R)

‖h‖ = 0,

then G is said to be gH -Fréchet derivative of � at t̄ , and we
write G = �F (t̄).

3 gH-Hadamard derivative of
interval-valued functions

In this section, we present the concept of gH -Hadamard
derivative for IVFs. It is worth noting that if an IVF �

has a gH -Hadamard derivative at t̄ , then � must be gH -
continuous at t̄ .

Definition 12 Let � be an IVF on a nonempty subset S of
X . For t̄ ∈ S and v ∈ X , if the limit

�H (t̄)(v) := lim
λ→0+
h→v

1

λ
� (�(t̄ + λh) �gH �(t̄)

)

exists and �H (t̄) is a linear IVF from X to I (R), then
�H (t̄)(v) is called gH-Hadamard derivative of � at t̄ in
the direction v. If this limit exists for all v ∈ X , then � is
said to be gH-Hadamard differentiable at t̄ .

Remark 1 The limit�H (t̄)(v) exists if for all sequences {λn}
and {hn} with λn > 0 for all n such that limn→∞ λn = 0,
limn→∞ hn = v,

lim
n→∞

1

λn
� (�(t̄ + λnhn) �gH �(t̄)

)

exists and the limit value is a linear IVF on S .

Example 1 LetS = X = R
n and consider the IVF �(t) =

‖t‖2 � C, t ∈ R
n , where C = [c, c] ∈ I (R). We calculate

the gH -Hadamard derivative of � at t̄ = 0.
For any t̄ ∈ S and v ∈ X , we see that

lim
λ→0+
h→v

1

λ
� (�(t̄ + λh) �gH �(t̄)

)

= lim
λ→0+
h→v

1

λ
� (‖t̄

+λh‖2 � C �gH ‖t̄‖2 � C
)

= lim
λ→0+
h→v

1

λ
�
([

‖t̄ + λh‖2c, ‖t̄ + λh‖2c
]

�gH

[
‖t̄‖2c, ‖t̄‖2c

])

= lim
λ→0+
h→v

1

λ
�
([

min{‖t̄ + λh‖2c − ‖t̄‖2c, ‖t̄ + λh‖2c − ‖t̄‖2c},

max{‖t̄ + λh‖2c − ‖t̄‖2c, ‖t̄
+λh‖2c − ‖t̄‖2c}

])

= lim
λ→0+
h→v

1

λ
�
([

min
{(

2t̄�(λh) + ‖λh‖2
)
c,
(
2t̄�(λh)

+‖λh‖2) c} ,
max
{(

2t̄�(λh)

+‖λh‖2) c,
(
2t̄�(λh) + ‖λh‖2

)
c
} ])

= lim
λ→0+
h→v

1

λ
�
((

2t̄�(λh) + ‖λh‖2
)

� C
)

= 2t̄�v � C, by gH -continuity of t̄�h � C.

Hence, �H (t̄)(v) = 2t̄�v � C and �H (t̄) is a linear
IVF from X to I (R) by Definition 7. Therefore, � is gH -
Hadamard differentiable at t̄ with �H (t̄)(v) = 2t̄�v � C.

Remark 2 By Definition 12 of gH -Hadamard differentiable
and Definition 9 of gH -directional differentiable IVF, we
can observe that a gH -Hadamard differentiable IVF is gH -
directional differentiable IVF. However, converse is not true.
For instance, consider the IVF �(t) = |t | � C, C ≥
0 for all t ∈ R. We see that for all h ∈ R and at t̄ = 0,

lim
λ→0+

1

λ
� (�(t̄ + λh) �gH �(t̄)

) = |h| � C.

Again, for any v ∈ R and t̄ = 0, we see that

�H (t̄)(v) = lim
λ→0+
h→v

1

λ
� (�(t̄ + λh) �gH �(t̄)

)

= lim
λ→0+
h→v

((
1

λ
� λ

)
� (|h| � C)

)
= |v| � C.

Hence, for h = 2, v = −3 and C = [5, 9],

�H (t̄)(h + v) = |h + v| � C = 1 � [5, 9] = [5, 9].

In addition,

�H (t̄)(h) ⊕ �H (t̄)(v)

= |2| � [5, 9] ⊕ |−3| � [5, 9]
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= [10, 18] ⊕ [15, 27] = [35, 45].

Since �H (t̄)(h + v) 	= �H (t̄)(h) ⊕ �H (t̄)(v) and
�H (t̄)(h + v) < �H (t̄)(h) ⊕ �H (t̄)(v), property (7)
of Definition 7 does not hold. Hence, �H (t̄) is not linear.
Therefore, �H (t̄)(h) does not exist.

Next, remark shows the relation between upper gH -
Clarke derivative and gH -Hadamard derivative for gH -
Lipschitz continuous IVFs.

Remark 3 By Theorem 2 of Chauhan et al. (2021) and
Remark 2, it is clear that the gH -Hadamard derivative at any
point of a convex gH -Lipschitz continuous IVF coincides
with the upper gH -Clarke derivative at that point. How-
ever, there are some convex gH -Lipschitz continuous IVF
whose upper gH -Clarke derivative does not coincide with
gH -Hadamard derivative. For instance, consider the IVF
�(t) = |t | � C, C = [c1, c2] ≥ 0 for all t ∈ R.

Since �(t) = c|t | and �(t) = c|t |, where �(t) =
[�(t),�(t)] are Lipschitz continuous, by Lemma 4 of
Chauhan et al. (2021), � is gH -Lipschitz continuous.

In addition, � is convex by Lemma 3 of Chauhan et al.
(2021) as �(t) and �(t) are convex.

We see that for h ∈ R,

lim sup
t→0

λ→0+

1

λ
� (�(t + λh) �gH �(t)

)

= lim sup
t→0

λ→0+

1

λ
� (|t + λh| � C �gH |t | � C

)


 lim sup
t→0

λ→0+

1

λ
� (|t | � C ⊕ λ|h| � C �gH |t | � C

)
,

(by Lemma 1 of [8] as |a + b| � C

≤ |a| � C ⊕ |b| � C)

= lim sup
t→0

λ→0+

1

λ
� (λ|h| � C)

= |h| � C. (3.1)

Further,

lim sup
t→0

λ→0+

1

λ
� (|t + λh| � C �gH |t | � C

)

� lim sup
λ→0+

1

λ
� (2λ|h| � C �gH λ|h| � C

)

( taking t = λh, h > 0)

(since lim sup
t→0

|t | ≥ lim sup
λ→0+

|λh|for any perticular direction t = λh)

= |h| � C. (3.2)

Then, from the inequalities (3.1) and (3.2), we get the gH -
Clarke derivative �C (0)(h) = |h| � C.

Again, for any v ∈ R and t̄ = 0, we see that

�H (t̄)(v) = lim
λ→0+
h→v

1

λ
� (�(t̄ + λh) �gH �(t̄)

)

= lim
λ→0+
h→v

((
1

λ
� λ

)
� (|h| � C)

)

= |v| � C.

