Table of Contents

Contents	Page No.
Certificate	ii-iv
Acknowledgement	v-vi
Table of contents	vii-xi
List of Figures	xiii-xviii
List of Tables	xix-xxi
List of symbols	xxiii-xxviii
Abstract	xxix-xxxii
1.Introduction	1-9
1.1 Background and Motivation	1
1.2 Fin and tube heat exchanger	2
1.3 Hybrid Nanofluids	4
1.4 Turbulator Inserts	6
1.5 Objectives	7
1.6 Thesis structure and methodology	8
2. Literature Review	11-51
2.1 Preparation and characterization of hybrid nanofluids	11
2.2 Thermophysical properties-based hybrid nanofluids.	19
2.2.1 Thermal conductivity of the hybrid nanofluid	19
2.2.2 Dynamic viscosity/ viscosity of the hybrid nanofluid	26
2.2.3 Density and specific heat capacity of the hybrid nanofluid	30
2.3 Biodiesel for low grade energy utilisation	31
2.3.1 Thermophysical properties of the biodiesel	33

2.4 Performance characteristics of fin and tube heat exchanger	35
2.4.1 Experimental studies of HX using Mono/hybrid nanofluid as	37
coolant	
2.4.2 Numerical studies on HX using mono/hybrid nanofluid	40
2.4.3 Different Studies on heat exchanger using several inserts	44
2.4.4 Different studies on preheating of biodiesel	47
2.5 Highlights	50
2.6 Research gaps and Scope	50
3. Preparation and characterization	53-67
3.1 Preparation of hybrid nanofluids	53
3.2 Characterization of the nanoparticles	56
3.3 Characterization of the THNF's	58
3.4 Thermophysical properties of the working fluids.	61
3.4.1 Measurement procedure	61
3.4.2 Results and discussion	63
3.5. Highlights	66
4. Parametric and design optimization Investigation of Wavy fin and	69-92
tube air heat exchanger using Taguchi-Grey Technique	
4.1 Numerical Modelling	69
4.2 Optimization Methodology	75
4.3 Validation, verification and optimization with Grey analysis	79
4.4 Result and discussion	80
4.4.1 Effect of design parameter on the friction factor	80
4.4.2 Effect of design parameter on Colburn factor	81
4.4.3 Effect of design parameter on the heat transfer coefficient	82

	4.4.4 Reproducibility by the confirmation.	84
	4.4.5 Contribution Ratio	85
4.5	5 Highlights	92
5.	Energy, Exergy, Economic performance investigation of Heat	93-121
Ex	changer with Turbulators inserts and THNF: An Experimental Study.	
5.1	Experimental procedure	93
5.2	2 Data Reduction	97
5.3	3 Performance parameters evaluation	97
5.4	Experimental procedure and validation	103
	5.4.1 Verification and validation	104
5.5	5 Uncertainty investigation	105
5.6	5. Results and discussion	106
	5.6.1 Effect of flow and inserts on the Thermal performance	106
	5.6.2 Effect of flow and inserts on pressure drop	111
	5.6.3 Effect of flow and inserts on exergy	112
	5.6.4 Effect of flow and inserts on Sustainability, Carbon discharge	116
	and HX _{OC} .	
	5.6.5 Effect of hybrid nanofluid on the performance parameters for	119
	selection of hybrid nanofluid	
5.7	Highlights of the study	120
6.	Design optimization, Thermo-hydraulic, and Enviro-economic analysis	123-149
of	twisted perforated tape insert-based heat exchanger with nanofluid	
us	ing CFD and TGM	
6.1	Physical Model	123
6.2	2 Mathematical model and numerical technique	126

6.2.1 Governing equations	126
6.2.2 Boundary conditions	129
6.2.3 Numerical technique	130
6.2.4 Grid independence study	131
6.2.5 Numerical verification and validation	132
6.2.6 Optimization technique	134
6.3 Results and discussion	135
6.3.1 Effect of flow and geometrical parameters on heat transfer	135
6.3.2 Effect of flow and geometrical parameters on pressure drop	139
6.3.3 Effect of flow and geometrical parameters on OTP, DG CO ₂ ,	141
HX _{OC} , and UA	
6.3.4 Effect of design parameters on heat transfer coefficient and	145
pressure drop using Taguchi method	
6.3.5 Optimization of multiple responses using Grey analysis	146
6.4 Highlights of the study	148
7.Experimental investigation of preheated diesel and Blended biodiesel	151-177
on engine performance and emission using waste heat of the coolant with	
Energy economic analysis.	
7.1 Experimental facility	151
7.1.1 Preparation of biodiesel from orange peel oil	154
7.1.2 Fuel physiochemical Properties	157
7.1.3 Data Evaluation	158
7.1.4 Instrument error investigation	160
7.2 Results and Discussion	161
7.2.1 Performance parameter evaluation	162

7.2.2 Brake thermal efficiency (BTE), Brake specific fuel consumption	162
(BSFC) performance	
7.2.3 Evaluation of engine Emissions under preheating	164
7.2.3.1 Effect of preheating on Carbon monoxide (CO),	164
Hydrocarbon (HC), oxides of nitrogen (NO _X), Carbon dioxides	
(CO ₂) emissions	
7.2.3.2 Energy Distribution with different tube inserts, coolant	167
and fuel at 5.6kW load conditions.	
7.2.4 Cost estimation and energy utilization	173
7.3 Highlights of the study	176
8. Concluding remarks, future scope recommendations	179-182
8.1 Conclusions	179
8.2 Future scope recommendations	181
8.3 Limitation and weakness of present work	182
References	183-211
List of Publications and conferences	213-215