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APPENDIX-‘A’: OPTIMIZATION TECHNIQUES  

 

The search strategies for this research work have been implemented using GA and PSO 

algorithms. The fundamental reason for selecting a technique is based on its simplicity, 

ease of implementation, and adaptability for the problem at hand. 

A1.  Genetic Algorithm (GA) 

A1.1 Basic GA:  

The concept of genetic algorithm (GA) was introduced for the first time by Holland 

[Holland (1975)]. GA is a “global” numerical optimization method, patterned on the basis 

of natural process of genetic recombination and evaluation. It encodes each parameter into 

a binary sequence, called a gene. A set of genes is called a chromosome. These 

chromosomes undergo natural selection mating and mutation to arrive at the final optimal 

solution.  The algorithm begins with a large list of random chromosomes. The fitness 

functions are evaluated for each chromosome. The fitness of this chromosome is the 

maximum relative SLL of its associated far-field pattern which is minimized during the 

search. Chromosomes are ranked from most fit to least fit according to their respective 

fitness values. Unacceptable chromosomes are discarded. Genes that survive become 

parents and by swapping some of their genetic properties, two new offspring can be 

produced. The total number of chromosomes remains constant after each iteration.  

Random mutations are performed for a small percentage, typically of the order of 1% of 

bits in the list of chromosomes mutating per iteration. Mutation does not occur in the final 
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iteration. The implementation of the algorithm has been done using MATLAB ver.8 which 

involves the following steps: 

o Initial population of  N number of chromosomes are randomly generated which 

consists of strings of binary digits for thinned antenna array and variable inter-

element spacings over the range 0.5λ - 1.5λ for non-uniformly or randomly spaced 

array.  

o Fitness or cost functions for all the chromosomes are computed and they are ranked 

from most fit to least fit according to their respective fitness or cost values. 

Unacceptable 50% chromosomes are discarded in the current population.  

o Chromosomes that survive become parents and by swapping some of their genetic 

properties, two new offsprings are produced. Random mutations are performed for 

small percentage of genes (e.g. 1% of the genes).  

o The above steps were repeated multiple times to obtain the optimal configurations of 

thinned/non-uniformly spaced antenna arrays corresponding to the lowest possible 

PSLL. 

A1.2   Modified Binary Coded GA (MBC-GA) 

The basic GA was developed by Holland [Holland (1975)], and further extended to 

functional optimization by many researchers in this framework including Goldberg 

[Goldberg et al. (1989)] and Davis [Devis (1991)]. This algorithm or other global 

optimization techniques, such as particle swarm optimization (PSO), differential evolution 

(DE) algorithm, and ant colony optimization (ACO) are very common in behaviour, and 

simply employing them to any optimization problem would not bring forth the desired 
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solution. In GA, size of solution space, the type of crossover, and the mutation rate have 

significant effect on search performance. Towards this end, many researchers including 

Goldberg et al. [Goldberg et al. (1989)] suggested that a solution space that is 2 to 3 times 

larger than the total chromosome size (total number of bits) should be preferred, while 

others, such as Weile  et al. [Weile et al. (1997)] suggested that  large population should be 

employed.  Therefore, a wise selection of algorithm control parameters and operators, the 

ones which highly conform to specific problem, is really necessary for efficacious 

execution [Goldberg et al. (1989), and Goldberg et al. (1991)]. Taking the aforesaid aspects 

into consideration and inferring the motivation from the affirmative characteristics of 

classical GA, a modified binary coded GA (MBC-GA) is investigated by the author.  

Particularly, the MBC-GA is investigated to accomplish following improvements, which 

would make it a more efficient synthesis tool compared to state-of-the-art thinning 

techniques.  

o An innovative robust randomization strategy for crossover operation which ameliorates 

convergence rate by allowing for adequate amount of randomization and diversity to 

the solution space 

o An unexampled systematic mutation strategy that leads the MBC-GA much dynamism, 

soundness, and rapidity in attaining desired solution 

o Higher computational efficiency  

The novel advancements as described below in Sub-sections are introduced to 

enhance the exploration capability and tractability of the GA in attaining a fairly good 

estimation of PSLL at less computational complexity.  
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A1.2.1 Crossover and Mutation Operations for the Synthesis of TLA 

Arrays 

The crossover operation is performed to interchange the gene content amongst 

chromosomes, which permits us to ameliorate the new generation (offspring production) 

and convergence rate of optimization process [Devis (1991), and Goldberg et al. (1991)]. 