Hence, the limit value is not a linear IVF (for explanation see
Remark 2) on S . Therefore, �H (t̄)(h) does not exist.

Theorem 1 LetX = R
n,S be a nonempty subset ofX , �

be an IVF on S and t̄ ∈ S . Then, the following statements
are equivalent:

(i) � is gH-Fréchet differentiable at t̄ .
(ii) � is gH-Hadamard differentiable at t̄ .

Proof (i) �⇒ (ii). Since � is gH -Fréchet differentiable at
t̄ ∈ S , there exists a gH -continuous and linear IVF G such
that

lim
λ→0+

‖�(t̄ + λh) �gH �(t̄) �gH G(λh)‖I (R)

‖λh‖ = 0,

for all h ∈ X \{0̂}
or, lim

λ→0+
1

λ
‖�(t̄ + λh) �gH �(t̄) �gH G(λh)‖I (R) = 0,

for all h ∈ X \{0̂}. (3.3)

SinceG is linear, and thusG(λ h) = λ�G(h), the equation
(3.3) gives

lim
λ→0+

1

λ
� (�(t̄ + λh) �gH �(t̄) �gH λ � G(h)

) = 0,

for all h ∈ X \{0̂}
or, lim

λ→0+
1

λ
� (�(t̄ + λh)

�gH�(t̄)
) = G(h), for all h ∈ X \{0̂}.

Since G is gH -continuous, we have

lim
λ→0+
h→v

1

λ
� (�(t̄ + λh) �gH �(t̄)

) = G(v).

Hence, � is gH -Hadamard differentiable at t̄ .
(ii) �⇒ (i). As� is gH -Hadamard differentiable at t̄ ∈ S ,
�H (t̄)(v) exists for all v and �H (t̄) is a linear IVF. Let

Q(h) = 1

‖h‖ � (�(t̄ + h) �gH �(t̄) �gH �H (t̄)(h)
)
, h 	= 0̂.
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Consider a sequence {hn} converging to 0. AsW = {h/‖h‖ :
h ∈ X , h 	= 0̂} is a compact set, there exists a subsequences

{hnk } and a point v̄ ∈ W such that wnk = hnk‖hnk ‖ → v̄ ∈ W .

Note that the sequence {tnk }, defined by tnk = ‖hnk‖,
converges to 0. Since �H (t̄)(v̄) exists and

�H (t̄)(wnk ) → �H (t̄)(v̄) as k → ∞, we have

Q(hnk ) = 1

tnk
� (�(t̄

+tnkwnk ) �gH �(t̄)
)�gH �H (t̄)(wnk ) → 0 as k → ∞.

This implies that limk→∞‖Q(hnk )‖I (R) = 0.
As {hn} is an arbitrarily chosen sequence that converges

to 0, lim‖h‖→0‖Q(h)‖I (R) = 0. Hence, � is gH -Fréchet
differentiable at t̄ . �


Remark 4 If X is infinite dimensional, then Theorem 1 is
not true. For instance, see Example 1 of Yu and Liu (2013).
According to this example, there exists a degenerate IVF
� which is gH -Hadamard differentiable at t̄ but not gH -
Fréchet differentiable at t̄ .

Theorem 2 Let S be a nonempty subset of X = R
n. If the

function � : S → I (R) has a gH-Hadamard derivative at
t̄ ∈ S , then the function � is gH-continuous at t̄ .

Proof Since � is gH -Hadamard differentiable at t̄ ∈ S , �
is gH -Fréchet differentiable at t̄ by Theorem 1. In addition,
from Theorem 5.1 in Ghosh et al. (2020), the function � is
gH -continuous at t̄ . �


Remark 5 The converse of Theorem 2 is not true. For
instance, consider the gH -continuous IVF �(t) = ‖t‖ �
C for all t ∈ R

n . Therefore, for any v ∈ R
n and t̄ = 0, we

see that

lim
λ→0+
h→v

1

λ
� (�(t̄ + λh) �gH �(t̄)

) = ‖v‖ � C.

Hence, the limit value is not a linear IVF on S . Therefore,
�H (t̄)(h) does not exist.

Remark 6 By the definitions of gH -directional (Definition
3.1 in Ghosh et al. (2020)), gH -Gâteaux (Definition 4.3
in Ghosh et al. (2020)) and gH -Hadamard (Definition 12)
derivatives of IVF �, it is clear that if �H (t̄)(h) exists,
then �D (t̄)(h) and �G (t̄)(h) exist and they are equal to
�H (t̄)(h). However, the converse is not true. For instance,
consider the IVF � : R

2 → I (R) defined by

�(t, y) =
{(

t6

(y−t2)2+t8

)
� [3, 9], if (t, y) 	= (0, 0),

0, otherwise.

For t̄ = (0, 0) and arbitrary h = (h1, h2) ∈ R
2, we have

lim
λ→0+

1

λ
� (�(t̄ + λh) �gH �(t̄)

)

= lim
λ→0+

1

λ
�
((

λ6h61
(λh2 − λ2h21)

2 + λ8h81

)
� [3, 9]

)

= 0.

Hence, � is gH -directional and gH -Gâteaux differentiable
at t̄ with �D (t̄)(h) = �G (t̄)(h) = 0.

Let λn = 1
n and hn = ( 1n , 1

n3
) for n ∈ N. Then, for

t̄ = (0, 0), we have

lim
n→∞

1

λn
� (�(t̄ + λnhn) �gH �(t̄)

) = lim
n→∞ n5 � [3, 9].

(3.4)

Hence, �H (t̄)(0) does not exist.

Theorem 3 Let S be a nonempty convex subset of R
n and

the IVF � : S → I (R) has gH-Hadamard derivative at
every t̄ ∈ S . If the function � is convex on S , then

�(v) �gH �(t̄) ⊀ �H (t̄)(v − t̄), for all v ∈ S .

Proof Since� is convex onS , for any t̄, h ∈ S and λ, λ′ ∈
(0, 1] with λ + λ′ = 1, we have

�(t̄ + λ(h − t̄)) = �(λh + λ′ t̄) 
 λ � �(h) ⊕ λ′ � �(t̄)

�⇒ �(t̄ + λ(h − t̄)) �gH �(t̄) 
 (λ � �(h)

⊕ λ′ � �(t̄)) �gH �(t̄)

�⇒ �(t̄ + λ(h − t̄)) �gH �(t̄) 
 λ � (�(h) �gH �(t̄))

�⇒ 1

λ
� (�(t̄ + λ(h − t̄)) �gH �(t̄)) 
 �(h) �gH �(t̄).

From Theorem 2, � is gH -continuous. Thus, as λ → 0+
and h → v, we obtain

�H (t̄)(v − t̄) 
 �(v) �gH �(t̄), for all v ∈ S . (3.5)

If possible, let

�(v′) �gH �(t̄ ′) ≺ �H (t̄ ′)(v′ − t̄ ′) for some v′ ∈ X .

Then,

�(v′) �gH �(t̄ ′) ≺ �H (t̄ ′)(v′ − t̄ ′),

which contradicts (3.5). Hence,

�(v) �gH �(t̄) ⊀ �H (t̄)(v − t̄), for all v ∈ S .

