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a b s t r a c t 

In this article, fixed-time event-triggered control is designed for a networked system under denial-of- 

service (DoS) attacks. At first, fixed-time input-to-state stability (ISS) analysis without DoS is analyzed. 

Then, fixed-time ISS under DoS is examined under the same control law. Sufficient conditions for the 

frequency of DoS attacks and the time duration of DoS attacks are obtained so that the closed-loop sys- 

tem retains the fixed-time ISS. A numerical example is also given to demonstrate the outcomes of the 

proposed methodology. 
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. Introduction 

The networked control system is omnipresent nowadays, be it 

anufacturing industries, autonomous vehicles, power transmis- 

ion, distribution networks, etc. In many networked control sys- 

ems, the communication channel between the controller, actua- 

or and sensor is open. With the increased use of such systems, 

he concern for the safety and security of the network is essen- 

ial for smooth operation [29] . Recently, this area has come un- 

er the scope of many researchers [12,22] . Many control system 

esearchers have also explored this problem from their perspective 

21,28] . As far as network security is concerned, one of the im- 

ortant issues is to know about different types of attacks which 

an harm the network and mitigate their effects to a large extent 

16,27] . However, there are many other vulnerabilities in the net- 

ork, which are exploited by the cyber attackers, causing interrup- 

ions in network communication. The specific term for such sit- 

ations is called denial-of-service (DoS) [2,24] . The attackers em- 

loying DoS attacks usually have limited information of the sensor 

ata and the control input. So, they try to interrupt the commu- 

ication in the network and prevent the continuous transmission 

f the control input signal to the plant. This may give rise to the 
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losed-loop system instability due to denied controller to actuator 

ommunication channel and sensor to the controller communica- 

ion channel [17] . There are various models which are used to rep- 

esent DoS attacks over the communication network, such as the 

robabilistic packet drop model, general attacks model, etc. The 

arious classifications of DoS attacks in literature are random at- 

acks, trivial attacks, protocol-aware jamming attacks, periodic at- 

acks, etc. [19,25] . In [7] authors have modeled DoS attacks using 

ulse-width-modulated signal. Here they have identified the at- 

ributes, such as maximum on/off cycles of the DoS signal. 

Stability analysis under DoS becomes an essential task since un- 

er DoS attacks, systems operate in the open-loop with the control 

nput similar to what was transmitted just before the occurrence 

f DoS attacks [9,26] . The sampling-based state feedback control is 

roposed in Dolk et al. [5] for the linear networked control sys- 

ems under the existence of DoS attacks. In this paper, the au- 

hors adopted the idea of the event triggering technique in such 

 way that the networked system under control remains exponen- 

ially input-to-state stable. To ensure input-to-output stability, the 

utput-based resilient control methods are proposed in Feng and 

esi [8] , where the obtained closed-loop system is nonlinear Lips- 

hitz. In [4] , the global exponential stability is studied while DoS 

ttacks over the communication channel of the networked control 

ystem. This type of stability can be quantified in terms of the rate 

f convergence, but the solution approaches the equilibrium point 

fter a very large time which is not finite [20] . 

One of the prime objectives under the presence of DoS attacks 

s to know whether the closed-loop stability is preserved or not. 

he input-to-state stabilizing control under the presence of DoS 
rved. 
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1 A continuous function γ̄ : [0 , ∞ ) → [0 , ∞ ) is called a class K ∞ function if it 

purely increasing, γ̄ (0) = 0 and γ̄ (s ) → ∞ as s → ∞ . 
2 A continuous function β : [0 , a ) × [0 , ∞ ) → [0 , ∞ ) is called as class KL function 

if, for all specified value of s , β(r, s ) is belongs to class K and for all specified value 

of r, β(r, s ) → 0 as s → ∞ . 
ttacks is discussed in De Persis and Tesi [3] . In this article, they

tudied the duration of DoS attacks as well as the frequency of DoS 

ttacks so that the input-to-state stability of the closed-loop sys- 

em is preserved. In [30] , authors have discussed the mean square 

xponential stability of a stochastic network system under the im- 

act of an aperiodic DoS attacks. Here, a secure controller is pro- 

osed by designing an observer-based event triggering mechanism. 

n [6] , the authors have analyzed the worst-case scenario under 

hich the closed-loop networked control system remains finite- 

ime stable considering the successful launch of DoS attacks from 

n attacker. In finite-time stability, the solution converges to the 

quilibrium point with a constant velocity making the time of con- 

ergence finite [1] . However, the time of convergence is also very 

arge for the large initial condition since the time of convergence 

epends on the initial condition [13] . To overcome this problem, 

he concept of fixed-time stability was proposed in Polyakov [18] . 

n this, the time of convergence is bounded by a maximum time 

hich is independent of the initial condition. Hence, regardless of 

ny initial condition, no matter how large, the solution will always 

onverge within some fixed-time, which is known a priori [10] . 

