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5.1. Introduction 

In recent past, rapidly growing global warming has been the major threat to the human 

being. Overcoming from global warming issues, globally all developed and developing 

countries meet each year in a summit of environmental issues. Where they do policy 

revision to improve the current environmental condition and maintain our ecology 

system. With this kind of global meets, the world came together for achieving a 

milestone in renewable energy sector to reduce the load of carbon emissions and 

improving world environment condition. For promoting renewable energy, developed 

countries are supporting developing countries for increasing utilization of renewable 

energy sources with technological and financial support. Environmental friendly nature 

of renewable energy sources is increasing their importance globally despite their high 

initial setup cost which is going down with technological advancement. Initially, our 

attraction over renewable energy sources was due to abundant availability of this and 

limited conventional fossil fuels. Now, environmental issues are being more concerned 

area to motivate for the adoption of renewable energy sources in the power sector. With 

the use of wind energy based renewable distributed generation technology concept, we 

can reduce green house gasses and adverse environmental effects with power quality 

improvement (Atwa and El-Saadany, 2011). With technological advancement, increased 

renewable energy based generation capacities are also helping to reduce per unit cost. 

Small-scale generating the capacity of renewable energy based technology gives us the 

freedom of setting up decentralized generating units, which is called renewable 

distributed generation technology. This new renewable distributed generation 

technology concept is helping us to have access to rural or remote areas, where to set up 

of transmission line would not be possible or feasible (Ansari et al., 2012; Rajanna and 

Saini, 2016). Integration of renewable energy sources to the urban building in India has 
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been discussed in the work of Kumar and Ravikumar (2015). Amongst the different 

alternatives of renewable energy sources, wind energy is one of the major sources and 

having the maximum contribution in power generation. In a work of Sholapurkar and 

Mahajan (2015), the potential of wind energy and their growth in India has been 

discussed. Kose et al. (2014) analysed the potential of wind energy at Selcuk 

University, Turkey in their work. Integration of wind generators with distribution 

networks can improve voltage stability through reactive power management (Roy et al., 

2013). For the reactive power management, a new distributed multi-agent scheme has 

been developed by Rahman et al. (2014) to integrate the renewable energy sources in 

distribution networks. Maintaining resilience of transmission and distribution networks 

with increasing penetration of renewable distributed generation is very important (Akter 

et al., 2014). Managerial challenges of wind energy are the availability of wind speed 

and economical feasibility of the desired location. Developing countries are also 

following footsteps of developed countries to have adoption of renewable energy 

technologies and reducing load over conventional energy sources. Attention over 

renewable distributed generation technology has also been growing at the institutional 

and industrial level. Researchers are investigating to harness more energy from the 

renewable sources and reducing its per unit cost.  

Optimal utilization of wind energy demands a good knowledge base for the installation 

areas. For this, wind speed distribution plays a key role to have optimal utilization of 

wind energy. In this work, authors have investigated the BHU region for the feasibility 

analysis of wind energy potential to install renewable distributed generation units. 

Hourly data of wind speed of BHU area has been collected from the National 

Renewable Energy Laboratory (NREL) for the period of twelve months in between the 

year 2002 to 2011 (India Solar Resource Data: Hourly Data and TMYs). Authors 
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proposed different probability density functions for statistical analysis and computed 

with R programming language. For the statistical analysis, authors applied Weibull, 

Gamma, and Lognormal distributions which vary between zero to infinity. With the 

help of goodness-of-fit test, authors identified the best-fitted probability density 

function for wind speed data of BHU area. Authors used Kolmogorov, Anderson-

Darling, and Cramer-von Mises tests for the goodness-of-fit test.  

In this work, our objective of this study is to statistically analyze the wind speed data of 

BHU area to predict the wind speed distribution and be able to estimate the wind energy 

potential. We will have to identify the best-fitted probability density function for the 

BHU campus. 