Several strategies are reported in the literature to execute crossover operation. Mutation is 

carried out to bring forth some random changes in the solution space to prevent local trap 

for search algorithm [Goldberg et al. (1991), Man et al. (1999)]. This is simply practiced by 

exchanging the binary bit at the mutating position. It is to be mentioned that with the proper 

utilization of these basic genetic operators, it is possible to ameliorate the search 

competency of optimization technique [Devis (1991)].   

Towards this perspective, an innovative robust randomization strategy for crossover 

operation and an unexampled systematic mutation strategy as described below in detail are 

employed to enhance the solution quality in terms of PSLL reduction, computational 

complexity, and stability. 

A mathematical relation given in Eq. (a.1) is formulated which generates two random 

numbers within the given array size.  

       = random (I, 2),    
    

 
                                     

where CnTLA is the random variable used to generate two random numbers and      is total 

number of genes (columns) in the parent chromosome. During operation, genes within 

these randomly generated points are exchanged in selected parent chromosomes. 

It was assumed that       and         were two parent chromosomes, which took 

take part in generation of new chromosomes called offspring. After performing crossover 
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operation, the offspring OiTLA and OiTLA+1 are produced through the expressions listed in 

Eqs. (a.2) and (a.3) as:   

                              

                                                       
          

                                  

                                                      
   (a.3) 

where n=1, 2, 3......     . 

The purpose of mutation operation is that of restoring the left out or unexplored 

genetic material in the solution space to avoid the untimely convergence. It indiscriminately 

changes one or more gene of selected chromosome, thereby enhancing the operational 

changeability of the solution space. To achieve this, the author investigated an unexampled 

systematic mutation strategy as explained below in detail. 

The mutation probability is expressed by equation given below in Eq. (a.4)  

                                                                           

       is total number of newly generated chromosomes and       is the number of 

offsprings which get selected with a probability of 0.0025 to undergo mutation operation. 

The chromosomes                    which get selected from        are determined by 

the formula given in Eq. (a.5). 

                                                 (a.5) 

In the                 offsprings undergoing mutation operation, the gene which is 

randomly mutated is determined by using Eq. (a.6) 
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               (a.6) 

A1.2.2   Crossover and Mutation Operations for the Synthesis of TPA 

Arrays 

In this case, extending the concepts of crossover operation as described before in sub-

section A1.2.1 for TLA arrays, a random variable (        used to generate two random 

numbers to execute the crossover operation in TPA arrays is given as  

      = random (L, 2),    
    

 
                    (a.7) 

The generation of new chromosomes called offspring are given as   

        
                                                               

                                                                                    

        

        = 
                                                                   

                                                                                       

         

where      is total number of rows and       is total number of columns in UE-TPA array. 

The mutation is carried out using the expression given below in Eq. (a.10) 

                                                                  (a.10) 

where       is the number of chromosomes that get selected from the entire newly 

generated offspring .i.e.        which has to undergo mutation. The chromosomes, which 

get selected are given as: 

                                 ,                  (a.11) 

From each of the selected chromosomes, the gene that has to be mutated is found out 

through the point of intersection of the randomly selected row and column as 
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              (a.12) 

A1.2.3 Implementation of the Proposed MBC-GA 

The execution of the MBC-GA algorithm is done using MATLAB ver. 8.0, which performs 

following steps as empathized from the flowchart depicted in Fig. a-1.  

Define GA parameters

( Gene, Chromosome.. )

Calculate the fitness values associated with each

chromosomes. Sort the chromosomes based on the

fitness values (Most fit to least fit)

Generate random population of chromosomes

Discard 50% of the chromosomes based on their

fitness values. The population is crossed-over to

generate Off-springs. The new population is mutated

Terminate

No

Save the most fit gene

among the chromosomes

  If New Fitness

value is  better than

previous value

Replace the existing fit gene
with newly found fit gene

Yes

Yes

No

No

If iteration=1

If iteration=last

Yes

 

Fig. a-1: Flow chart of MBC-GA. 

 

o The commencing population of chromosomes is randomly generated wherein each 

chromosome consists of N- and M×N-genes in linear and planar arrays respectively. 

Each gene is related to amplitude excitation of individual elements in an array i.e. gene 

having value ‘1’ means that the element is ‘ON’ or ‘active’  and  ‘0’ means that is 

‘OFF’ or ‘inactive’.  
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o Fitness functions for all the chromosomes are calculated as defined for problem at hand 

and they are graded from most appropriate to least appropriate in accordance with their 

respective fitness values. The roulette wheel selection is employed where the more 

appropriate chromosomes have more opportunity to get opted and permitted to mate.  

o The opted chromosomes are regarded as parents to generate new chromosomes, known 

as offspring by swapping some of their genetic properties using crossover process as 

explained in above sections A1.2.1 and A1.2.2  

o The repopulated offspring are mutated where mutation process reported before in 

sections A1.2.1 and A1.2.2 is followed to ensure that the algorithm is not trapped in the 

same solution space. 

o The foregoing steps are repeated multiple times to determine the optimal 

configurations of thinned/non-uniformly spaced linear or planar antenna arrays for 

single trials. Such few trials are performed to examine the stability. 

