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6.1. Introduction 

In the contemporary world, technology involvement with human being has been 

significantly increased. This increased technology demand needs a reliable power 

source for functioning. High technology penetration is increasing power consumption 

level and showing a growing trend. Conventionally, the major contributor is fossil fuels 

for generation of electricity. With technological ease and change in human living, 

multiple new alternative energy sources have been developed for the sustainable 

growth. Adverse environmental effect and limited reservoir are restricting consumption 

of fossil fuels in recent times. Renewable energy sources are developing as more 

prominent and sustainable alternative sources of energy. Dispersed power generation 

flexibility and environment-friendly sources of renewable energy are making this more 

demandable. In the digital world, demand-side management with decentralized power 

generation system is becoming more controllable and advantageous.  Evolution of smart 

grid is making this more feasible and controllable to increase penetration of distributed 

generation through renewable energy sources. Smart grid creates transparency and 

better communication system for demand-side management. Onsite power generation 

flexibility with renewable distributed generation technology gives freedom to reach out 

in rural and remote areas. This is a major factor for the development of developing 

nations where the majority lives in far-flung areas without access to electricity. India is 

also taking advantage of this technological shift to reach out their rural areas and rising 

as a major economy. Kumar and Ravikumar (2016) studied the feasibility of renewable 

energy sources in Indian urban buildings with the design of microgrids regarding 

challenges, opportunities, and techno-economic feasibility analysis. This also helps in 

nature balance to reduce carbon emission and maintain ecology system.   

Modern smart grid technology gives a platform to develop more transparent and flexible 
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system to increase integration of renewable energy sources, direct customer 

involvement secures information sharing and reduces power losses in modern power 

distribution system (Fan et al., 2013). The smart grid is the transparent, secure, user-

friendly and computer-operated system. It helps in the decision-making process to 

maintain optimal flow and achieve demand-supply harmony with minimum financial 

and environmental losses.  Rahimi and Ipakchi (2010) have beautifully shown the 

importance of smart grid in modern power distribution system in Figure-6.1. From the 

Figure-6.1, we can see factors affected by the smart grid to enhance power distribution 

system. This shows smart grid is prompted by several economical, political, 

environmental, social, and technical factors. 

 

Figure 6.1: Three-way benefits of smart grid (Rahimi and Ipakchi, 2010) 

Demand side management with the smart grid is an important function to develop better 

electricity distribution control and management, good infrastructure and management of 

integrated decentralized renewable energy resources (Gelazanskas and Gamage, 2014). 

Demand side management will lead to developing better managerial decision in optimal 
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utilization of energy resources. With the effective utilization of demand-side 

management, we can reduce chances of developing under-utilized electrical 

infrastructure regarding generation capacity, transmission lines, and distribution 

networks. It helps to analyse demand uncertainty with statistical analysis to maintain 

continuity of supply as per demand.  

We have collected the hourly load demand data of the year 2014 from the EWSS center 

at BHU. After the collection of data for the future prediction of load demand, we 

applied Lognormal, Gamma and Weibull probability distributions via R programming 

language software to analyze these three distributions graphically and computationally. 

Because of the continuous distribution of load demand data, we have taken all these 

three distributions from the continuous probability distribution family. Also, we 

considered only those probability distributions which will vary in between zero and 

infinity because load demand can never be negative. With these assumptions, we 

proposed the Lognormal, Gamma and Weibull distributions amongst the other 

probability distributions for estimating the load demand uncertainty at BHU campus. 

For finding the best-fitted distribution out of these three distributions, we have 

conducted the Goodness-of-fit test to find the best-fitted probability distribution of the 

given annual hourly load demand data. For this, we used three Goodness-of-fit test 

methods, which are the Kolmogorov-Smirnov test, Anderson-Darling test, and Cramer-

von Mises tests. This will help in the managerial decision-making process for optimal 

power flow and will reduce losses and environmental degradation.  