Motivated by the aforementioned observations, in this paper, 

he main aim is to look over the susceptibility of fixed-time ISS 

f closed-loop networked systems under the presence of DoS at- 

acks. The sufficient conditions on DoS attacks frequency and time- 

uration are also obtained in an attempt to preserve the fixed-time 

SS of the closed-loop network system. The main contributions of 

his work are twofold: 

(1) A fixed-time Zeno-free event-triggered control mechanism 

have been designed for nonlinear systems without consid- 

ering the DoS attack. The event-triggering conditions are 

appropriately designed such that it constrains the system 

trajectory to origin in fixed-time irrespective of the initial 

conditions and the inter-event times of the controller are 

bounded away from zero to avoid Zeno behavior. 

(2) The characterization of frequency and duration of the DoS 

attack is obtained under which the fixed-time stability of the 

closed-loop system preserved. Further, we relate the fixed- 

time stability properties to the frequency and duration of 

DoS ON/OFF transitions. 

In this article, we analyse the fixed-time input to state stabil- 

ty of a closed-loop networked system under the denial-of-service 

ttack by utilizing an event-triggered mechanism. To be more pre- 

ise, the determination of the sufficient conditions for which the 

reservation of the fixed-time input to state stability under the 

oS attack can be claimed is of prime focus. To the best of author’s 

nowledge, there is no work addressing the above-mentioned is- 

ues. The most recent work which addresses the issue of stabil- 

ty preservation is of Doostmohammadian and Meskin [6] , which 

ocusses on the finite-time input to state stability under the DoS 

ttack. Finally, the validity of the proposed stabilization scheme 

s demonstrated with a numerical example through a simulation 

tudy. 

This article is organized as follows. Notations and definitions 

re briefly introduced in Section 2 . The main results are presented 

n Section 3 . A numerical example with simulation results is shown 

n Section 4 , followed by the concluding remarks and future scope 

n Section 5 . 

. Notations and preliminaries 

The set of all non-negative integers and the set of all positive 

ntegers are denoted by N ≥0 and N > 0 respectively. R represents the 

eld of all numbers which are real and R ≥0 is the set of all real

umbers which are non-negative. R 

n is the set of all n-dimensional 
2 
ector space over the field R . The absolute value of a scalar vari-

ble is represented by | · | and 2-norm or the Euclidean norm of a 

nite-dimensional vector of appropriate dimension is denoted by 

 · ‖ . (·) � denotes the transpose. 

First of all, consider a nonlinear dynamical system of the form 

˙ 
 = F(z(t) , u (t)) , z(0) = z 0 (1) 

here, z(t) ∈ R 

n denotes the system state vector and u (t) ∈ 

 

m system input vector. The control law is taken as u (t) = 

(z(t) , ξ (t)) , where ξ (t) denotes the error signal occurs due to 

ampling. 

The closed-loop system can be rewritten as: 

˙ 
 = F(z(t) , φ(z(t) , ξ (t)) = G(z(t) , ξ (t)) , z(0) = z 0 (2) 

efinition 1 ( [11] ) . The system (2) is said to be finite-time ISS with

espect to the input ξ (t) if for every input ξ (t) ∈ R 

n and for all

nitial conditions z 0 ∈ R 

n such that ‖ ξ (t) ‖ ∞ 

< δ, the following sat-

sfies 

 z(t) ‖ ≤ β(‖ z 0 ‖ , t) + γ̄

(
sup 

0 ≤τ≤t 

‖ ξ (τ ) ‖ 

)
(3) 

here γ̄ and β are class K ∞ 

function 

1 and KL function 

2 respec- 

ively with β(‖ z 0 ‖ , t) = 0 for all t ≥ T where T is a continuous

unction of z 0 . 

efinition 2 ( [15] ) . The system (2) is said to be fixed-time ISS if it

s finite-time ISS and sup z 0 ∈ R ≥0 
T < + ∞ . 