�


123



R. S. Chauhan et al.

Remark 7 The converse of Theorem 3 is not true. For exam-
ple, let us consider the IVF � : R → I (R) defined by

�(t) = [−4t2, 6t2].

At t̄ = 0 ∈ R, for arbitrary v ∈ R, we have

�H (t̄)(v) = lim
λ→0+
h→v

1

λ
� (�(t̄ + λh) �gH �(t̄)

) = 0.

Hence, �(v) �gH �(t̄) ⊀ �H (t̄)(v − t̄) for all v ∈ R.

However, � is not convex on R. Thus, from Lemma 3, � is
not convex on R.

Remark 8 For a convex IVF � on S ⊂ R
n , the inequality

‘�H (t̄)(v−t̄)�gH�H (v)(v−t̄) 
 0 for all t̄, v ∈ S ’ is not
true. For instance, consider the convex IVF � : R → I (R)

defined by

�(t) = [t2, 3t2].

At t̄ ∈ R, for arbitrary v ∈ R, we have �H (t̄)(v − t̄) =
2t̄(v− t̄)�[1, 3]. For t̄ = 1 and v = 2, we obtain�H (t̄)(v−
t̄) � �H (v)(v − t̄) = [−10, 2] � 0.

Notes 1 LetS be a nonempty convex subset of R
n and the

IVF � : S → I (R) be gH -Lipschitz continuous convex
function. Then, at t̄ ∈ S

�(h) �gH �(t̄) ⊀ �C (t̄)(h − t̄), for all h ∈ S .

Theorem 4 Let � : R
n → I (R) be an IVF and t̄ ∈ R

n.
Then, for a given direction v ∈ R

n, the following statements
are equivalent:

(i) � is gH-Hadamard differentiable at t̄ ;
(ii) There exists a linear IVF L : R

n → I (R) such that for
any path f : R → R

n with f (0) = t̄ for which fD (0)(1)
exists, we have

(� ◦ f )D (0)(1) = L(t̄)(v), where v = fD (0)(1).

Proof (i) �⇒ (ii). Let {δn} be a sequence of positive real
numbers with δn → 0+ and hn = 1

δn
( f (δn) − f (0)) for all

n ∈ N. Since fD (0)(1) exists, we have

lim
n→∞ hn = lim

n→∞
1

δn
� ( f (δn) − f (0)) = fD (0)(1) = v.

(3.6)

If � is gH -Hadamard differentiable at t̄ , then

�H (t̄)(v) = lim
n→∞

1

δn
� (�(t̄ + δnhn) �gH �(t̄)

)

= lim
n→∞

1

δn
� (�( f (δn)) �gH �( f (0))

)
,

since f (0) = t̄ and hn = 1

δn
( f (δn) − f (0))

= lim
n→∞

1

δn
� ((� ◦ f )(δn) �gH (� ◦ f )(0)

)
.

Hence, (� ◦ f )D (0)(1) = �H (t̄)(v). Due to the linearity
of�H (t̄)(v) on R

n , by taking L(t̄)(v) = �H (t̄)(v), we get
the desired result.
(ii) �⇒ (i). If possible, assume that� is not gH -Hadamard
differentiable at t̄ . Then, there exist sequences hn → v and
δn → 0+ such that

‘ either lim
n→∞

1

δn
� (�(t̄ + δnhn) �gH �(t̄)

)

does not exist’ or ‘limit value is not linear IVF on R
n’.

(3.7)

Since hn → v and δn → 0+, for every ε > 0, there exist a
natural number N and a real number a such that

‖hn‖ ≤ a, ‖hn − v‖ < ε, and δn < ε/a for all n > N .

(3.8)

Using the sequences {hn} and {δn}, we construct a function
f : R → R

n as follows:

f (δ) =

⎧⎪⎨
⎪⎩

t̄ + δv, if δ ≤ 0,

t̄ + δhn, if δn ≤ δ < δn−1, n ≥ 2,

t̄ + δh1, if δ ≥ δ1.

Thus, the function f yields f (0) = t̄ and fD (0)(1) = v

(for details, see p. 92 in Delfour (2012)). By hypothesis,
(� ◦ f )D (0)(1) exists and equals to L(t̄)(v), where v =
fD (0)(1). From the construction of f , we have

lim
n→∞

1

δn
� ((� ◦ f )(δn) �gH (� ◦ f )(0)

) = L(t̄)(v)

or,

lim
n→∞

1

δn
� (�( f (δn)) �gH �( f (0))

) = L(t̄)(v)

or,

lim
n→∞

1

δn
� (�(t̄ + δnhn) �gH �(t̄)

) = L(t̄)(v),

which contradicts to (3.7). Therefore, � is gH -Hadamard
differentiable at t̄ . �

Theorem 5 (Chain rule). Let H : R

m → R
n be a vector-

valued function and � : R
n → I (R) be an IVF. Assume that

for a point t̄ ∈ R
m and direction v ∈ R

m,
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(a) HD (t̄)(v) exists for all v ∈ R
m, and

(b) �H (ȳ)(z) exists, where ȳ = H(t̄) and z = HD (t̄)(v).

Then,

(i) (�◦H)D (t̄)(v) exists and (�◦H)D (t̄)(v) = �H (ȳ)(z)
(ii) if HH (t̄)(v) exists, then (� ◦ H)H (t̄)(v) exists and

(� ◦ H)H (t̄)(v) = �H (ȳ)(z̄), where

ȳ = H(t̄), z̄ = HH (t̄)(v).

Proof (i) For δ > 0, define

Q(δ) = 1

δ
� (�(H(t̄ + δv)) �gH �(H(t̄))

)
and

θ(δ) = 1

δ

(
H(t̄ + δv) − H(t̄)

)
. (3.9)

Then,

Q(δ) = 1

δ
� (�(H(t̄) + δθ(δ)) �gH �(H(t̄))

)
. (3.10)

Since θ(δ) → HD (t̄)(v) as δ → 0+, from (3.9), (3.10) and
the hypothesis (b), we have

�H (ȳ)(z) = lim
δ→0+

1

δ
� (�(H(t̄ + δv)) �gH �(H(t̄))

)
,

where ȳ = H(t̄), z = HD (t̄)(v)

= lim
δ→0+

1

δ
� ((� ◦ H)(t̄

+δv) �gH (� ◦ H)(t̄))
)

= (� ◦ H)D (t̄)(v).

(ii) For δ > 0 and h ∈ R
m , define

Q′(δ, h) = 1

δ
� (�(H(t̄ + δh))gH�(H(t̄))

)

and �(δ, h) = 1

δ

(
H(t̄ + δh) − H(t̄)

)
. (3.11)

Then,

Q′(δ, h) = 1

δ
� (�(H(t̄) + δ�(δ, h)) �gH �(H(t̄))

)
.