A Realistic modeling could be possible if we solve these problems with such methods. 

With mathematical programming techniques, we can perform the economic dispatch, 

while meeting all renewable distributed generation units and system constraints. In 

applications of the electric power system, specialized power systems that do not always 
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rely upon three-phase AC power are found in aircraft, electric rail systems, ocean liners, 

and automobiles. In modern technology, most refrigerators, air conditioners, pumps and 

industrial machinery use AC power whereas most computers and digital equipment use 

DC power. Apart from these applications, one of the largest appliances connected to an 

electric power system is the HVAC unit, and ensuring this unit is adequately supplied is 

an important consideration in electric power systems.  

6.2. Demand side management in smart grid system 

The concept of smart grid started with the notion of advanced metering infrastructure to 

improve demand-side management, energy efficiency, and a self-healing electrical grid 

to improve supply reliability and respond to natural disasters or malicious sabotage 

(Fang et al., 2012). Soares et al. (2017) developed the stochastic model for energy 

resources management considering demand response in smart grids. However, several 

developments have led to the expansion of the initially perceived scope of the smart 

grid, and are helping shape the new face of the electricity industry. These include:  

a) Emphasis on environmental protection, including renewable generation (wind, 

solar, etc.) and demand response (DR);  

b) The drive for better asset utilization, including operating closer to the “knee of 

the curve” while maintaining reliable system operation; and  

c) The need for enhanced customer choice.  

Smart grid evolved as a source of sustainable future for the modern power sector. It 

provided a new space for modern technological advancement and helping to develop 

more user-friendly environment. Figure-6.2 schematically depicts factors about the new 

emerging smart grid paradigm is based on an interconnection of three subsystems 

(Samantaray, 2014): 
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1) An electric power system which accomplishes the generation, transmission, 

distribution, and consumption of electricity; 

2) A communication system which establishes the connectivity for information 

exchange among different systems and devices; and 

3) An information system which stores and processes data information for decision 

making on power system operation and management.  

In Figure-6.2, the smart grid shows the integration of electric power systems, 

communication technologies, and information technologies. Integration of 

communication and information technologies is to achieve security, fault diagnosis, and 

intelligent monitoring. Integration of information and electric power system is to get 

plug-in hydro electric vehicle, intelligent agent and integration of distributed energy 

resources. Integration of electric power system and communication system is to have 

demand response, electric storage and standard interoperation.   

 

Figure 6.2: Technological factors affected by smart grid (Samantaray, 2014) 
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Smart grid gives freedom to power-sharing between multiple power sources and utilities 

to create the competitive environment. It helps to reduce monopoly of the centralized 

system and increase the involvement of multiple players. Multiple service providers can 

participate in the electricity market to provide electricity services to customers and 

utilities. It allows a customer to utilize renewable energy sources in their residential or 

commercial buildings integrated with grid and share surplus power with a grid to reduce 

net consumption load. Two-way communications are playing a pivotal role in protected 

information sharing to boost transparency in billing. Compared to conventional power 

grid systems, more renewable-energy-based distributed generation units and energy 

storage devices are integrated into the smart grid. As a result, the traditional electricity 

consumers are gradually transformed into electricity “prosumers” who not only 

consume energy but can also produce energy and feed it to the power grid. Therefore, 

the basic assumption of unidirectional electricity delivery in the traditional electric 

power system is no longer practical. Bidirectional energy flows need to be established 

between electricity customers and power distribution systems. Fang et al. (2012) and 

Farhangi (2010) shown in their work advantages of smart grid over the conventional 

power grid. Moreover, some renewable distributed generation units, energy storage 

devices, and utilities nearby can be interconnected as a micro-grid, which can operate in 

either a grid-connected mode or an islanded mode for reliability enhancement while 

reducing transmission and distribution losses.  

The conventional electric grid system is a network that acts as a link for transmission, 

distribution, and control of electric power from power producers to consumers. 