A continuously differentiable function V : R 

n → R ≥0 is said to 

e an ISS-Lyapunov function for the closed-loop system (2) , if for 

ll z ∈ R 

n 

 1 (‖ z‖ ) ≤ V (z) ≤ ψ 2 (‖ z‖ ) (4) 

˙ 
 (z(t) , ξ (t)) ≤ −ψ 3 (‖ z(t) ‖ ) + γ (‖ ξ (t) ‖ ) (5) 

here, ψ 1 , ψ 2 , ψ 3 and γ are class K ∞ 

functions. 

Since, −ψ 3 (‖ z(t) ‖ ) ≤ −ψ 3 (ψ 

−1 
2 

(V (z(t)))) and ψ 3 (ψ 

−1 
2 

(z(t))) 

 ψ(z(t)) then it can be said, 

˙ 
 (z(t) , ξ (t)) ≤ −ψ(V (z(t))) + γ (‖ ξ (t) ‖ ) (6) 

efinition 3 ( [11] ) . A continuous function V is said to be a finite-

ime ISS-Lyapunov function for the closed-loop system (2) if it is an 

SS-Lyapunov function satisfying (4) and ψ(V (z(t))) is of the form 

V a (z(t)) in (6) , where a ∈ (0 , 1) i.e., 

˙ 
 (z(t) , ξ (t)) ≤ −cV 

a (z(t)) + γ (‖ ξ (t) ‖ ) (7) 

 z ∈ R 

n with, c > 0 and γ ∈ K ∞ 

. 

efinition 4 ( [15] ) . A continuous function V is said to be a fixed-

ime ISS-Lyapunov function for the closed-loop system (2) if it is an 

SS-Lyapunov function satisfying (4) and ψ(V (z(t))) is of the form 

 1 V 
a (z(t)) + c 2 V 

b (z(t)) in (6) where a ∈ (0 , 1) and b ∈ (1 , ∞ ) i.e., 

˙ 
 (z(t) , ξ (t)) ≤ −c 1 V 

a (z(t)) − c 2 V 

b (z(t)) + γ (‖ ξ (t) ‖ ) (8) 

 z ∈ R 

n with, c 1 > 0 , c 2 > 0 and γ ∈ K ∞ 

. 

The block diagram of the networked control system under con- 

ideration is shown in Fig. 1 , where the transmission of signals 

etween sensor to controller and controller to actuator is done 

hrough a communication network. 
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Fig. 1. Block-diagram of the networked control system under DoS attacks. 
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. Main results 

.1. Fixed-time ISS without DoS attacks 

In the following section, we propose an fixed-time ISS event 

riggering mechanism for the system (1) without considering DoS 

ttacks. 

ssumption 1. An ISS-Lyapunov function V : R 

n → R ≥0 exists for 

he system (2) , which satisfies (8) for a given constants a ∈ 

0 , 1) , b ∈ (1 , ∞ ) , c 1 > 0 , c 2 > 0 and class K ∞ 

functions ψ, γ . 

ssumption 2. For z ∈ R 

n , there exist μ1 and μ2 > 0 such that

1 ((‖ z‖ )) ≤ μ1 ψ 

a 
1 
(‖ z‖ ) + μ2 ψ 

b 
1 
(‖ z‖ ) where ψ 1 , ψ 2 , γ1 are K ∞ 

unctions and γ1 (‖ z‖ ) > γ (‖ z‖ ) . 
emark 1. The above assumption is based on the limiting condi- 

ion of the difference between z(t) and z(t i ) . This assumption sat- 

sfies that the error signal is within some limit. This makes the 

nterevent value of the state ( z(t i ) ) to track the actual value of the

tate ( z(t) ). 

Taking the above assumptions into consideration, let 

1 ((‖ z‖ )) = γ (4(‖ z‖ )) , the following event triggering rule is

roposed as 

 i +1 = inf { t > t i | γ (4 ‖ ξ (t) ‖ ) > c 1 (1 − ε) V 

a (z(t)) 

+ c 2 (1 − ε) V 

b (z(t)) } (9) 

ith ε ∈ (0 , 1) is called triggering parameter, ξ (t) = z(t i ) − z(t) ,

 1 > 0 , c 2 > 0 and V (z(t)) satisfies (8) . 

heorem 1. The system (1) under the proposed event-triggering rule 

9) and with input u (t) = φ(z(t ) , ξ (t )) ∀ t ∈ [ t i , t i +1 ) is fixed-time

SS. Moreover, the Lyapunov function satisfies the following inequali- 

ies 

V (z(t)) 1 −a ≤ V (z(t i )) 
1 −a − 
1 (1 − a )(t − t i ) 

for V (z(t)) ≤ 1 

V (z(t)) 1 −b ≥ V (z(t i )) 
1 −b − 
2 (1 − b)(t − t i ) 

for V (z(t)) > 1 (10) 

here, 
1 = c 1 ε, 
2 = c 2 ε and t i < t < t i +1 . 

roof. Considering Assumption 1 , we get ˙ V (z(t) , ξ (t)) ≤
c 1 V 

a (z(t)) − c 2 V 
b (z(t)) + γ (‖ ξ (t) ‖ ) . Now, employing event

riggering rule (9) , for t i < t < t i +1 , we have γ (4 ‖ ξ (t) ‖ ) ≤
 1 (1 − ε) V a (z(t)) + c 2 (1 − ε) V b (z(t)) . 