(3.12)

Since �(δ, h) → HH (t̄)(v) as δ → 0 + and h → v, from
(3.11), (3.12) and the hypothesis (b), we have

�H (ȳ)(k̄) = lim
δ→0+
h→v

1

δ
� (�(H(t̄ + δh))

�gH�(H(t̄))
)
, where

ȳ = H(t̄), z̄ = HH (t̄)(v)

= lim
δ→0+
h→v

1

δ
� (� ◦ H)(t̄ + δh)

�gH (� ◦ H)(t̄))
)

= (� ◦ H)H (t̄)(v).

�

The weaker assumption—the existence of GD (t̄)(v) and

�D (ȳ)(k) with ȳ = G(t̄), k = GD (t̄)(v)—is not sufficient
to prove Theorem 5. For the proof of this theorem, we require
a strong assumption (b) of Theorem 5. This is illustrated by
the following example that the composition � ◦G, of a gH -
Gâteaux differentiable IVF � and a Gâteaux differentiable
vector-valued function G, is not gH -Gâteaux differentiable
and even not gH -directional differentiable in any direction
v 	= 0.

Example 2 Consider the IVF � : R
2 → I (R) defined by

�(t, y) =
{(

t6

(y−t2)2+t8

)
� [2, 6], if (t, y) 	= (0, 0),

0, otherwise,

and the vector-valued function G : R → R
2 by G(t) =

(t, t2) for all t ∈ R.
It is clear thatG is Gâteaux differentiable function at t̄ = 0

in every direction. Note that ȳ = G(t̄) = (0, 0) and for any
h ∈ R

2, we have

lim
λ→0+

1

λ
� (�(ȳ + λh) �gH �(ȳ)

)

= lim
λ→0+

1

λ
�
((

λ6h61
(λh2 − λ2h21)

2 + λ8h81

)
� [2, 6]

)
= 0.

Then, due to the linearity and gH -continuity of the limit
value,� is also gH -Gâteaux differentiable IVF at ȳ = G(t̄).

The composition of � and G is

H(t) = (� ◦ G)(t) =
{(

1
t2

)
� [2, 6], if (t, y) 	= (0, 0),

0, otherwise.

Since for h 	= 0,

lim
λ→0+

1

λ
� (H(t̄ + λh) �gH H(t̄)

)

= lim
λ→0+

1

λ3h
� [2, 6]

does not exist,H = �◦G is not gH -directional differentiable
IVF at G(t̄) = 0 in any direction h 	= 0.

Theorem 6 Let I be a finite set of indices and �i : X →
I (R) be a family of IVFs such that �iH (t̄)(h)
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exists for all h ∈ X . For each t ∈ X , let the intervals in
{�i (t) : i ∈ I } be comparable. If �(t) = max

i∈I �i (t) for all

x ∈ X , then,

�H (t̄)(h) = max
i∈A (t̄)

�iH (t̄)(h), where A (t̄)

= {i ∈ I : �i (t̄) = �(t̄)}.

Proof Let t̄ ∈ X and d ∈ X be such that t̄ + λd ∈ X for
λ > 0. Then,

�i (t̄ + δd) 
 �(t̄ + δd), for all i ∈ I

or, �i (t̄ + δd) �gH �(t̄) 
 �(t̄

+ δd) �gH �(t̄), for all i ∈ I

or, �i (t̄ + δd) �gH �i (t̄) 
 �(t̄

+ δd) �gH �(t̄), for each i ∈ A (t̄)

or, lim
δ→0+
d→h

1

δ
� (�i (t̄ + δd) �gH �i (t̄))


 lim
δ→0+
d→h

1

δ
� (�(t̄ + δd) �gH �(t̄))

or, max
i∈A (t̄)

�iH (t̄)(h) 
 �H (t̄)(h). (3.13)

To prove the reverse inequality, we claim that there exists
a neighborhood N (t̄) such that A (t) ⊂ A (t̄) for all t ∈
N (t̄). Assume on contrary that there exists a sequence {tk}
in X with tk → t̄ such that A (tk) 	⊂ A (t̄). We can choose
ik ∈ A (tk) but ik /∈ A (t̄). Since A (tk) is closed, ik → ī ∈
A (tk). By gH -continuity of �, we have

�ī (tk) = �(tk) �⇒ �ī (t̄) = �(t̄),

which contradicts to ik /∈ A (t̄). Thus,A (t) ⊂ A (t̄) for all x ∈
N (t̄).

Let us choose a sequence {δk}, δk → 0 such that t̄+δkd ∈
N (t̄) for all d ∈ X . Then,

�i (t̄) 
 �(t̄), for all i ∈ I

or, �(t̄ + δkd) �gH �(t̄) 
 �(t̄

+ δkd) �gH �i (t̄), for all i ∈ A (t̄)

or, �(t̄ + δkd) �gH �(t̄) 
 �i (t̄

+ δkd) �gH �i (t̄), for all i ∈ A (t̄ + δkd)

or, lim
k→∞
d→h

1

δk
� (�(t̄ + δkd) �gH �(t̄))


 lim
k→∞
d→h

1

δk
� (�i (t̄ + δkd) �gH �i (t̄))

or, �H (t̄)(h) 
 max
i∈A (t̄)

�iH (t̄)(h). (3.14)

From (3.13) and (3.14) , we obtain

�H (t̄)(h) = max�iH (t̄)(h) for all i ∈ A (t̄).

�


4 Characterization of efficient solutions

In this section, we present some characterizations of efficient
solutions for IOPs with the help of the properties of gH -
Hadamard differentiable IVFs.

Theorem 7 (Sufficient condition for efficient points). LetS
be a nonempty convex subset ofX and � : S → I (R) be a
convex IVF. If the function� has a gH-Hadamard derivative
at t̄ ∈ S in the direction v − t̄ with

�H (t̄)(v − t̄) ⊀ 0, for all v ∈ X , (4.1)

then t̄ must be an efficient point of the IOP (2.1).

Proof Assume that t̄ is not an efficient point of�. Then, there
exists at least one y ∈ S such that for any λ ∈ (0, 1], we
have

λ � �(y) ≺ λ � �(t̄),

or, λ � �(y) ⊕ λ′ � �(t̄) ≺ λ � �(t̄) ⊕ λ′ � �(t̄),

where λ′ = 1 − λ,

or, λ � �(y) ⊕ λ′ � �(t̄) ≺ (λ + λ′) � �(t̄) = �(t̄).

Due to the convexity of � onS , we have

�(t̄ + λ(y − t̄)) = �(λy + λ′ t̄) 
 λ � �(y) ⊕ λ′ � �(t̄) ≺ �(t̄),

or, �(t̄ + λ(v − t̄)) �gH �(t̄) ≺ 0,

or, �H (t̄)(v − t̄) 
 0. (4.2)

Now we have the following two possibilities.

• Case I: If �H (t̄)(v − t̄) = 0, then �D (t̄)(v − t̄) = 0 and

�D (t̄)(v − t̄) = 0 and �D (t̄)(v − t̄) = 0. (4.3)

Due to Lemma 3, � and � are convex onS . From
(4.3), we observe that t̄ is a minimum point of� and
�. Consequently, t̄ is an efficient point of �. This
contradicts to our assumption that t̄ is not efficient
point of �.