Increasing power demand and complexity in managing power grid, generation and 

capacity limitation needs for the development of highly reliable, self-regulating and 
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efficient grid system which will allow the integration of renewable distributed power 

generation with grid supply to meet the prosumers demand. 

Smart grid comes with smart metering techniques, digital sensors, and intelligent control 

systems with analytical tools to automate, monitor and control the two-way flow of 

energy during the operation from power to plug. The smart grid helps the power utilities 

and grid to have a digital intelligence to the power system network. 

Many issues contribute to the incapability of conventional grid to competently meet the 

demand for consistent power supply. Advantages of smart grid over conventional grid 

system have been shown in tabular form in Table-6.1. 

Table 6.1: Comparison between conventional and smart grid (Hossain et al., 2013; 

Farhangi, 2010) 

Conventional Grid Smart Grid 

Electromechanical, solid state Digital/Microprocessor 

One-way and local two-way 

communication 

Global/integrated two-way 

communication 

Centralized generation Accommodates distributed generation 

Few sensors Sensors throughout 

Limited protection, monitoring and 

control systems 

WAMPAC, Adaptive protection 

‘Blind’ Self-monitoring 

Manual restoration Automated, ‘self-healing.' 

Check equipment manually Monitor equipment remotely 

Limited control system contingencies Pervasive control system 

Estimated reliability Predictive reliability 

Failure and blackouts Adaptive and islanding 

Failure and blackouts Adaptive and islanding 

 

Demand side management depends on secured information sharing between multiple 

channels (Liang et al., 2014). For information sharing, three kinds of communication 

networks can be established in the smart grid. A wide area network (WAN) facilitates 

the communications among bulk generators and transmission facilities for wide-area 
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situational awareness. A neighbourhood area network (NAN) or field area network 

(FAN) supports the communications among distribution substations and field electrical 

devices for power distribution and microgrid operation. Home area networks (HAN), 

business area networks (BAN), and industrial area networks (IAN) can be deployed 

within residential, commercial, and industrial buildings, respectively, for 

communication among electrical appliances for the DSM purpose. Mostly nature of data 

becomes stochastic with the uncertainty of renewable energy sources (solar and wind) 

and load demand which needs statistical analysis and trend analysis. The research and 

development on smart grid communication networks have been extensively carried out.  

The smart grid communication network architectures, performance requirements, 

research challenges, state-of-the-art technologies, development aspects, and 

experimental studies have been discussed in the previous literature (Fan, 2013; Gao et 

al., 2012; Hossain et al., 2012; Yan et al., 2013). As more and more electric devices in 

the critical power infrastructure are interconnected via communication networks, cyber 

security has an immediate impact on the reliability of the smart grid. Furthermore, 

increased connectivity of electrical appliances at the customer side can enable personal 

information collection, which may invade customer privacy. The cyber security 

requirements, network vulnerabilities, attack countermeasures, secure communication 

protocols and architectures, and privacy issues in the future smart grid have been 

surveyed in previous works (Liu et al., 2012; Wang and Lu, 2013). 

Based on information acquired via the communication system, the information system 

can make optimal decisions on electric power system operation and transmit the control 

signals via the corresponding communication networks. Although basic information 

management functionalities are already in place in the traditional bulk generation and 

transmission systems based on the supervisory control and data acquisition (SCADA) 
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systems, developing an advanced information management system in the context of the 

smart grid is technically complex due to the following challenges (Liang et al., 2014): 

· The output of renewable energy resources is intermittent, which results in large 

variations in power supply. Although a large body of studies have been carried 

out to forecast such an uncertain output, the stochastic nature of renewable 

power generation should be addressed in smart grid planning and operation; 

· The buffering effect of energy storage devices not only introduces more state 

variables in power system operation but also requires accounting for the inter-

period buffer state transitions over the entire time frame (within a week) under 

consideration. Efficient management schemes should be designed for energy 

storage devices at a low computational complexity; 

· Customer behaviour patterns in the presence of DSM are more dynamic than in 

the traditional electricity grid, which leads to large variations in load demand. 