5.2. Data Collection and organization 

Estimation of wind energy potential for a particular location requires analysis of 

available wind speed data for long or small periods. Lalas (1985) stated that the drawing 

out of meteorological data based on average wind speed for a period, duration curves, 

direction, power spectra of wind speed and its variation with heights. Generally, for the 

assessment of wind speed at desired location 10 year period of measurement will be 

required (Nfaoui, 1998). As per Frandsen and Christensen (1992), with the comparison 

of long period wind speed data a short period, for example, one-year wind speed data 

may be suitable for wind energy potential estimation with 5-15% uncertainty. Use of the 

various types of instruments, types of equipment and site specifications for assessment 

of wind energy has been briefly explained in the work of Alawaji (1996). For getting 

wind speed data for a specific location, Meteorological towers with cup anemometers 

and wind vanes are the major factors for getting the information of wind energy 

potential at measurement height from the ground level. 
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Recently National Centres for Environmental Prediction (NCEP) or National Centre for 

Atmospheric Research (NCAR) and European Centre for Medium-Range Weather 

Forecasts (ECMWF) databases of wind speed have been developed globally for many 

regions (Landberg et al., 2003). With high-resolution Sonic Detection And Ranging 

(SODAR), Light Detection And Ranging (LIDAR) or satellite like ground-based remote 

sensing instruments have used as alternatives to meteorological towers for assessment 

of wind energy potential (Angelis-Dimakis et al., 2011). Choisnard et al. (2004) and 

Christiansen et al. (2006) presented a methodology for assessment of wind energy 

potential using a series of satellite synthetic aperture radar (SAR) images; this technique 

is particularly useful for regions where unavailability of year-long time series data, such 

as offshore regions. A method of "round robin site assessment" has been investigated by 

Lackner et al. (2008) for the use of alternative monitoring strategy in wind energy 

potential assessment. After collecting wind speed data from any given methods 

described above will further utilized for feasibility analysis. Figure-5.1, 5.2 and 5.3 

show availability of wind energy potential at the different region for mast height. 

Figure-5.1 shows the regional distribution of wind energy potential at 50 meter height, 

where Figure-5.2 and Figure-5.3 shows wind energy potential in India for the different 

region at height 80 meter and 100 meter. This shows wind energy potential at BHU 

campus lies in the moderate region. 
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Figure 5.1: Indian wind power density map at 50meter height 

(Source: India’s Wind Power Potential) 

 

 

Figure 5.2: Indian wind power density map at 80meter height 

(Source: India’s Wind Power Potential)
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Figure 5.3: Indian wind speed potential map at 100meter height 

(Source: Re-assessment of India’s On-shore Wind Power Potential) 

 

All the data has been taken in Local Standard Time (LST). India is ahead of Greenwich 

Mean Time (GMT) with 5.5 or five and a half (5:30) hours. All the data is given in the 

form of Cells with the particular latitude and longitude information. LST is selected 

based on the cells location with referenced coordinate information. Twelve-month 

hourly data files in between the period 2002-2011 are available for download in a 

compressed archive (tar.gz) files, and each archive file contains a list of comma separate 

values (CSV) files (India Solar Resource Data: Hourly Data and TMYs). Here file 

names show our location longitude and latitude of the wind speed cell centre which is 

determined to be the nearest coordinates entered into the Indian wind energy resource 

BHU 
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and that produce hourly computer generated imagery (CGI) data. Every cell covers an 

area on the surface of the Indian continent measuring 0.1
o
 of latitude by 0.1

o
 of 

longitude with the given cell coordinate which represents the cell's centre point. In this 

study, the cell of BHU area represents the area of 25.16
o 

N to 25.26
o 

N and 82.89
o 

E to 

82.99
o 
E. 

We considered at least one-year long measurement of data from an observation centre is 

required to determine the wind power potential and project feasibility. Wind speed data 

of the BHU region has been taken from the source centre by use of anemometers placed 

at the 2 meter height of the measurement mast from the ground level. Elevation of the 

BHU centre is 265 feet from the sea level, and it is located in the centre of the gangatic 

region. With ten minute intervals, data logger recorded measurement of the parameters 

at the observation centre in every second, their average values, minimum and maximum 

values with their standard deviation. For computing purpose, CALLaLOG 98 software 

program was used. Hourly data has been recorded in archive file by the CALLaLOG 98 

software and stored in daily and monthly folders. Statistical analysis of wind speed data 

given by CALLaLOG 98 software has been done from the statistical analysis tool R 

programming language. Statistical R programming language is widely using by modern 

time researcher for the statistical analysis of data or pattern recognition. Missing data 

has been interpolated in this work, and this was only 0.06% in proportion, which was 

within the acceptable limit of 10% (Scientific, 1997). Twelve-month period of hourly 

data of meteorological parameters like air temperature, solar irradiation, barometric 

pressure and relative humidity apart from the wind speed data has been measured by the 

CALLaLOG 98 software and cup anemometer. The temperature variation at BHU area 

lies between the maximum and minimum monthly average temperature 44
o
C in summer 

and 6
o
C in winter respectively.   
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An important factor for the characterization of the wind resource is the variation of 

wind speed with height above the ground. In this respect, the wind speeds were 

measured by one anemometer located at 2 meter height on the mast. The sample of 

hourly distributed wind speeds measured between 1
st
 January 2002, and 31

st 
December 

2011. For the conversion of wind speed data from the reference point to the desired 

level, we used power law. In Figure-5.4, we can see the monthly variation of average 

wind speed at BHU area, where maximum speed in month April and minimum in 

January month with 1.29 standard deviation. 