• Case II: If �H (t̄)(v − t̄) ≺ 0, then this contradicts the
assumption that �H (t̄)(v − t̄) ⊀ 0 for all v ∈ X .

Hence, t̄ is the efficient point of the IOP (2.1). �
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Fig. 1 IVF � of Remark 9

Remark 9 The relation (4.1) can be seen as a variational
inequality for interval-valued functions. For details as varia-
tional inequalities,we referAnsari et al. (2013). The converse
of Theorem 7 is not true. For example, consider X = R,
S = [−1, 2], and the convex IVF � : S → I (R) defined
by

�(t) = [4t2 − 4t + 1, 2t2 + 75].

At t̄ = 0 and for v ∈ X , �H (t̄)(v) = v � [−4, 0] for all
v ∈ X .

From Fig. 1, it is clear that t̄ = 0 is an efficient solution of
the IOP (2.1). However, for all v > 0 we have �H (t̄)(v) ≺
0.

Theorem 8 (Necessary condition for efficient points). LetS
be a linear subspace of X , � : S → I (R) be an IVF and
t̄ ∈ S be an efficient point of the IOP (2.1). If the function
� has a gH-Hadamard derivative at t̄ in every direction
v ∈ S , then

�H (t̄)(v − t̄) ⊀ 0, for all v ∈ S .

Proof Since the point t̄ is an efficient point of the function
�, for any h ∈ S and λ > 0, we have

�(t̄ + λ(h − t̄)) �gH �(t̄) ⊀ 0. (4.4)

If �H (t̄)(v − t̄) 
 0, then due to linearity of �H (t̄) onS ,
we have �H (t̄)(v − t̄) = 0 by (ii) of Lemma 4. Therefore,
�H (t̄)(v − t̄) ⊀ 0 for all v ∈ S .

If �H (t̄)(v − t̄) ⊀ 0, then the result holds. �

Remark 10 Onemay think that in Theorem 8, instead of con-
sidering the fact that the IVF� is defined on a linear subspace
ofS , wemay take� being defined on any nonempty convex
subset ofS . However, this assumption is not sufficient. For
instance, consider X = R, S = [−1, 7], and the convex

IVF� : S → I (R) defined by�(t) = [t2−4t +4, t2+5].
Then, at t̄ ∈ S , �H (t̄)(v) = 2v � [t̄ − 2, t̄] for all v ∈ X .
Note that t̄ = 0 is an efficient point of IOP (2.1) because
�(y) ⊀ �(t̄) for all y ∈ S . However, �H (t̄)(v) ≺ 0 for
all v > 0.

Theorem 9 Let S be a nonempty subset of X , � : S →
I (R) be an IVF, and t̄ ∈ S be an efficient point of the IOP
(2.1). If the IVF � has a gH-Hadamard derivative at t̄ in
every direction v ∈ S , then there exist no v ∈ S such that
�H (t̄)(v − t̄) < 0.

Proof Since the point t̄ is an efficient point of the function
�, for any h ∈ S and λ > 0, we have

�(t̄ + λ(h − t̄)) �gH �(t̄) ⊀ 0.

This implies that

lim
λ→0+

1

λ
max{�(t̄ + λ(h − t̄))

−�(t̄),�(t̄ + λ(h − t̄)) − �(t̄)} ≥ 0. (4.5)

From (4.5) and Lemma 2, there is no v ∈ S such that
�H (t̄)(v − t̄) < 0. �

Theorem 10 . LetS be a linear subspace ofX , � : S →
I (R) be an IVF, and t̄ ∈ S be an efficient point of the IOP
(2.1). If the IVF � has a gH-Hadamard derivative at t̄ in
every direction v ∈ S , then

0 ∈ �H (t̄)(v), for all v ∈ S .

The converse holds if � is convex on X .

Proof Let t̄ be an efficient point of IOP (2.1). Then, by The-
orem 8, we have �H (t̄)(v) ⊀ 0 for all v ∈ S . Due to
linearity of �H (t̄) and v = −h, we obtain �H (t̄)(h) �

0 for all h ∈ S . Hence, 0 ∈ �H (t̄)(v) for all
v ∈ S .

Conversely, let � be convex onS and assume that � has
a gH -Hadamard derivative at t̄ in every direction w ∈ X .
Let 0 ∈ �H (t̄)(w) for all w ∈ X . Then, due to linearity of
�H (t̄) on S , we have

�H (t̄)(w) ⊀ 0 and 0 ⊀ �H (t̄)(w) for all w.

Hence, t̄ is efficient point of IOP (2.1) by Theorem 7. �


5 Characterization of efficient solution using
Karush–Kuhn–Tucker conditions

To characterize the efficient solutions of IOPs, we derive
an extended Karush–Kuhn–Tucker necessary and sufficient
conditions in this section.
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Lemma 5 Let � : R
n → I (R) be a gH-Hadamard differen-

tiable IVF at t̄ in the direction v ∈ R
n with �H (t̄)(v) ≺ 0.

Then, there exists δ > 0 such that for each λ ∈ (0, δ),

�(t̄ + λv) ≺ �(t̄).

Proof Since �H (t̄)(v) ≺ 0, there exist δ, δ′ > 0 such that
for all h ∈ R

n , we have

1

λ
� (�(t̄ + λh) �gH �(t̄)) ≺ 0, λ ∈ (0, δ) and ‖v − h‖ < δ′.

Due to gH -continuity of � at v, we get

�(t̄ + λv) �gH �(t̄) ≺ 0, ∀ λ ∈ (0, δ),

which implies �(t̄ + λv) ≺ �(t̄), ∀ λ ∈ (0, δ). �


Definition 13 The set of descent directions at t̄ ∈ R
n for

a gH -Hadamard differentiable IVF � : R
n → I (R), is

defined by

�̂(t̄) = {d ∈ R
n : �H (t̄)(d) ≺ 0}.

As for any d in �̂(t̄), λd ∈ �̂(t̄) for all λ > 0, the set �̂(t̄)
is called the cone of descent direction.

Definition 14 Ghosh et al. (2019)Given anonempty setS ⊆
R
n and t̄ ∈ S . At t̄ , the cone of feasible directions of S is

defined by

Ŝ (t̄) = {d ∈ R
n : d

	= 0, t̄ + λd ∈ S , ∀ λ ∈ (0, δ) and for some δ > 0}.

Lemma 6 Let t̄ ∈ S is an efficient solution of the IOP (2.1),
where S ⊆ R

n

and � : R
n → I (R) be a gH-Hadamard differentiable

IVF at t̄ . Then, �̂(t̄) ∩ Ŝ (t̄) = ∅.

Proof Assumecontrary that �̂(t̄)∩Ŝ (t̄) 	= ∅ andd ∈ �̂(t̄)∩
Ŝ (t̄). By Lemma 5 and Definition 14, there exist δ1, δ2 > 0
such that

t̄ + λd ∈ S for all λ in (0, δ1)

and �(t̄ + λd) ≺ �(t̄) for all λ in (0, δ2).