The main reason is that the usage of electrical appliances can be shifted over 

time to electricity customers in response to electricity prices. Moreover, 

different customers can collaborate with each other to reduce their overall 

energy bills, based on the information obtained via FAN/NAN communications; 

· EV drivers can select different charging locations in response to electricity 

prices, which can lead to large variations in charging demand and poor accuracy 

of charging demand estimation. Further, high EV mobility can result in a highly 

dynamic energy storage capacity of the electric power system, taking account of 

the random nature of route and commute schedules of EV drivers. 

To address these technical challenges, first, we establish proper stochastic models to 

characterize randomness in demand side. Then, we incorporate the stochastic models in 
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the system-level information management to facilitate smart grid planning and 

operation. 

6.3. Stochastic models 

6.3.1. Statistical Analysis 

Demand side management modeling requires analysis of load demand data for the given 

period. To reduce the expenses and time required to process long-term load demand 

data, it is desirable to use statistical probability distribution for describing the load 

demand variations. The primary tool to describe load demand characteristics is a 

probability density function which gives the mathematical formulation of given 

probability distribution. Probability density functions of a theoretical probability 

distribution predicted by estimating its parameters. The parameters of probability 

distribution which describes load demand uncertainty with theoretical distributions are 

estimated using statistical data of the given period. Many probability distributions have 

been proposed in recent past. In this work, statistical analysis of Lognormal, Gamma 

and Weibull distributions are used to identify the pattern of load demand distribution. 

For the simulation and computational work, we used R programming language 

software. With the computational result of R programming language software, we 

analyzed our distribution models graphically and analytically along with the goodness-

of-fit test results. Also, parameters of each distribution have been calculated from the 

same software. Here are the mathematical formulations of Lognormal, Gamma and 

Weibull distributions: 

6.3.1.1. Lognormal distribution 

The lognormal distribution is a probability distribution of a random variable, whose 

logarithm is normally distributed. Lognormal probability distribution function with µ as 

location and σ as scale parameters is given by 
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                                                                       (6.1) 

Lognormal CDF is written as  

                                                                            (6.2) 

Where mean and variance of the distribution are 

                                                                                                         (6.3) 

                                                                                     (6.4) 

6.3.1.2. Gamma distribution 

Probability density function of Gamma distribution with α (shape) and β (rate) 

parameters is 

Г
                                                                                               (6.5) 

Gamma CDF is written as 

Г
                                                                                                     (6.6)           

Where mean and variance of the distribution is 

                                                                                                                      (6.7)     

                                                                                                                 (6.8) 

6.3.1.3. Weibull distribution 

Probability density function of two parameters Weibull distribution with c being the 

scale parameter and k the shape parameter is 

                                                                  (6.9) 

Weibull CDF is written as 
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                                                                                         (6.10) 

Where mean and variance of the distribution with Г (Gamma function) are 

Г                                                                                                   (6.11) 

Г Г                                                              (6.12) 

6.3.2. Goodness-of-fit tests 

The fitness of the theoretical probability density functions with actual data analyzed by 

the goodness-of-fit test. This gave the differences of the theoretical distribution function 

with actual data variation to choose more fitted one. With this, we have reduced the 

chances for failure in the future predictability of demand variation and pattern 

recognition. In reality, there is no one having correct distribution. Probability density 

function is the most used tool to estimate and model the load demand distribution. Many 

researchers show the use of Normal distribution as load demand estimation to use them 

in demand-side management (Bo and Li, 2009; Liu et al., 2011). However, to assume a 

Normal distribution of a particular case without any statistical analysis or investigation 

may result in errors in their application or determining theoretical distribution analysis 

of load demand data. Normal distribution function varies in between minus infinity to 

plus infinity and in practicality load demand cannot be negative. For overcoming such 

issues and identification of fittest probability density function, we considered 

continuous probability distribution that will lie between zero and infinity. In a case of 