As we know γ is a K ∞ 

function, we get 

˙ 
 (z(t) , ξ (t)) ≤ −c 1 V 

a (z(t)) − c 2 V 

b (z(t)) 

+ c 1 (1 − ε) V 

a (z(t)) + c 2 (1 − ε) V 

b (z(t)) 

≤ −c 1 εV 

a (z(t)) − c 2 εV 

b (z(t)) (11) 

o, from (11) we can say that system (2) is fixed-time ISS. 

Furthermore, from (11) , we can note that ˙ V (z(t) , ξ (t)) ≤
c 1 εV a (z(t)) if V (z(t)) ≤ 1 and 

˙ V (z(t) , ξ (t)) ≤ −c 2 εV b (z(t)) if

 (z(t)) > 1 . 
3 
So, for V (z(t)) ≤ 1 it follows: ∫ V (z(t)) 

V (z(t i )) 

dV 

V 

a 
≤

∫ t 

t i 

−c 1 εdt 

V (z(t)) 1 −a − V (z(t i )) 
1 −a 

1 − a 
≤ −c 1 ε(t − t i ) 

imilarly, for V (z(t)) > 1 it follows: ∫ V (z(t)) 

V (z(t i )) 

dV 

V 

b 
≤

∫ t 

t i 

−c 2 εdt 

V (z(t)) 1 −b − V (z(t i )) 
1 −b 

1 − b 
≤ −c 2 ε(t − t i ) 

or V (z(t)) < 1 , V (z(t)) 1 −a ≤ V (z(t i )) 
1 −a − 
1 (1 − a )(t − t i ) . 

Since a < 1 , so from (10) we can conclude V (z(t)) < V (z(t i )) . 

Similarly, for b > 1 we can say that V (z(t)) < V (z(t i )) . �

emark 2. The event-triggered mechanism (9) is almost al- 

ays Zeno free, since for t i < t < t i + 1 we have γ (4 ‖ ξ (t) ‖ ) >
 1 (1 − ε) V a (z(t)) + c 2 (1 − ε) V b (z(t)) . It is known that any event-

riggered mechanism for which error is restricted to satisfy 

(‖ ξ‖ ) ≤ Kχ(z) is Zeno free wherever γ and χ−1 function are 

ipschitz [23] . Since the functions γ , V −a and V −b are Lipschitz 

lmost everywhere, the event triggering mechanism (9) does not 

how Zeno behavior almost everywhere. 

.2. Fixed-time stability under DoS attacks 

Here, we have discussed the event-triggered fixed-time ISS 

nder DoS attacks for the considered networked control system 

hown in Fig. 1 . At the beginning, modeling of DoS is carried 

ut along with some sampling scheme under the event-triggered 

echanism to ensure the fixed-time ISS. The DoS occurrence’s 

ime sequences are represented by { χn } n ∈ N 0 . The time duration 

f n th DoS attacks is represented by τn ∈ R 0 for which communi- 

ation is interrupted. So, the n th DoS time interval is denoted by 

 n := χn ∪ [ χn , χn + τn ) , which has a length τn ∈ R ≥0 
. In the lack of

ommunication due to DoS, the actuator produces the input signal 

hich was received just before the DoS occurrence. 

Now, in the presence of DoS input is generated based on the 

ast updated control signal. If, t, ι ∈ R ≥0 with t ≥ ι let’s s (ι, t) :=
 n ∈ N 0 H n ∩ [ ι, t] as the set of time instants for which communi-

ation is interrupted and T (ι, t) := [ ι, t ] \ s (t ) as the set of time

nstants for which communication is allowed. Similarly, the con- 

rol input applied to the plant represented as u (t) = φ(z(t ) , ξ (t ))

here for every t ∈ R ≥0 , i (t) denotes the latest successful control 

pdate i.e. 