Taking δ = min{δ1, δ2}, we see that for all λ ∈ (0, δ),

t̄ + λd ∈ S and �(t̄ + λd) ≺ �(t̄).

This is contradictory to t̄ being a local efficient point. Hence,
�̂(t̄) ∩ Ŝ (t̄) = ∅. �


Lemma 7 Let � i : R
n → I (R) be IVF for i = 1, 2, . . . ,m,

and S = {t ∈ X : � i (t) 
 0 for i = 1, 2, . . . ,m}, where
X be a nonempty open set in R

n. Let � i be gH-Hadamard
differentiable at t̄ ∈ S and gH-continuous for i /∈ I (t̄),
where I(t̄) = {i : � i (t̄) = 0}. For all i ∈ I (t̄) define

�̂(t̄) = {d : � iH (t)(d)( t̄) ≺ 0 for all i ∈ I (t0)}.

Then, �̂(t̄) ⊆ Ŝ (t̄), where Ŝ (t̄) = {d ∈ R
n : d 	= 0, t̄ +

αd ∈ S ∀α ∈ (0, δ) for some δ > 0}.
Proof The proof of this Lemma is similar to Lemma 3.1 in
Ghosh et al. (2019) for gH -Hadamard derivative, and there-
fore, we omit. �


With the help of Definition 13 and 14, and Lemma 7, we
characterize an efficient solution of a constrained IOP.

Theorem 11 Consider an IOP

min �(t)

such that � i (t) 
 0, for i = 1, 2, . . . ,m

t ∈ S ,

⎫⎪⎬
⎪⎭

(5.1)

where � : R
n → I (R), � i : R

n → I (R) for i =
1, 2, . . . ,m, and S be a nonempty open set in R

n. Define
I(t0) = {i : � i (t̄) = 0} for a feasible point t0. At t̄ , let
� and � i , i ∈ I (t̄), be gH-Hadamard differentiable, and
for i /∈ I (t̄), � i be gH-continuous. If t̄ is a local efficient
solution of (5.1), then

�̂(t̄) ∩ �̂(t̄) = ∅,

where �̂(t̄) = {d : �H (t)(d) ≺ 0} and �̂(t̄) = {d :
GiH (t)(d) ≺ 0 for each i ∈ I (t̄)}.
Proof By Lemma 6 and Lemma 7, we obtain

t0 is a local efficient solution �⇒ �̂(t̄) ∩ Ŝ (t̄)

= ∅ �⇒ �̂(t̄) ∩ �̂(t̄) = ∅.

�

Theorem 12 LetS be a nonempty open set inR

n;� : R
n →

I (R) and � i : R
n → I (R) for i = 1, 2, . . . ,m be IVFs.

Consider the IOP:

min �(t),

such that � i (t) 
 0, i = 1, 2, . . . ,m

t ∈ S .

⎫⎪⎬
⎪⎭

(5.2)

For a feasible point t̄ , define I(t̄) = {i : � i (t̄) = 0}. Let �

and� i be gH-Hadamard differentiable at t̄ for i ∈ I (t̄) and
gH-continuous for i /∈ I (t̄). If t̄ is a local efficient point of
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(5.2), then there exist constants u0 and ui for i ∈ I (t̄) such
that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 ∈
⎛
⎝u0 � �H (t̄)(d) ⊕

∑

i∈I (t̄)
ui � � iH (t̄)(d)

⎞
⎠ ,

u0 ≥ 0, ui ≥ 0 for i ∈ I (t̄),

(u0, uI ) 	=
(
0, 0|I (t̄)|

v

)
,

where uI is the vector whose components are ui for i ∈ I (t̄).
Further, if� i , for all i /∈ I (t̄), are also gH-Hadamard dif-

ferentiable at t̄ , then there exist constants u0, u1, u2, . . . , um
such that
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈
(
u0 � �H (t̄)(d) ⊕

m∑
i=1

ui � GiH (t̄)(d)

)
,

ui � � i (t̄) = 0, i = 1, 2, . . . ,m,

u0 ≥ 0, ui ≥ 0, i = 1, 2, . . . ,m,

(u0, u) 	= (0, 0mv
)
,

where u is the vector (u1, u2, . . . , um).

Proof Since t̄ is a local efficient point of (5.2), by Theorem
11, we get

�̂(t̄) ∩ �̂(t̄) = ∅,

or, � d ∈ R
n s.t. �H (t̄)(d) ≺ 0 and � iH (t̄)(d) ≺ 0 ∀ i ∈ I (t̄),

or, �H (t̄)(d) ⊀ 0 and � iH (t̄)(d) ⊀ 0 ∀ d ∈ R
n and i ∈ I (t̄),

or, 0 ∈ �H (t̄)(d) and 0 ∈ � iH (t̄)(d) ∀ d ∈ R
n and i ∈ I (t̄)

by Lemma 4. (5.3)

We can chose nonzero vector p with p = [u0, ui ]�i∈I (t̄)
such that
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 ∈
⎛
⎝u0 � �H (t̄)(d) ⊕

∑

i∈I (t̄)
ui � � iH (t̄)(d)

⎞
⎠ ,

u0, ui ≥ 0 for i ∈ I (t0),

(u0, uI ) 	= (0, 0, · · · , 0) .

This proves the first part of the theorem.
For i ∈ I (t̄), � i (t̄) = 0. Therefore, ui � � i (t̄) = 0. If

� i for all i /∈ I (t̄) are also gH -differentiable at t̄ , by setting
ui = 0 for i /∈ I (t̄) the secondpart of the theorem is followed.

�

Definition 15 Ghosh et al. (2019) The set of m intervals
{X1,X2, . . . ,Xm} is said to be linearly independent if for
m real numbers c1, c2, …, cm :

0 ∈ c1 � X1 ⊕ c2 � X2 ⊕ . . . ⊕ cm � Xm if and only if

c1 = 0, c2 = 0, . . . , cm = 0.

Theorem 13 (ExtendedKarush–Kuhn–Tucker necessaryopti-
mality condition). Let S be a nonempty open set in R

n and
� : R

n → I (R) and � i : R
n → I (R), i = 1, 2, . . . ,m, be

IVFs. Suppose that t̄ is a feasible point of the following IOP:

min �(t)

such that � i (t) 
 0, i = 1, 2, . . . ,m

t ∈ S .

⎫⎪⎬
⎪⎭

Define I(t̄) = {i : Gi (t̄) = 0}. Let

(i) � and Gi be gH-Hadamard differentiable at t̄ for all
i ∈ I (t̄),

(ii) � i be gH-continuous for all i /∈ I (t̄), and
(iii) the collection of intervals {� iH (t̄)(d) : i ∈ I (t̄)} be

linearly independent.

If t̄ is a local efficient solution, then there exist constants
ui ≥ 0 for all i ∈ I (t̄) such that

0 ∈
⎛
⎝u0 � �H (t̄)(d) ⊕

∑

i∈I (t̄)
ui � � iH (t̄)(d)

⎞
⎠ .