BHU campus Lognormal, Gamma, and Weibull probability distributions have been 

investigated with the aid of three goodness-of-fit tests namely; Kolmogorov-Smirnov, 

Anderson-Darling and Cramer-von Mises tests. Brief information on selected goodness-

of-fit tests is given below: 
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6.3.2.1. Kolmogorov - Smirnov test 

The Kolmogorov-Smirnov test is useful when parameters of the probability distribution 

do not have to be estimated. We can estimate the proposed distribution with the help of 

modified Kolmogorov-Smirnov test, where the parameters are estimated with the given 

data. It has been proven that the Kolmogorov-Smirnov test uses empirical cumulative 

distribution function. For the given n ordered data points X1,X2,…,Xn, the empirical 

cumulative distribution function is defined as (Daniel, 1990) 

En= n(i)/N                                                                                                                   (6.13) 

Where n(i) is the number of points less than Xi and Xi are ordered between smallest and 

largest value. This increases by 1/N for each value of ordered data between smallest to 

largest.  

The advantage of this test is that the distribution of Kolmogorov-Smirnov test statistic 

will not need cumulative distribution function test. It only applies to continuous 

distributions. The test is calculated as 

                                                                                 (6.14) 

Where F is the theoretical cumulative distribution for what we are conducting this test 

which must be a continuous distribution. 

6.3.2.2. Anderson- Darling test 

The Anderson-Darling test is used to test the given data, whether this lies to the given 

probability distribution. The test is most often used to test of a given family of 

distribution, in which case parameters of that family needs to be estimated. Anderson-

Darling test is mainly the modified adaptation of the Kolmogorov-Smirnov test, and it 

gives more weight to the tails, where Kolmogorov-Smirnov test gives more to the center 

of the distribution. This has the advantage of allowing a more sensitive test.  
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Mathematical formulation of the Anderson - Darling test statistic is (Anderson and 

Darling, 1952) 

A
2
= -n-S                                                                                                                     (6.15) 

Where 

                                                         (6.16) 

Here F is the cumulative distribution function of the given family of distribution. Note 

that the values of Xi are the ordered data. 

6.3.2.3. Cramer-von Mises test 

The Cramer-von Mises test is used to test the fitness of distribution of a given family of 

distribution. In statistics the Cramér–von Mises test is used for testing the goodness-of-

fit for a cumulative distribution function F compared to an empirical distribution 

function Fn for the given data, or comparing of two empirical distributions. It is also 

used in part of another algorithm as minimum distance estimation. This is represented 

as (Anderson, 1962) 

∞

∞
                                                                              (6.17) 

In this study, here F is the theoretical cumulative distribution function for the wind 

speed data of BHU region, and Fn is the empirically observed distribution. Two 

distributions can be empirically estimated ones in a two-sample case. This Cramér–von 

Mises test is an alternative to the Kolmogorov–Smirnov test. 

Let x1, x2,....,Xn are the observed values, in ascending order. The test statistic is 

                                                                    (6.18) 
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6.4. Results and discussions 

In this work, regular and complete measured data for the year 2014 aiming hourly load 

demand inside the BHU campus has been taken from the EWSS centre, BHU. We are 

investigating the feasibility of integrated renewable distributed generation with the 

smart grid at BHU campus. In the demand-side management of BHU campus, we 

considered stochastic renewable energy sources like solar and wind energy to setup 

renewable distributed generation unit with decentralized generation. For this, we have 

collected hourly load demand data for the year 2014 at BHU campus. As per annual 

demand pattern, we can setup optimal generation capacities to fulfill our demand 

without any interruption. There are two feeders of power supply at BHU campus for 

better control of power distribution. In case anyone of these two feeders fails, the 

second one will be over utilized and supply the required power demand. If both will fail, 

