TABLE OF CONTENTS

List of Figures		xvii-xxi
List of Tables		xxii-xxiii
List of Abbrevi	ations	xxiv-xxvi
Preface		xxvii-xxxi
Chapter 1: In	troduction and Preview	1-50
	1.1 An Overview of Wind Energy	
	1.2 Past background of wind energy	
	1.3 Wind energy as a future energy	
	1.4 Statistics of wind energy	
	1.5 Wind Energy Conversion System	
	1.6 Type of Generators used in wind turbine for WECs	
	1.6.1 Direct Current Generator	
	1.6.2 Permanent Magnet Synchronous Generator	
	1.6.3 The switched reluctance generator (SRG)	
	1.6.4 Induction Generator	
	1.6.4.1 Squirrel Cage Induction Generator	
	1.6.4.2 Wound Rotor Induction Generator	
	1.6.5 Doubly Fed Induction Generator	
	1.7 Types of Wind Energy Conversion Systems	
	1.7.1 Permanent Speed WECS	
	1.7.2. Variable Speed WECS	
	1.8 DFIG Necessities	
	1.9 A general idea of the DFIG	
	1.9.1 DFIG operating modes	
	1.10 Power stream features of DFIG	
	1.11 Review of Related Research	
	1.11.1 Control Techniques of DFIG	
	1.11.2 DFIG Mechanical Control Technique	
	1.11.2.1 Pitch, stall, and active stall control	
	1.11.2.2. Yaw control	
	1.11.2.3. Flywheel storage	
	1.11.3 DFIG Electrical Control Technique	
	1.11.3.1. Vector control	
	1.11.3.2. Active and reactive power control	
	1.11.3.3. Direct torque control	
	1.11.3.4. Direct power control	
	1.11.3.5. Variable structure or sliding mode control	
	1.11.3.6. Discrete sliding mode control	
	1.11.3.7 Passivity control	
	· · · · · · · · · · · · · · · · · · ·	

- 2 Emerging Issues and Control Measures of DFIG Based WECS
- **3** Conclusion
- **4** Purpose and Contributions
- **5** Organization of Thesis

Chapter 2: Modeling and Controller Design for DFIG by using SOF Technique 51-80

- 2.1 Wind Turbine Drive Train and Aerodynamics
- 2.2 Pitch Angle Control System
- 2.3 Wind Turbine Modeling
- 2.4 An impression on the DFIG
- 2.4 Working standard of DFIG
- 2.6 Mathematical Modeling of the DFIG
- 2.7 Voltage Source Converter Controller
 - 2.7.1 Simplified System Model
 - 2.7.2 Supervisory Controller Design

2.8 Static Output Feedback Technique

- 2.8.1 Controller design using SOF method
- 2.8.2. Theorem

2.9 Simulation and Results

- 2.9.1 Simulation and Response of the DFIG System
- 2.9.2. Response to Supervisory based PID Controller
- 2.9.3 Response of the SOF based controller
- 2.9.4. Comparison between supervisory and SOF based controller
- 2.10. Conclusion

Chapter 3: Controller Design of DFIG for WECS Using PSO Technique 81-95

3.1 An overview of Wind Energy Conversion System

3.2 DFIG principle of operation along with modelling

3.3 Voltage Source Converter Controller

3.4 Particle Swarm Optimization

- 3.4.1 Algorithmic rule for PSO
- 3.4.2. Algorithmic Approach for the PID controller design
- 3.4.3. A minute Representation for algorithm
- 3.4.4. The conception of fitness function to the controller design

3.5 Simulation along with results

- 3.5.1 Simulink response of DFIG system
- 3.5.2. Supervisory Control Response by PID Controller
- 3.5.3 Response of PID Controller Using PSO Method
- 3.5.4 Comparison between supervisory and PSO based controller method

3.6 Conclusion

Chapter 4: Controller Design of DFIG for WECS by Using Bio-inspired Techniques 96-114

4.1 Wind Turbine Systems for WECS

- 4.1.1 Wind Turbine Aerodynamics model
- 4.1.2 A Background on DFIG based wind turbine Components for WECS