If � i ’s, for i /∈ I (t̄), are also gH-differentiable at t̄ , then
there exist constants u1, u2, …, um such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ∈
(
u0 � �H (t̄)(d) ⊕

m∑
i=1

ui � � iH (t̄)(d)

)
,

ui � � i (t̄) = 0, i = 1, 2, . . . ,m,

ui ≥ 0, i = 1, 2, . . . ,m.

Proof By Theorem 12, there exist real constants u0 and u′
i

for all i ∈ I (t̄), not all zeros, such that

⎧⎪⎪⎨
⎪⎪⎩
0 ∈
⎛
⎝u0 � �H (t̄)(d) ⊕

∑

i∈I (t̄)
u′
i � � iH (t̄)(d)

⎞
⎠ ,

u0 ≥ 0, u′
i ≥ 0 for all i ∈ I (t̄).

(5.4)

Then, we must have u0 > 0. Since otherwise, the set
{� iH (t̄)(d) : i ∈ I (t̄)} will become linearly dependent.

Define ui = u′
i/u0. Then, ui ≥ 0 for all i ∈ I (t̄) and

0 ∈
⎛
⎝u0 � �H (t̄)(d) ⊕

∑

i∈I (t̄)
ui � � iH (t̄)(d)

⎞
⎠ .

For i ∈ I (t̄), � i (t̄) = 0. Therefore, 0 ∈ ui � � i (t̄). If the
functions � i for i /∈ I (t̄) are also gH -Hadamard differen-
tiable at t0, then by setting ui = 0 for i /∈ I (t̄), the latter part
of the theorem is followed. �
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Theorem 14 (ExtendedKarush–Kuhn–Tucker sufficient con-
dition for efficient points). Let S be a nonempty convex
subset of X ; � : S → I (R) and � i : S → I (R), i =
1, 2, · · · ,m be interval-valued gH-Hadamard differentiable
convex functions. Suppose that t̄ ∈ S is a feasible point of
the following IOP:

min �(t)

such that � i (t̄) 
 0, i = 1, 2, · · · ,m

t ∈ S .

⎫⎪⎬
⎪⎭

(5.5)

If there exist real constants u1, u2, . . . , um for which

⎧⎪⎨
⎪⎩

�H (t̄)(v) ⊕∑m
i=1 ui � � iH (t̄)(v) ⊀ 0, for all v ∈ S ,

ui � � i (t̄) = 0, i = 1, 2, · · · ,m

ui ≥ 0, i = 1, 2, · · · ,m,

then t̄ is an efficient point of the IOP.

Proof By the hypothesis, for every v ∈ S satisfying
� i (v) 
 0 for all i = 1, 2, . . . ,m, we have

�H (t̄)(v − t̄) ⊕
m∑
i=1

ui� iH (t̄)(v − t̄) ⊀ 0,

�⇒ (�(v) �gH �(t̄)
)⊕
(

m∑
i=1

ui
(
� i (v) �gH � i (t̄)

))
⊀ 0

( by (3.5) of Theorem 3 and (i) of Lemma 1),

�⇒ (�(v) �gH �(t̄)
)⊕
(

m∑
i=1

ui (� i (v))

)
⊀ 0,

�⇒ �(v) �gH �(t̄) ⊀ 0 from (ii) of Lemma 1,

�⇒ �(v) ⊀ �(t̄).

Hence, t̄ is an efficient point of the IOP. �


Next, remark shows that for the non gH -Hadamard dif-
ferentiable gH -Lipschitz continuous IVFs, the extended
Karush–Kuhn–Tucker sufficient condition for efficient points
can be derived using upper gH -Clarke derivative of IVFs.
This remark is also helpful to characterize the efficient
solution of the Support Vector Machine (6.1) using upper
gH -Clarke derivative.

Remark 11 If� and� i of the system (5.5) are gH -Lipschitz
continuous IVFs and there exist real constantsu1, u2, . . . , um
for which

⎧⎪⎨
⎪⎩

�C (t̄)(h) ⊕∑m
i=1 ui � � iC (t̄)(h) ⊀ 0, for all h ∈ S ,

ui � � i (t̄) = 0, i = 1, 2, · · · ,m

ui ≥ 0, i = 1, 2, · · · ,m,

then t̄ is an efficient point of the IOP (5.5). Here, �C (t̄)(h)

and � iC (t̄)(h) are upper gH -Clarke derivative of � and � i

at t̄ .
By the hypothesis, for every h ∈ S satisfying � i (h) 
 0

for all i = 1, 2, . . . ,m, we have

�C (t̄)(h − t̄) ⊕
m∑
i=1

ui� iC (t̄)(h − t̄) ⊀ 0,

�⇒ (�(h) �gH �(t̄)
)⊕
(

m∑
i=1

ui
(
� i (h) �gH � i (t̄)

))
⊀ 0

( by Note 1 and (i) of Lemma 1),

�⇒ (�(h) �gH �(t̄)
)⊕
(

m∑
i=1

ui (� i (h))

)
⊀ 0,

�⇒ �(h) �gH �(t̄) ⊀ 0 from (ii) of Lemma 1,

�⇒ �(h) ⊀ �(t̄).

Hence, t̄ is an efficient point of the IOP (5.5).

6 Application to support vector machines

The standard Support Vector Machines (SVM) formulation
is not applicable for imprecise or uncertain data. Thus, we
formulate the hard-margin SVM problem for the interval-
valued data set

{
(Xi , yi ) | Xi ∈ I (R)n, yi ∈ {−1, 1}, i = 1, 2, · · · ,m

}

by

max
w,b

�1(w, b) = 1

‖w‖ ,

such that � i (w, b) = yi �
(
w� � Xi ⊕ b

)

≤ [1, 1], i = 1, 2, . . . ,m.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

or,

min
w,b

�′
1(w, b) = ‖w‖,

such that � i (w, b) = yi�(
w� � Xi ⊕ b

)
≤ [1, 1], i = 1, 2, . . . ,m.

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(6.1)

By Definition 2.8 of Ghosh et al. (2020), we note that the
functions �′

1 is gH -Lipschitz continuous since

‖�′
1(w1, b) �gH �′

1(w2, b)‖I (R) ≤ ‖w1 − w2‖ for all w1, w2 ∈ R
n .

Therefore, by Theorem 1 of Chauhan et al. (2021), �′
1 is

gH -Clarke differentiable and at t̄ = (w̄, b̄) in the direction
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h = (h, b), we have

�C (t̄)(h) = w � [w̄, w̄].

In addition, by Definition 10 of upper gH -Clarke deriva-
tive, � i are upper gH -Clarke differentiable at t̄ = (w̄, b̄) in
the direction h = (h′, b′), we have

lim sup
x→t̄

λ→0+

1

λ
� (� i (t + λh) �gH � i (t)

)

= lim sup
x→t̄

λ→0+

1

λ
�
(
yi �
(
(w + λw′)� � Xi ⊕ (b + b′)

)

�gH yi �
(
w� � Xi ⊕ b

))

= lim sup
x→t̄

λ→0+

1

λ
�
(
yi �
(
(λw′)� � Xi ⊕ b′))

= yi �
(
w′� � Xi ⊕ b′) .