then there will be blackout like situation. EWSS center is using 133 kVA capacities of 

both the feeders. We measure power in either kW (kilo watt) or kVA (kilo Volt 

Ampere) unit. In this study, we have the hourly load demand data in kVA unit. As we 

all know that a total number of hours in a year (except leap year) become eight thousand 

seven hundred and sixty. For the year 2014, we have collected the data, which shows 

that the total eight thousand seven hundred and eleven hours powers have been 

supplied. Remaining forty-nine hours, there was a blackout in the year 2014. For the 

statistical analysis via R programming language software, we considered 8760 hours for 

evaluation with 8711 hours available data and remaining 49 hours interpolated data. 

After computing, results show in Figure-6.3 the graphical representation of a histogram 

of annual hourly load demand distribution data of BHU campus. Here we have drawn the 

histogram with the help of R programming language software. Hines et al. (2008) stated 

that choosing the number of class intervals approximately equals to the square root of the 
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sample size often works well in practice. Here, we used this theory to find out the class 

intervals of the Histogram. Because, if we have very few intervals for the larger data then 

this will give us the blocky or coarse figure or if we have very large intervals compared 

to not much larger data then this will show a ragged figure. For the selection of best fit, 

we should choose appropriate class intervals for the given sample size. In our case, we 

have total sample size equal to eight thousand seven hundred and eleven, which gives the 

value of ninety-four with approximation after the square root of sample size. We have 

drawn the histogram in ninety-four class intervals for the given three Lognormal, 

Gamma and Weibull distributions.  

 

Figure 6.3:Histogram of hourly load demand data 

Results are showing graphical representation of theoretical probability density functions 

(pdf), empirical and theoretical cumulative distribution functions (CDF), Q-Q plot and 

P-P plot, table of ranked distributions with goodness-of-fit tests results and parameters 
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values. Figure-6.4 is showing PDF of Lognormal, Gamma and Weibull distributions 

respectively. Also, Figure-6.4 is showing PDF of Lognormal is best fitted compared to 

other two distributions. The fitness of PDF of Gamma distribution in Figure-6.4 is 

showing poorer than the Lognormal distribution and better than the Weibull 

distribution. 

 

Figure 6.4:Density plots of theoretical distributions with load demand data 

Where CDF of lognormal distribution in Figure-6.5 is showing the good fit with 95% 

lower confidence band and 95% upper confidence band in percentile. On the other side, 

CDF of Gamma and Weibull distributions in Figure-6.5 respectively are showing lacks 

fitness. With the comparative study of these three distributions, we have the best-fitted 

distribution as Lognormal distribution. From the zero to hundred percentile with mean is 

4.991912 and the standard deviation is 1.623279 CDF for specified distribution function 

is showing the Lognormal distribution as the best one.   
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Figure 6.5: Empirical and theoretical CDFs 

Figure-6.6 shows P-P (probability-probability) plot of the given data. In a P–P plot, this 

assesses how closely two data sets agree for the two cumulative distribution 

functions against each other. Here in Figure-6.6, Lognormal distribution is showing a 

close relation with the given dataset for the cumulative distribution function compared 

to other two Gamma and Weibull distributions. With the help of P-P plots, we can 

evaluate the skewness of the distribution. Figure-6.7 is showing the Q-Q (quantile-

quantile) plot. In a Q–Q plot, this also assessed how closely two data sets agree for the 

two cumulative distribution functions against each other with their quantile plots. Q–Q 

plot also helps to compare the shapes of distributions with the graphical presentation to 

view how properties like location, scale, and skewness are similar or different in the two 

distributions. Q–Q plots compared to collected data and theoretical distributions. Q-Q 

provides an assessment of "goodness of fit" graphically, rather than having a numerical 

summary. With the interpretation of Figure-6.7, we can find the best-fitted Lognormal 

distribution in this study compared to other two Gamma and Weibull distributions. 
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Figure 6.6: P-P plot 