 

Figure 5.4: Monthly average wind speed values at BHU campus 

The power law is used in wind power assessments for getting the wind speed values at 

wind turbine height from the surface level observation. Based on the design of different 

kind of wind turbines it range in between 50 and 100 meter heights, whereas 

observation of data may be over 2 meter or 10 meter height in normal cases (Manwell et 

al., 2010).  For analysis purpose, we use a standard height to convert ground level data 

to the standard level, which is 100 meter in our case, because of normal height of 

maximum wind turbines and limitation of the logarithmic profile of wind speed within 

the surface layer of the atmospheric boundary layer.  
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We use generated wind profiles in the form of numerous atmospheric pollution 

dispersion models. Wind profile gives the variation or changes in horizontal wind speed 

with vertical distribution. The wind profile of the atmospheric boundary layer is 

logarithmic which is best represented by the log wind profile equation with 

consideration of surface roughness and atmospheric stability. In unavailability of 

surface roughness and atmospheric stability information, the wind profile power law 

equation is often used in a place of log wind profile. Representation of the wind profile 

power law is (Justus and Mikhail, 1976): 

                                                                                                                    (5.1) 

Here u is the wind speed (m/s) of the desired level of height h (meters), and ur 

(m/s) represents the available wind speed information of the reference level height hr 

(meters). An empirically derived coefficient p (unit-less) varies with the stability of the 

atmosphere. In neutral stability conditions, the value of p is approximately 1/7, or 0.143 

(Hsu et al., 1994). In simplified form, estimation of the wind speed at the desired level 

of height z, the above power law relationship would be rearranged to: 

                                                                                                                (5.2) 

The difference between the reference level and desired level is less (<100 meter) for 

introducing substantial errors into the estimation of wind speed at the desired level, so 

1/7 value of p becomes constant in wind resource assessments. The constant value of p 

does not account for the roughness of the surface, the stability of the atmosphere, or in 

the presence of obstacles the displacement of calm winds from the surface. In places 

like mountain or forest regions, where trees or structures impede wind speed near the 

surface level, the use of constant value 1/7 of p may yield an error in estimates; the log 

wind profile would be preferable. Even in neutral stability conditions, for offshore wind 
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farms over open water, 0.11 would be more appropriate rather than 0.143 (1/7).  In our 

case, we have the wind speed data at the height of 2meter and the requirement is at 100 

meter and our location lies in a plane area with the neutral condition. So, from the 

power law with p-value 1/7, we have calculated the hourly wind speed data of BHU 

area at 100 meter height. 

Measured wind speed data are commonly available in the time-series format, in which 

each data point represents either an instantaneous sample wind speed or an average 

wind speed over a given period. In some places, we can see wind speed data in 

frequency distribution format. This represents the frequency of wind speed distributed 

within various ranges (bins). 

5.3. Wind Speed Distribution Models 

5.3.1. Statistical Analysis 

Wind speed distribution modeling requires analysis of hourly distributed wind speed 

data for the analysis period. For minimizing the expenses and time to process long-term 

wind speed data, we can use statistical probability density functions for the prediction of 

randomly distributed wind speed data. The primary tools to describe wind speed 

characteristics are probability density functions. The parameters of probability density 

functions which describe wind speed frequency distribution are estimated using 

statistical data of analysis period. Many probability distribution functions have been 

proposed in recent past, but in the present study for the statistical analysis Weibull, 

Gamma, and Lognormal distributions are used to identify the appropriate probability 

distribution. For this, authors used R programming language to analyze the distribution 

of wind speed data and goodness-of-fit tests results. Parameters of each distribution 

have been calculated from the same computational tool. Representations of the 

mathematical formulation of Weibull, Gamma, and Lognormal distributions are: 
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5.3.1.1. Weibull distribution 

Mathematical representation of the probability density function of two parameters 

Weibull distribution with c being the scale parameter and k the shape parameter is 

                                                                             (5.3) 