 (t) := 

{
−1 if T (ι, t) = 0 

sup { i ∈ N 0 | t i ∈ T (ι, t) } , otherwise 

he main aim here is to obtain the condition on DoS frequency 

n such a manner that system (2) can withstand before fixed-time 

tability lost. The following assumptions are made on DoS fre- 

uency and DoS duration through the time interval [ ι, t) . 

ssumption 3 (DoS Frequency) . There exist τD ∈ [0 , ∞ ) and η ∈
0 , ∞ ) in such a way 

 (t) ≤ η + 

t 

τD 

, ∀ t ≥ 0 (12) 

ere, n (t) and τD represents the count of OFF/ON transitions and 

he bound on average dwell-time respectively. So the frequency of 

FF/ON DoS transitions can be upper bounded by 1 
τD 

. 

ssumption 4 (DoS Time-Duration) . There exist � ∈ R ≥0 and T > 1 

n such a way 

 s (t) | ≤ � + 

t 
, ∀ t ≥ 0 (13) 
T 
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T represents the average DoS time duration. 

Taking Assumptions 1 –4 into consideration, the following event 

riggering rule is proposed. 

ase 1. t i is not in DoS attacks interval, then 

 i +1 = inf { t > t i | γ (4 ‖ ξ (t) ‖ ) > c 1 (1 − ε) V 

a (z(t)) 

+ c 2 (1 − ε) V 

b (z(t)) } (14) 

where ε ∈ (0 , 1) and ξ (t) = z(t i ) − z(t) . 

ase 2. t i is in DoS attacks interval, then 

 i +1 = t i + �i (15) 

where �i represents the inter-event interval such that �1 ≤
i ≤ �2 , here �1 > 0 is lower bound and �2 > 0 is the upper 

ound of �i . 

emark 3. Zeno phenomenon is referred as infinite numbers of 

iscrete transition in a finite interval of time [14] . So, study of 

eno-free case is very important for event-triggering and DoS at- 

ack case. Here, the event-triggering mechanism defined by Case 

 and Case 2 does not show Zeno behavior almost every point. 

ince the sampling during DoS attacks [Case 2] is lower bounded 

y �1 > 0 . This along with the Remark 1 imply that the event-

riggering mechanism is Zeno-free almost everywhere. 

emma 1. The system (1) with control law u (t) = φ(z(t i (t) )) ∀ t ∈
 t i , t i + 1) and if t i is in DoS attacks interval then under the proposed

vent triggering rule (15) , it follows 

For V (z(t)) ≤ 1 

 (z(t)) 1 −a ≤ V (z(t i (t i )+1 )) 
1 −a + (1 − a )
3 (t − t i (t i )+1 ) (16) 

nd for V (z(t)) > 1 

 (z(t)) 1 −b ≥ V (z(t i (t i )+1 )) 
1 −b + (1 − b)
4 (t − t i (t i )+1 ) (17) 

here t i (t i )+1 represents the first sampling time instant that can be 

ossible and in the DoS time interval, 
3 = c 1 (1 − ε) + 2 μ1 , 
4 =
 2 (1 − ε) + 2 μ2 , t i (t i )+1 < t < t i +1 and V satisfy Assumption 1 . 

roof. Let a successful data communication event instant i (t i ) take 

lace before t i which is in DoS attacks interval and consider the 

q. (15) , it follows: 

‖ ξ (t) ‖ ≤ 1 

4 

γ −1 (c 1 (1 − ε) V 

a (z(t)) + c 2 (1 − ε) V 

b (z(t))) , 

t i (t i ) ≤ t ≤ t i (t i )+1 

rom the continuity of Lyapunov function V , z(t) and ξ (t) at t i (t i )+1 

e can write: 

 z(t i (t i )) ‖ ≤ ‖ z(t i (t i )+1) ‖ + ‖ ξ (t i (t i )+1) ‖ 

≤ ‖ z(t i (t i )+1 ) ‖ + 

1 

4 

γ −1 (c 1 (1 − ε) V 

a (z(t i (t i )+1 )) 

+ c 2 (1 − ε) V 

b (z(t i (t i )+1 ))) 

≤ 1 

4 

γ −1 (μ1 V 

a (z(t i (t i )+1 )) + μ2 V 

b (z(t i (t i )+1 ))) 

+ 

1 

4 

γ −1 (c 1 (1 − ε) V 

a (z(t i (t i )+1 )) 

+ c 2 (1 − ε) V 

b (z(t i (t i )+1 ))) (18) 

ince γ ∈ K ∞ 

function and for any p, q ≥ 0 we know γ (p + q ) ≤
(2 p) + γ (2 q ) , for ξ (t) = z(t i (t i ) 