 

Figure 6.7: Q-Q plot 

Table-6.2 is showing the results of parameters for the proposed distributions. Mean and 

standard deviation of one-year period hourly wind speed data of BHU campus is 3.53 
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and 1.87 respectively. These parameters have been calculated by the maximum 

likelihood methods because of its more accurate values. For Lognormal distribution 

location parameter µ = 1.5611 and scale parameter σ = 0.2993. Values of scale and shape 

parameters of two parametric Gamma distribution are respectively c = 5.5678 and k = 

3.1278. Two-parameter Weibull distribution scale parameter c = 3.130725 and k= 

5.568298 has been given. 

Table 6.2: Parameter values of proposed distributions 

Probability distributions Parameters Results 

Lognormal 

 

Meanlog 1.561264 

Sdlog 0.299232 

Gamma 

 

Shape 10.87202 

Rate 2.17755 

Weibull 

 

Shape 3.130725 

Scale 5.568298 

 

In having goodness-of-fit tests, Kolmogorov-Smirnov, Anderson-Darling, and Cramer-

von Mises tests are calculated the distance between the theoretical cumulative 

distribution function with empirical distribution function. With goodness-of-fit tests 

results in Table-6.3 we have ranked these three distributions separately by findings of 

Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises goodness-of-fit tests. 

The Kolmogorov-Smirnov test results in Table-6.3 ranked them in the order of 

Lognormal, Gamma and Weibull distributions. From the Table-6.3, we can see the 

Anderson-Darling test results, which also ordered in Lognormal, Gamma and Weibull 

distributions. The third one, Cramer-von Mises test results in Table-6.3 also ranked them 

in the order of Lognormal, Gamma and Weibull distributions. From this, we can say that 

the Lognormal distribution is the best one among the proposed distributions.   
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Table 6.3: Goodness-of-fit test results 

Probability distributions Kolmogorov-Smirnov Anderson-Darling Cramer-von Mises 

Lognormal 0.06886589 74.14607392 11.85236535 

Gamma 0.09059829 131.54815513 21.74483485 

Weibull 0.1314375 306.0348499 51.9529980 

 

6.5. Optimal power flow 

Due to the large-scale integration of renewable distributed generation, traditional 

economic power distribution system, which relies on an accurate forecast of power 

generation and load demand, will not be directly applied in the future smart grid. As 

discussed in the previous section, the randomness in renewable power generation is 

characterized based on stochastic models. Without taking into account the randomness, 

traditional economic power distribution system may schedule more conventional energy 

sources such as coal-fired or gas generators and underutilize the renewable energy 

sources, which increase power generation cost and decrease power system reliability. 

Stochastic models need to be developed for the economic dispatch of power to address 

the randomness in the renewable distributed generation. Optimal dispatch problem in 

power distribution was first introduced by Carpentier in 1962, and later it used as the 

optimal power flow which interchangeably used (Azami et al., 2011). Sasaki et al. (2017) 

developed robust stochastic dynamic load dispatch in their work against uncertainties of 

the renewable energy sources and load demand. They focused on a new dynamic load 

dispatch method for mitigating the irregularity associated with RES. The developed load 

dispatch method is to schedule the committed generating units' outputs to meet required 

irregular load demand estimation which is frequently updated in real-time operation 

circumstance.  
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Renewable distributed generation scenarios can be generated via micro-generation 

certification scheme (MCS) and incorporated in a stochastic locational marginal price 

(LMP) electricity market model to examine the impact of renewable distributed 

generation on price settlement, load dispatch, and reserve requirements (Ahmed et al., 

2011). Scenario reduction can be used to reduce the computational complexity of MCS 

by classifying the renewable distributed generation into specific levels based on the 

uncertainty of renewable energy sources.  