Weibull CDF is written as 

                                                                                                (5.4) 

where mean and variance of the distribution with Г (Gamma function) are 

Г                                                                                                         (5.5) 

Г Г                                                                    (5.6) 

5.3.1.2. Gamma distribution 

Probability density function of Gamma distribution with α (shape) and β (rate) 

parameters is 

Г
                                                                                              (5.7) 

Gamma CDF is written as 

Г
                                                                                                     (5.8) 

where mean and variance of the distribution is  

                                                                                                                      (5.9) 

                                                                                                               (5.10) 
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5.3.1.3. Lognormal distribution 

The lognormal distribution is a probability distribution of a random variable whose 

logarithm is normally distributed. Lognormal probability distribution function with µ as 

location and σ as scale parameters is given by 

                                                                         (5.11) 

Lognormal CDF is written as  

                                                                              (5.12) 

where mean and variance of the distribution is  

                                                                                                           (5.13) 

                                                                                       (5.14) 

5.3.2. Goodness-of-fit tests 

Goodness-of-fit tests allow us to identify the suitable distribution function among the 

different alternatives. In reality, there is no any perfectly matched distribution. 

Probability density function is the most used tools to estimate and model the wind speed 

distribution. Many authors proved Weibull distribution as a best-fitted probability 

density function for the wind speed distribution in their work. Based on the suitability of 

data, authors proposed Weibull, Gamma and Lognormal distributions for the study to 

identify best-fitted distribution in this case. It would be wrong to choose from the list of 

previous results of specific areas in a different environment. Because the variation of 

wind speed depends on their regional factors and it may vary region to region and may 

not fit with respective referenced regional distribution. For error minimization, we 

should have to analyze the data and get best-fitted probability distribution. In this work 

author selected continuous distribution functions lies between zero and infinity and have 

been investigated with the aid of three goodness-of-fit tests namely; Kolmogorov-
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Smirnov, Anderson-Darling and Cramer-von Mises tests. Brief information on selected 

goodness-of-fit tests is given below:  

5.3.2.1. Kolmogorov - Smirnov test 

The Kolmogorov-Smirnov test is useful when parameters of the distribution did not 

estimate. With modified Kolmogorov-Smirnov test we can use this where the 

parameters are estimated from the data. The Kolmogorov-Smirnov test is mainly based 

on empirical cumulative distribution function. For the given n ordered data points X1, 

X2,…, Xn, the empirical cumulative distribution function is defined as (Daniel, 1990) 

En= n(i)/N                                                                                                                   (5.15) 

Where n(i) represents the number of points less than Xi and Xi are ordered between 

smallest and largest value. This increases by 1/N for each value of ordered data between 

smallest to largest.  

The advantage of this test is that the distribution of Kolmogorov-Smirnov test statistic 

will not need cumulative function distribution test. Compared to Cramer-von Mises test, 

it is an exact test. It only applies to continuous distributions. The test is calculated as 

                                                                                    (5.16) 

Where F is the theoretical cumulative distribution for what we are conducting this test 

which must be a continuous distribution. 

5.3.2.2. Anderson- Darling test 

Anderson-Darling tests the data whether this lies in the given probability distribution. 

The test is most often used to test of a given family of distribution, in which case 

parameters of that family needs to be estimated. Anderson-Darling is a modification of 

the Kolmogorov-Smirnov test and gives more weight to the tails where as Kolmogorov-

Smirnov test gives more to the centre of the distribution. This has the advantage of 
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allowing a more sensitive test.  The Anderson - Darling test statistic is defined by 

(Anderson and Darling, 1952) 

A
2
= -n-S                                                                                                                     (5.17) 

where 

                                                         (5.18) 

And F represents the theoretical cumulative distribution function of the given family of 

distribution. Note that the Xi is the ordered data. 

5.3.2.3. Cramer-von Mises test 

The Cramer-von Mises test is used to test the fitness of distribution of a given family of 

distribution. In statistics the Cramér–von Misestest is used for testing the goodness-of-

fit for a cumulative distribution function F compared to an empirical distribution 

functionFn for the given data, or comparing of two empirical distributions. It is also 

used in part of another algorithm as minimum distance estimation. This is represented 

as (Anderson, 1962) 

∞

∞
                                                                              (5.19) 

In this study, here F is the theoretical cumulative distribution function for the wind 

speed data of BHU region, and Fn is the empirically observed distribution. Two 

distributions can be empirically estimated ones in a two-sample case. This Cramér–von 

Mises test is an alternative to the Kolmogorov–Smirnov test. 