4.2 Impression and operational theory of DFIG

4.3 Bacterial Foraging Optimization

- 4.3.1 Algorithm for Bacterial Foraging Optimization-Based Design
- 4.3.2 BFO based controller gain

4.4 Particle Swarm Optimization (PSO)

4.5 Simulation along with results

- 4.5.1 Simulink response of DFIG system
- 4.5.2. BFO based Control Response by PID Controller
- 4.5.3. Response of PID Controller Using PSO Method
- 4.5.4 Comparison between BFO based PID and PID-controller Using PSO method

4.6 Conclusion

Chapter 5: Controller Design for DFIG by Using Firefly Algorithm technique 115-152

5.1 Introduction

5.2 Technological outline of Doubly Fed Induction Generator for Wind Turbine

5.3 Power flow in the DFIG system

5.4 Description of Evolutionary Techniques

- 5.4.1 The advantage of Evolutionary techniques
- 5.4.2 Firefly Algorithm (FFA)
- 5.4.3 The concept of Fitness Function for the Design
- 5.4.4 Problem Statement
- 5.4.5 Confining the search space for FFA

5.5 Differential Evolution Algorithm

- 5.5.1Flowchart for differential evolution algorithm
- 5.5.2Termination
- 5.5.3 Variants
- 5.5.4 Setting Control Parameters
- 5.5.5 The concept of Fitness Function for the Design
- 5.5.6 Problem Statement
- 5.5.7 Confining the search space for DE

5.6 Genetic Algorithm

- 5.6.1Types of crossover
- 5.6.2 Flowchart of GA optimization

5.7 Simulation Results

- 5.7.1 Simulink response of DFIG system
- 5.7.2 DE-based Controller Response for 6th order
- Transfer function to the the DFIG system

5.7.3 FFA-based Controller Response for 6th order

Transfer function to the the DFIG system

5.7.4 The response of PID Controller Using GA Technique in 6th order Transfer Function for DFIG system

5.7.5 Comparison between DE, GA & GA responses

5.8 Conclusion

Chapter 6: On-Off Control Based MPPT and Reliability aspect of DFIG Driven by WT 153-198

6.1 Introduction

6.2 Wind Energy Generating Systems

6.2.1 Aerodynamic Power Conversion and Control

6.2.2 Power Coefficient (C_p)

6.3 Doubly Fed Induction Generator based Wind Turbine System

6.3.1 Operation

6.3.2 DFIG model

6.4 Maximum PowerPoint Tracking Concept and Methods

6.4.1 Various kinds of MPPT Control techniques

6.4.1.1 Tip speed ratio (TSR) control

6.4.1.2 Optimal torque control (OT)

6.4.1.3 Power signal feedback control (PSF)

6.4.1.4 Mechanical Speed-Sensor less PSF control

6.4.1.5 Perturbation and observation control (P&O)

6.4.1.6 Wind Speed Measurement control

6.4.2 MPPT based On-Off Control technique for DFIG Systems

- 6.4.2.1 Controller Design
- 6.4.2.2 Rotor side converter based On-Off control
- 6.4.2.3 Inverter and direct bus voltage control

6.5 Interpretation and Simulation results

- 6.5.1 MPPT Controller Block
- 6.5.2 MPPT based DFIG System model with on-off control scheme Description

6.5.3 Performance of Rotor Side Controller/Converter

6.5.4 Simulation Results

6.6 Reliability Aspect of Doubly Fed Induction Generator based WT

- 6.6.1 Series Systems
- 6.6.2 Parallel Systems
- 6.6.3 Standby Redundant Systems
- 6.6.4 Historical Data Analysis of DFIG based WT

6.6.5 DFIG based WT Components

6.7 DFIG Based WT's Sub-systems

- 6.7.1 DFIG based WT Component Failure Analysis
- 6.7.2 Electrical subsystem
- 6.7.3 Mechanical Subsystem
- 6.7.4 Structural Subsystem
- 6.8 Conclusion

Chapter 7: Summary and conclusion

199-207

7.1. Scope for Further Studies

7.2. Scope of future work

References	218-226
List of Publication	227-228
Appendices	229-229