A1.3   Improved  Binary Coded  GA (IBc-GA)  

GA offers several advantages over other optimization techniques which have made it 

immensely popular to solve many electromagnetic problems. These include its simple 

implementation, its practicability when the population is quite large and large number of 

variables is associated, and randomizations of operators which contribute diversity to the 

solution space ensuring ameliorate exploration [Man et al. (1999)]. Keeping 

aforementioned aspects in view and deducing the motivation from the favorable properties 

of standard GA, an improved binary coded GA designated as IBc-GA is investigated by the 

author. Novel advancements as described below are introduced to enhance the exploration 

capability and tractability of the GA in attaining fairly good estimation of PSLL at 
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affordable computational complexity. It is felt that through the utilization of such 

advancements, IBc-GA can be made a more efficient synthesis tool as compared to 

standard GA as well as other synthesis techniques. 

Towards this objective, we investigated an improved genetic algorithm based 

optimization technique designating as IBc-GA in which following advancements are 

introduced to make it more efficient synthesis tool as compared to standard GA and other 

synthesis techniques available in literature. 

o A novel multi-segment chromosome arrangement which enables the IBc-GA with 

more degree of freedom and less complexity during optimization through the 

reducing number of variables for optimization  

o A new robust randomization approach for crossover operation, which improves the 

offspring production and convergence rate of maximization process by rendering 

sufficient amount of randomization and diversity to the population  

o A novel systematic mutation approach that makes the IBc-GA more vigorous, 

efficacious, and rapid in attaining good quality solution 

A1.3.1   Novel Arrangement of Chromosomes 

A multi-segment based chromosome arrangement consisting of     -genes as shown in 

Fig. a-2 is considered for the present study. A portion of chromosomes, which do not take 

part in optimization, is indicated with black color genes while the segment of 

chromosomes, which are involved in optimization, is shown with gray color genes. This 

implies that the thinning operation happens only on the elements near the periphery without 

disturbing the core of the antenna array. It is considered due to the fact that for better 

control of PSLL, central region of array should have uniform element density and the edges 
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of the array should have variable density. In accordance with this, application of 

optimization process is concerned with the elements in the outer variable density region of 

the array. The mathematical representation of such chromosomes’ arrangement can be 

formulated by the expression given below in Eq. (a.13).  

                                                                                          

where    is the i
th

 chromosome,      is thinning point along X-direction,        thinning 

point along Y-direction. N and M are respectively the total number of elements along X- 

and Y-axes of the array.  Such thinning points are used to separate two segments in X-and 

Y-directions. It can be interpreted that upto thinning points from centre, elements’ density 

is fixed while beyond thinning points towards edges, elements’ density varies and thinning 

operation is applied only in this region. 
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Fig. a-2:   A multi-segments based      genes chromosome arrangement representing 

one quadrant (X-positive and Y-positive plane) of the 2N×2M-elements TPA array.  

It was observed after several numerical simulations that depending upon the array 

size, the best solutions are obtained when the thinning point values (       and      ) lie in 

the ranges            ≤  0.8 N  and            ≤ 0.8M.   For smaller size arrays, these 

values tend  towards minimum  value  of  aforementioned  limit,  however,  for  larger  size 

arrays , they tend towards the maximum value of limit.  This is probably due to the fact that 
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if the array size is smaller, optimization algorithm has got less degrees of freedom to lower 

the PSLL and as the array size   increases, the complexity increases for lowering the PSLL. 

Therefore, through the implementation of such chromosome arrangement in the proposed 

IBc-GA optimizer, it is possible to reduce the number of elements involved in optimization 

and successively the associated computational complexity. 

A1.3.2 Crossover and Mutation Operations 

It is well known that the crossover operator is mainly accountable to search for an optimum 

solution during optimization. It involves exchange of genetic material between parents 

chromosomes to generates offspring i.e. child chromosomes and takes into account 

betterment in offspring production and convergence rate of the optimizer. Towards this 

end, a new robust randomization approach for crossover operation was employed, which is 

described below in details. 