Hence, � iC (t̄)(d) = (w � (yi � Xi ) ⊕ byi ) at t̄ = (w̄, b̄)
in the direction h = (h, b).

Here, we can only characterize the efficient solutions of
the SVM (6.1) if we use the existing concepts of upper gH -
Clarke derivative in Chauhan et al. (2021) and Remark 11,
but we unable to identify the classifying hyperplane which
separates the +1’s from −1’s since there does not exist any
article which derives the KKT necessary condition for IOPs
using Clarke derivative for IVFs.

In addition, problem (6.1) cannot be solved using gH -
Hadamard derivative since �′

1 is not gH -Hadamard differ-
entiable by Remark 3 forw ∈ R. However, if we reformulate
it to another SVM problem as

min
w,b

�(w, b) = 1
2‖w‖2,

such that � i (w, b) = [1, 1] �gH yi �
(
w� � Xi ⊕ b

)


 0, i = 1, 2, . . . ,m,

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
(6.2)

then, we can solve it by gH -Hadamard derivative. We note
that the functions� and� i are gH -Hadamard differentiable
and convex. At t̄ = (w̄, b̄), in the direction v = (w, b), we
have

�H (t̄)(v) = w � [w̄, w̄] and
� iH (t̄)(d) = (w � (yi � Xi ) ⊕ byi ) .

According to Theorem 13, for an efficient point (w̄, b̄) of
(6.2), there exist nonnegative scalarsu1, u2, . . . , um such that

0 ∈
(

w � [w̄, w̄] ⊕
m∑
i=1

ui � ⊕ (w � (yi � Xi ) ⊕ byi )

)
, (6.3)

and

0 = ui � � i (w
∗, b∗), i = 1, 2, . . . ,m. (6.4)

The condition (6.3) can be simplified as

0 ∈
(

[w∗, w∗] ⊕
m∑
i=1

(ui yi ) � Xi

)
and

m∑
i=1

ui yi = 0.

The data points Xi for which ui 	= 0 are called support
vectors. By (6.4), corresponding to any ui > 0, we have
� i (w

∗, b∗) = 0. Thus, corresponding tow∗, the value of the
bias b∗ is such a quantity that� i (w

∗, b∗) = 0 for all of those
i ∈ {1, 2, . . . ,m} for which ui > 0.

As the functions � and � i are gH -Hadamard differ-
entiable and convex, by Theorems 13 and 14, the set of
conditions by which we obtain the efficient solutions of the
SVM IOP (6.2) are

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈
(

[w,w] ⊕
m∑
i=1

(ui yi ) � Xi

)
,

m∑
i=1

ui yi = 0,

0 = ui � � i (w, b), i = 1, 2, . . . ,m.

(6.5)

Corresponding to any of the value of w that satisfies (6.5),
we define the set of possible values of the bias by

⋂
i : ui>0

{b | � i (w, b) = 0} . (6.6)

Using any solution w̄ and b̄ of (6.5) and (6.6), a classifying
hyperplane and the SVM classifier function are given by

w̄�X + b̄ = 0 and s∗(X) = sign
(
w̄�X + b̄

)
,

where sign (·) denotes the sign function.

7 Conclusion and future directions

In this article, the concept of gH -hadamard derivative for
IVFs has been studied (Definition 12). One can trivially
notice that in the degenerate case, the Definition 12 reduces
to the respective conventional definition for the real-valued
functions (see Yu and Liu (2013), de Miranda and Fichmann
(2005)). It has been noticed that the gH -Hadamard deriva-
tive at any point is the gH -Fréchet derivative at that point and
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vise-versa (Theorem 1). In addition, a gH -Hadamard differ-
entiable IVF is found to be gH -continuous (Theorem 2). It
has been shown that the gH -Hadamard derivative is helpful
to characterize the convexity of an IVF (Theorem 3). It is also
observed that the composition of a Hadamard differentiable
real-valued function and a gH -Hadamard differentiable IVF
is gH -Hadamard differentiable IVF and the chain rule is
applicable (Theorem 5 and Theorem 4). Further, for a finite
number of IVFs whose values are comparable at each point,
it has been proven that the gH -Hadamard derivative of max-
imum of all finite comparable IVFs is the maximum of their
gH -Hadamard derivative (Theorem 6).

In addition, it has been shown that if the objective function
of an IOP is convex on the feasible set S ⊆ X and gH -
Hadamard derivative at t̄ ∈ S does not dominate to 0, then
t̄ is an efficient point of that IOP (Theorem 7). Further, it is
proved that if the feasible setS is linear subspace ofX and
the objective function of IOP is gH -Hadamard differentiable
at an efficient point of IOP, then gH -Hadamard derivative
does not dominate to 0 (Theorem 8) and also contains 0 (The-
orem 10). Moreover, for constraint IOPs, we have proved
extended KKT necessary and sufficient condition to charac-
terize the efficient solutions using gH -Hadamard derivative
(Theorem 13 and Theorem 14).

As an application of the proposed gH -Hadamard deriva-
tive, we have formulated and solved SVM problem for
interval-valued data.

In analogy to the current study, future research can be
carried out for other generalized directional derivatives for
IVFs, e.g., upper and lower Dini semiderivative, Hadamard
semiderivative, upper and lower Hadamard semiderivative,
Michel-Penot, etc., and their relationships with fuzzy set the-
ory Delfour (2012), Ghosh and Chakraborty (2014, 2015).

In parallel to the proposed analysis of IVFs, another
promising direction of future research can be the analysis
of the fuzzy-valued functions (FVFs) as the alpha-cuts of
fuzzy numbers are compact intervals Ghosh andChakraborty
(2019). Hence, we expect that some results for FVFs can be
obtained in a similar way to this paper.

Appendix A: Proof of Lemma 1

Proof Let P = [p, p] and Q = [q, q].

(i) Since Q ⊀ 0 and Q 
 P, then

q ≥ 0 and q ≥ p �⇒ p ≥ 0 �⇒ P ⊀ 0.

(ii) Since P ⊕ Q ⊀ 0 and Q 
 0, then

p + q ≥ 0 and q ≤ 0 �⇒ p ≥ 0 �⇒ P ⊀ 0.

�


Appendix B: Proof of Lemma 4

Proof (i) If

�(t) ⊀ 0 for all t ∈ S , (7.1)

then due to linearity of �, we have

�(t) = (−1) � �(−t) � 0 for all t ∈ S (7.2)

since�(−t) ⊀ 0 by (7.1). From (7.1) and (7.2), it is clear
that 0 and �(t) are not comparable.

(ii) If�(t) 
 0 for all x ∈ S , then due to linearity of�, we
have �(t) = (−1) � �(−t) � 0 for all t ∈ S .

Hence, �(t) = 0.
�
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