) − z(t) in time interval t i (t i ) 
≤ t ≤

 i (t i )+1 , we get 

(‖ ξ (t) ‖ ) ≤ γ (2 ‖ z(t i (t i ) ) ‖ ) + γ (2 ‖ z(t) ‖ ) 

≤ ((c 1 (1 − ε) + μ1 ) V 

a (z(t i (t i )+1 )) 

+(c 2 (1 − ε) + μ2 ) V 

b (z(t i (t )+1 )) 
i 

4 
+ μ1 V 

a (z(t)) + μ2 V 

b (z(t)) 

ow for V (z(t)) ≤ 1 we can say that, 

˙ 
 (z(t)) ≤ ((c 1 (1 − ε) + μ1 ) V 

a (z(t i (t i )+1 )) + (μ1 − ε) V 

a (z(t)) 

≤ 
3 max { V 

a (z(t i (t i )+1 )) , V 

a (z(t)) } (19) 

nd for V (z(t)) > 1 we can say that, 

˙ 
 (z(t)) ≤ ((c 2 (1 − ε) + μ2 ) V 

b (z(t i (t i )+1 )) + (μ2 − ε) V 

b (z(t)) 

≤ 
4 max 
{

V 

b (z(t i (t i )+1 )) , V 

b (z(t)) 
}

(20) 

or t i (t i )+1 ≤ t < t i +1 . Hence, to solve the differential Eqs. (19) and 

20) , we consider ˙ v (t) = 
3 max { V a (z(t i (t i )+1 )) , V 
a (z(t)) } for

 i (t i )+1 ≤ t < t i +1 with v (t i (t i )+1 ) = V (z(t i (t i )+1 )) as the initial condi-

ion, we obtain 

 (t) = (v 1 −a (t i (t i )+1 ) + 
3 (t − t i (t i )+1 )) 
1 

1 −a 

rom comparison lemma, one can note that V (t) ≤ v (t) which fur- 

her results to (16) . Similarly for the case of V (z(t)) > 1 we can

lso calculate: 

V (t) ≤
(
V 

1 −b (t i (t i )+1 ) + 
4 (t − t i (t i )+1 ) 
) 1 

1 −b 

 (t) 1 −b ≥
(
V 

1 −b (t i (t i )+1 ) + 
4 (t − t i (t i )+1 ) 
)

 (t) 1 −b ≥
(
V 

1 −b (t i (t i )+1 ) + (1 − b)
4 (t − t i (t i )+1 ) 
)

�

emark 4. Lemma 1 determines the Lyapunov function’s diver- 

ence rate. When the DoS is present and there is no successful 

pdation of control input, the Lyapunov function can rise, the rate 

f which is upper bounded by (16) and (17) . 

Assume λ(t) denotes the union of the time-intervals where 

 (z(t)) may grow. Now, define λc (t) = [0 , t) \ λ(t) where λc (t) is

he complement of λ(t) in [0 , t) . Taking Assumptions 3 and 4 into

onsideration, we can obtain [4] : 

 λ(t) | ≤ � + 

t 

T 
+ �2 

(
η + 

t 

τD 

)
(21) 

rom Theorem 1 and Lemma 1 , we also obtain following using (10), 

16) and (17) : for V (z(t)) ≤ 1 

 

1 −a (z(t)) ≤ V 

1 −a 
0 + (1 − a )(
3 | λ(t) | − 
1 | λc (t) | ) (22) 

nd for V (z(t)) > 1 

 

1 −b (z(t)) ≥ V 

1 −b 
0 + (1 − b)(
4 | λ(t) | − 
2 | λc (t) | ) (23) 

rom the obtained Eqs. (22) and (23) , we can see that Lyapunov 

unction may increase due to DoS terms, which causes the insta- 

ility of the system. 

The main aim here is to give the conditions on DoS frequency 

s well as time duration of DoS attacks in such a way that the 

ystem (2) remains fixed time input-to-state stable. 

heorem 2. The system (1) under the proposed event triggering rule 

ase 1 and Case 2, input u (t) = φ(z(t i (t) ) , ξ (t)) and with Assump-

ions 2 –4 under DoS attacks remains fixed time ISS, if the following 

onditions satisfy: 

1 

T 
+ 

�2 

τD 

< 

c 1 ε

c 1 + 2 μ1 

1 

T 
+ 

�2 

τD 

< 

c 2 ε

c 2 + 2 μ2 

(24) 

roof. Consider the Eq. (21) , from which we can obtain 


3 | λ(t) | − 
1 | λc (t) | = (c 1 + 2 μ1 )(� + �2 η) 