It is assumed that    ,      and       are three parents, which are selected to mate 

and produce new generations referred to as children. Variable    was used to generate two 

random numbers for performing the crossover operation given as 

                   
 

 
                                                                       

The selected parents undergo crossover operation as per formulations listed below in 

Eqs. (a.15), (a.16) and (a.17) to generate new chromosomes called children.  
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where ‘r’ is a random variable, which represents the rows being selected to retain from the 

parent chromosomes. The newly generated offspring are again sorted in descending order 

based on their fitness values. Then 75% of the newly generated offspring having low 

fitness are discarded and the rest 25% are appended to the 50% parent population having 

the best fitness values.  

The purpose of mutation operation is that of restoring lost or unexplored genetic 

material in the solution space to avoid the premature convergence of GA. It arbitrarily 

alters one or more component of selected chromosome in order to increase the structural 

unevenness of the population. In this study, a novel systematic mutation operation as 

explained below in detail was introduced to meet the aforementioned requirements. 

The mutation operation is carried out using the probability given below in Eq. (a.18). 

                                                                           

where     is the number of chromosomes that get selected from the newly generated 

children chromosomes, and    is the total number of chromosomes consisting of best fit 

newly generated children chromosomes and best fit previously stored parent chromosomes. 

A chromosome is selected at random from the newly generated population to undergo 

mutation operation which is given by Eq. (a.19) 

                  
                       

                                   

Since the chromosomes are arranged in descending order based on fitness values, the top 

two chromosomes having the best fit values are not considered for mutation. The rest of the 

chromosomes in the population participate in the mutation process. From each of the 

selected chromosomes      , mutation is performed on the gene found out by the point of 

intersection of the randomly selected row and column by 
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where      represents the mutation point.  

The mutation point or the gene that has to be mutated is selected randomly after each 

iteration i.e. after every iteration, a new chromosome and a new gene in that chromosome 

are chosen which is mutated during optimization process.  Therefore, by implementing this 

systematic mutation operation, it is possible to make proposed IBc-GA more vigorous, 

statistically effectual and speedy in convergence. The IBc-GA is implemented using 

MATLAB ver. 8.0 which involves the following steps as deduced from the flowchart 

shown in Fig. a-3 below.  

o To commence with the algorithm, a population of few chromosomes is generated 

randomly, where every chromosome consists of M×N number of genes. Each gene 

possesses an amplitude excitation in an array i.e. gene having excitation ‘1’ means 

that the element is ‘made capable of radiating’ and ‘0’ means that it is ‘made 

incapable of radiating’.  

o For each individual chromosome, fitness values, using fitness function defined for the 

problem at hand are calculated, and chromosomes are arranged from most fit to least 

fit according to their individual fitness values. The roulette wheel selection is used 

where the better fit chromosomes are chosen over lesser fit chromosomes for further 

operations. 

o The selected chromosomes are called as parents, which generate new chromosomes, 

known as offsprings or children by replacing some of their genetic properties with 
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each other using crossover process as explained before in Eqs. (a.15), (a.16), and 

(a.17).  

o The repopulated offsprings undergo mutation process as described in Eqs. (a.18), 

(a.19), and (a.20). This is followed to ensure that the algorithm does not get stuck in 

the local minima. Hence, it improves the global search ability of the algorithm. 

o The aforementioned steps are iterated multiple times in each trial and few such 

independent trials are used to obtain the desired solution.  

Define the Parameters

( Gene, Chromosome.. )

 Fitness values are calculated for each

Chromosomes. The Chromosomes are sorted based

on the Fitness values (Most fit to least fit)

Generate Random Population of

Chromosomes

 Half population containing chromosomes

with are least fit are omitted.

Terminate

No

Save that chromosome
as final gene.

  Evaluate fitness and
if New Fitness value

obtained is better

Replace the existing final gene
with newly generated chromosome

having best fitness value

Yes

Yes

No

NoIf
iteration=

1

If
iteration=

last

Yes

Half population containing chromosomes which

are most fit are retained and Crossed-over to

generate Off-springs.

The offsprings are appended to the bottom

half of existing half population and the

population is Mutated

 

Fig. a-3:  Flow chart of the proposed  IBc-GA. 
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A2.  Particle Swarm Optimization (PSO) 

A2.1 Basic PSO   

The particle swarm optimization (PSO) is a nature based probabilistic optimization 

technique, which emulates the social behaviour of the birds called as particles [Kennedy 

and Eberhart (1995)]. Entire collection of particles is called swarm. During the search, each 

particle adapts its position according to its own experience and the experience of 

neighbouring particles, making use of the best position experienced by itself (“personal 

best’’) and its neighbours (“global best’’). The basic PSO technique updates the velocity 

and position of each particle according Eqs. (a.21) and (a.22) respectively [Wang et al. 