Another way to reduce the computational complexity of MCS is to use the moment 

estimation technique. System demand can be modeled as a random vector with 

correlated variables such that the dependency between load type and the location can be 

characterized (Madrigal et al., 1998). Then, a probabilistic optimal power flow problem 

can be formulated, and a maximum likelihood estimation method can be applied to 

evaluate the stochastic properties of a specific solution of the probabilistic optimal power 

flow problem. Maximum likelihood estimation is a method of estimating the parameters 

of a statistical model given observations, by finding the parameter values that maximize 

the likelihood of making the observations given the parameters. In general, for a fixed set 

of data and underlying statistical model, the method of maximum likelihood selects the 

set of values of the model parameters that maximize the likelihood function. Intuitively, 

this maximizes the "agreement" of the selected model with the observed data, and for 

discrete random variables, it indeed maximizes the probability of the observed data under 

the resulting distribution. Maximum likelihood estimation gives a unified approach to 

estimation, which is well-defined in the case of the normal distribution and many other 

problems. Suppose there is a sample x1, x2, …, xn of n independent and identically 

distributed observations, coming from a distribution with an unknown probability 

density function f0(). It is however surmised that the function f0 belongs to a certain 
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family of distributions.  This represents a fundamental assumption underlying classical 

results on the properties of the maximum likelihood estimator (e.g., Le Cam, 1953; 

Wald, 1949) is that the stochastic law which determines the behaviour of the phenomena 

investigated (the "true" structure) is known to lie within a specified parametric family of 

probability distribution models, or we can say, the probability model is assumed to be 

"correctly specified (White, 1982). 

The procurement of energy supply from conventional base load generation and 

renewable distributed generation can be investigated based on a multi-timescale 

scheduling in a dynamic programming framework (He et al., 2013). Specifically, the 

optimal procurement of energy supply from base load generation and a day-ahead price 

is determined by day-ahead scheduling given the distribution of renewable distributed 

generation and demand. On the other hand, the optimal real-time price to manage 

opportunistic demand for system efficiency and reliability is determined via real-time 

scheduling given the realizations of renewable distributed generation. The smart grid 

helps in real-time price management with the two-way communication system and 

showing actual consumption pattern in demand side management. This gives better 

managerial decision-making process to reduce losses and control over optimal power 

flow. 

6.6. Conclusion 

Based on the proposed architecture, the demand side management system receives the 

theoretical load curve as an input and calculates the required load control actions to 

fulfill the desired load consumption. Set up of the smart grid for renewable distributed 

generation technology at any location necessitates good load demand estimation. With 

good estimation, we can optimize investment cost of the renewable distributed 

generation technology and deliver continuous power supply to the desired location with 
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a minimum per unit cost. For this, there is a requirement of statistical analysis to find 

out the best-fitted probability distribution of previous load demand data. Therefore, 

distribution of the electricity load demand at BHU campus is statistically analyzed for 

the year 2014 on an hourly basis. Because of randomness of the hourly load demand, it 

is expected to fit a probability distribution which will give better fitness. In this 

analysis, three probability distribution functions have been proposed, which are 

Lognormal, Gamma and Weibull distributions. For the reason, the significance level 

alone cannot help to decide for selection of any distribution without going for any 

statistical goodness-of-fit test. For showing intelligence, the reliability of the 

information is very important factor in estimation and making decisions. Since 

decisions made with the help of statistical analysis are in certain confidence level, this 

case analysis was done at 95% confidence level. We used three goodness-of-fit tests 

named Kolmogorov-Smirnov, Anderson-Darling and Cramer-von Mises, and graphical 

analysis to identify the fittest distribution. With the comparative analysis of proposed 

distributions, Lognormal has been determined to be the best-fitted distribution to 

representing given load demand data of the BHU campus. Best fitted distribution can 

reduce chances of error and risk in making the investment decision for setting up of 

renewable distributed generation units and optimal power flow at BHU campus. For 

future work, one can find fitness of previous data with theoretically derived new 

probability density function. 

 

  