+ t 

((
1 

T 
+ 

�2 

τD 

)
(c 1 + 2 μ1 ) − c 1 ε

)
= ρ1 − ζ1 t 
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Fig. 2. (a) State evolution without DoS for z 0 = 2 , where Blue bars are event trig- 

gering instances, (b) u (t) without DoS, (c) ξ (t) without DoS, (d) State evolution 

without DoS for different initial conditions (z 0 ) . From the obtained result we can 

conclude that system (26) is fixed-time ISS with T max = 8 . 75 s. 

w

N

V

S

Fig. 3. (a) State evolution with DoS for z 0 = 2 , where Blue bars are event triggering 

instances and vertical red stripes are time intervals of DoS, (b) u (t) with DoS, (c) 

ξ (t) with DoS, (d) Inter-event interval with DoS. From the obtained result we can 

conclude that system (26) remains fixed-time ISS with 75% DoS. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

S

V

t

V

H  

1

V

t

f

o

4

s

z


4 | λ(t) | − 
2 | λc (t) | = (c 2 + 2 μ2 )(� + �2 η) 

+ t 

((
1 

T 
+ 

�2 

τD 

)
(c 2 + 2 μ2 ) − c 2 ε

)
= ρ2 − ζ2 t (25) 

here, 

ζ1 := c 1 ε −
(

1 

T 
+ 

�2 

τD 

)
(c 1 + 2 μ1 ) 

ρ1 := (c 1 + 2 μ1 )(� + �2 η) 

ζ2 := c 2 ε −
(

1 

T 
+ 

�2 

τD 

)
(c 2 + 2 μ2 ) 

ρ2 := (c 2 + 2 μ2 ) ( � + �2 η) 

ow for V (z(t)) > 1 we can write 

 

1 −b (z(t)) ≥ V 

1 −b 
0 + (1 − b)(ρ2 − ζ2 t) 

o, 

V 

1 −b + (1 − b)(ρ2 − ζ2 t) ≤ 1 
0 

5

(V 

1 −b 
0 − 1) ≤ (b − 1)(ρ2 − ζ2 t) 

(V 

1 −b 
0 

− 1) 

b − 1 

≤ (ρ2 − ζ2 t) 

t ≤ ρ2 

ζ2 

+ 

(V 

1 −b 
0 

− 1) 

(b − 1) ζ2 

ince V 1 −b 
0 

< 1 , for t ≥ ρ2 
ζ2 

+ 

1 
(b−1) ζ2 

we can always say that, 

 (z(t)) ≤ 1 , making it true for any arbitrarily large initial condi- 

ion. 

In addition, for V (z(t)) ≤ 1 

 

1 −a (z(t)) ≤ V 

1 −a 
0 + (1 − a )(ρ1 − ζ1 t) 

ere, 0 < (1 − a ) < 1 , and the maximum value of V (z(t)) could be

. Hence, V 1 −a (z(t)) ≤ 1 + (1 − a )(ρ1 − ζ1 t) , which guarantees that 

 (z(t)) = 0 for t ≥ ρ1 
ζ1 

+ 

1 
(1 −a ) ζ1 

. 

So, V (z(t)) = 0 for all 

 ≥ T max = 

ρ1 

ζ1 

+ 

1 

(1 − a ) ζ1 

+ 

ρ2 

ζ2 

+ 

1 

(b − 1) ζ2 

or any initial condition z 0 ∈ R 

n , where T max is the maximum time 

f convergence. �

. Illustrative example 

In this section the efficacy of the proposed method is demon- 

trated by considering the following numerical example. 

˙ 
 (t) = z(t) + u (t) − | z(t) | 0 . 5 sign (z(t)) − | z(t) | 2 sign (z(t)) (26) 
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Fig. 4. Finite-time stabilization [6] without DoS attack (a) state evolution without 

DoS for z 0 = 2 , where Blue bars are event triggering instances, (b) u (t) without DoS, 

(c) ξ (t) without DoS, (d) State evolution without DoS for different initial conditions 

(z 0 ) . 