(2012)]  

                                                                              

                                                                          

where i = 1…….N, N represents the number of particles,      and      are the acceleration 

constants,     and      are two random numbers within the range [0, 1],    (t) and    (t) are 

the velocity and position of the i
th

 particle at t
th

 iteration respectively,        is the best 

position of i
th

 particle at t
th

 iteration, also called (“personal best’’), and “global best’’       

is the best position found by the swarm at t
th

 iteration. 

A Flow chart depicting the general PSO Algorithm is shown in Fig. a-4. In the 

present study, PSO algorithm is implemented using MATLAB ver. 8.0. The numerical 

factors chosen for Eq. (a.21) are:    = 0.4,     = 0.6, and     and      are two random numbers 

between 0 and 1. 
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A2.2 Inertia Weighted Particle Swarm Optimization (IW-PSO) 

The IW-PSO algorithm [Khodier and Christodoulou (2005)] is proposed to solve the 

problem at hand. IW-PSO is a variant of standard PSO algorithm in which the velocity of 

the current iteration is multiplied with an inertia weighted factor to ensure convergence 

controls of momentum of the particle. The algorithm is a population based stochastic 

optimization technique in which each swarm number is called a particle that represents a 

potential solution. The swarm initially consists of a population of random particles and the 

Algorithm depends on the social interaction among independent particles during their 

search for the optimum solution. A swarm of particles moves through the problem space. 

During its movement, each particle aligns its search direction based on its own best 

position, which is assorted with best solution (Pbest) it has attained so far, and the global 

best position, which is assorted with best solution (Gbest) obtained up to now by any 

particle in a swarm. For a swarm of N particles traversing a D-dimensional space, the 

velocity and position of each particle are updated as [Chen et al. (2006)] 

  
           

                     
    

                          

    
    

                                                                                                              

                          
         

       
                                   

where d = 1, 2, 3···, D represents  the particle’s dimension index, i = 1, 2, 3 ···, and Np is 

the particle index. The constants c1 and c2 are called the cognitive and social parameters. 

The variables   
  and   

  are the velocity and position of the i
th

 particle corresponding to its 

d
th

 dimension while   
  and   

  are the particle’s local best and the swarm’s global best 

positions for the d
th

 dimension respectively. The variables       and       are drawn from a 
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uniform ergodic distribution [0, 1] and are the sources of stochasticity in the search conduct 

of the swarm while   is an inertia weight pertaining to the distribution [0, 1].  

Start

Initialize particles with random position

and velocity

For each particle’s position (p) compute
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If fitness (p) is better than fitness (Pbest) than
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Fig. a-4:  Flow chart showing the basic steps involved in PSO. 
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APPENDIX-‘B’: GUI TOOL FOR SPARSE 

ANTENNA ARRAY OPTIMIZATION 

 

B1.   Graphical User Interface (GUI) Development  

The concept of GUI is  came into existence in order to provide easiness to the user who 

may or may not require to know the architecture of optimization programs using GA or 

PSO algorithms and their implementation in MATLAB. The user should be able to directly 

get into the problem and evaluate/optimize same as per the required application. Towards 

this end, it is aimed to develop visual formulation of the problem in MATLAB ver. 8.0. 

The optimization programs perform search and computation and graphical presentation of 

the obtained results is viewed as plots.   

B2. Realization of Synthesis and Optimization Tool for Sparse Antenna 

Arrays 

The GA and PSO based optimization tool as shown in Fig. b-1 perform search and 

computation of mainly three types of sparse antenna array problems as mentioned below 

and displays the radiation patterns of optimized antenna arrays along with the obtained 

parameters. 

o Optimization of thinned antenna arrays 

o Optimization of non-uniformly spaced antenna arrays 

o Optimization of shared aperture antenna arrays 
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B2.1 Thinned Antenna Array Optimization  

The Thinned antenna array optimization tool is shown in Fig. b-2. The tool is having two 

options for selecting the array configurations as listed below. Similarly, the non-uniformly 

spaced and shared aperture arrays are also providing options for selecting the array 

configurations. 

o Thinned linear antenna array 

o Thinned planar antenna array 

The input and output parameters window along with optimized radiation patterns for 

thinned linear and planar antenna arrays are depicted in Figs. b-3 – b-5 respectively. 

 

 

Fig. b-1:  Main window of sparse antenna array optimization tool. 
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Fig. b-2:  Window of thinned antenna array optimization tool. 

 

Fig. b-3:  Input parameter window for thinned linear antenna array optimization. 
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Fig. b-4:  Output parameter window for thinned linear antenna array optimization. 

 

Fig. b-5:  Input and output parameter window for thinned planar antenna array 

optimization. 