T

[  

−  

t

V

i

t  

2  

t  

1  

Fig. 5. Finite-time stabilization [6] with DoS attack (a) State evolution with DoS for 

z 0 = 2 , where Blue bars are event triggering instances and vertical red stripes are 

time intervals of DoS, (b) u (t) with DoS, (c) ξ (t) with DoS, (d) Inter-event interval 

with DoS. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

A

e

 

a

3  

t

c  

a

t

o

H

n  

o

e

b

t

r

he solution of (26) can be defined in the sense of Polyakov 

18] . Now, under the control law u (t) = φ(z(t ) , ξ (t )) = −2 z(t i (t) ) =
2 z(t) − 2 ξ (t) , choosing the Lyapunov function as V = z 2 (t) and

aking time derivative of V , we get: 

˙ 
 = 2 z(t) ̇ z (t) 

= 2 z(t)(z(t) + u (t) − | z(t) | 0 . 5 sign (z(t)) − z(t) 2 sign (z(t))) 

= 2 z(t)(−z(t) − 2 ξ (t) − | z(t) | 0 . 5 sign (z(t)) − z(t) 2 sign (z(t))) 

= − 2 z(t) 2 − 4 z(t) ξ (t) − 2 | z(t) | 1 . 5 − 2 | z(t) | 3 
≤ − 2 z(t) 2 + 2 z(t) 2 + 2 ξ (t) 2 − 2 | z(t) | 1 . 5 − 2 | z(t) | 3 
= − 2 V 

0 . 75 − 2 V 

1 . 5 + 2 ξ (t) 2 

So, we can say that the Lyapunov function of the form (8) ex- 

sts which concludes that the system (26) is fixed-time ISS with 

he parameters c 1 = 2 , c 2 = 2 , a = 0 . 75 , b = 1 . 5 and γ (‖ ξ (t) ‖ ) =
 ξ (t) 2 . Now for simulation, taking for instance ε = 0 . 35 the event-

riggering condition (9) is obtained as t i +1 = inf { t > t i | 32 ξ (t) 2 >

 . 3 | z(t) | 1 . 5 + 1 . 3 | z(t) | 3 } . The obtained results are shown in Fig. 2 .
6

dditionally, under DoS attacks the performance of the designed 

vent-triggering is proposed next. As per Definition 2 ψ 1 (‖ z‖ ) = 

1 
2 z 

2 and ψ 2 (‖ z‖ ) = 3 z 2 can be selected. Now the value of μ1 = 35

nd μ2 = 30 are selected so that they satisfy Assumption 2 i.e, 

2 ‖ z‖ 2 ≤ μ1 ψ 

0 . 75 
1 

(‖ z‖ ) + ψ 

1 . 5 
1 

(‖ z‖ ) . In order to obtain the condi-

ion on DoS frequency and time-duration �i = �2 = 0 . 1 can be 

hosen so that it satisfies (24) , which leads to 1 
T + 

0 . 1 
τD 

< 0 . 01129

nd 

1 
T + 

0 . 1 
τD 

< 0 . 00972 . By tuning the parameters c 1 , c 2 , μ1 , μ2 , ε

he bound (24) can be changed. So by selecting appropriate values 

f the parameter designer can obtain the convergence as required. 

ere for simulation we take random DOS attacks with frequency 

 (4) = 7 and time-duration | s (4) | 
 3 in time interval of [0,4] and

btained results are shown in Fig. 3 . 

The proposed stabilization method is assessed and shown to be 

ffective by comparing with the existing results on finite-time sta- 

ilization under DoS [6] . The structure and design parameters of 

he existing finite-time method are detailed in Reference [6] . The 

esults are obtained considering the same DoS interval as of pro- 
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osed case. Fig. 4 shows the simulation results for the existing 

nite-time method without the DoS attack. While Fig. 4 shows the 

tate evolution, control input, error signal and inter-event interval 

f the closed-loop system under DoS attack. From the obtained re- 

ults, it can be observed that although the limited time conver- 

ence is obtained with the scheme proposed in Doostmohamma- 

ian and Meskin [6] , however the convergence time still depends 

n the initial condition of the states variable. which may results in 

eteriorating the entire performance of the closed-loop system. On 

he other-hand with the proposed control scheme one can guaran- 

ee the convergence of the state to the origin irrespective of the 

nitial conditions, which is notorious feature of the proposed con- 

rol scheme compared to existing [6] . 

. Conclusion 

This paper highlights the notion of fixed-time ISS for a net- 

orked control system under DoS attacks. The proof of stability 

s given for both the cases when there is no DoS and when there

s DoS. A numerical example is simulated for the different initial 

onditions of the state of the system. It is shown that under what 

ondition on DoS frequency and time duration the fixed-time ISS 

f the closed-loop system is well preserved by the designed con- 

rol law. 

For future scope directions in field of networked control with 

ifferent types of DoS attacks along with disturbances and dy- 

amic event-triggering can be considered. 
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