Let x1, x2,....,Xn are the observed values, in ascending order. The numerical values of test 

statistic is found as 

                                                                    (5.20) 
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In equation (5.19) w
2
is derived as the difference between empirical distribution function 

and cumulative distribution for one sample application. Integration of equation (5.19) 

and multiply with n will give T as total differences for n observed values. 

5.4. Results and discussions 

Figure-5.5 shows a histogram of wind speed data in ninety-four class intervals. The 

histogram has been drawn from the use of R programming language computation. Hines 

et al. (2008) state that choosing the number of class intervals approximately equal to the 

square root of the sample size often works well in practice. Authors used this theory to 

find out the class intervals to draw the Histogram for wind speed data. If you have very 

few intervals for the larger data, then this will give you the blocky or coarse figure, or if 

you have very large intervals compared to not much larger data, then this will show you 

ragged figure. For the selection of best fit, we should choose appropriate class intervals 

for the given sample size. In this case, authors have total sample size equal to eight 

thousand seven hundred and sixty-two which gives the value of ninety-four with 

approximation after the square root of sample size. Figure-5.6 is showing graphical 

representations of Weibull, Gamma and Lognormal distributions of the given data with 

the help of Histogram and theoretical density plots. Authors have drawn the Histogram 

and density curves in ninety-four class intervals for the given three distributions. From 

the Figure-5.6 given below, we can see Weibull is the best-fitted curve among the other 

proposed distributions. It is very easy to see that the other two, i.e., Gamma and 

Lognormal distributions are not showing a best-fitted curve for the given data. Figure 

shows, if we will have the wrong selection, there will be more risk. Wrong selections 

will lead more chances of error to occur. If we rank them from the Figure-5.6 given 

below, then there will be Weibull leads to Gamma followed by Lognormal distribution.   
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Figure 5.5: Histogram of hourly wind speed data 

 

Figure 5.6: Density plots of theoretical distributions with wind speed data 

The result showing in Figure-5.7 is the graphical representation of empirical and 

theoretical cumulative distribution functions (CDFs). Variation of theoretical 

cumulative distribution functions of these three proposed distributions with empirical 

distribution function is showing fitness of probability distribution of given data. From 
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this, we can identify Weibull distribution is more fitted with empirical distribution 

function. Based on this, we can say Weibull distribution is best-fitted one in a case of 

BHU area.  

 

Figure 5.7: Empirical and theoretical CDFs 

Figure-5.8 shows P-P (probability-probability) plot of the given data. In a P–P plot, this 

assesses how closely two data sets agree for the two cumulative distribution 

functions against each other. Here in Figure-5.8, Weibull distribution is showing a close 

relation with the given dataset for the cumulative distribution function compared to 

other two Gamma and Lognormal distributions. With the help of P-P plots, we can 

evaluate the skewness of the distribution. Figure-5.9 is showing the Q-Q (quantile-

quantile) plot. In a Q–Q plot, this also assess how closely two data sets agree for the 

two cumulative distribution functions against each other with their quantile plots. Q–Q 

plot also helps to compare the shapes of distributions with the graphical presentation to 

view how properties like location, scale, and skewness are similar or different in the two 

distributions. Q–Q plots compared to collected data and theoretical distributions. Q-Q 

provides an assessment of "goodness of fit" graphically, rather than having a numerical 
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summary. With the interpretation of Figure-5.9, we can find the best-fitted Weibull 

distribution in this study compared to other two Gamma and Lognormal distributions. 

 

Figure 5.8: P-P Plot 

 

Figure 5.9: Q-Q Plot 



 

 

130 

 

Table-5.1 is showing the results of parameters for the proposed distributions. Mean and 

standard deviation of one-year period hourly wind speed data of BHU campus is 3.53 

and 1.87 respectively. These parameters have been calculated by the maximum 

likelihood methods because of its more accurate values. 

Table 5.1: Parameter results for the proposed distributions 

Weibull Gamma Lognormal 

Shape scale Shape Rate mean log Slog 

1.874745 3.979186 2.8788796 0.8156843 1.0774736 0.6688455 

 

With goodness-of-fit test results in Table-5.2, authors have ranked these three 

distributions as per the individual test results of Kolmogorov-Smirnov, Anderson-

Darling and Cramer-von Mises test. In Table-5.2, we can see all these three tests are 

showing Weibull distribution is best one with less error value and ranked them in the 

order of Weibull, Gamma, and Lognormal distribution. From this, we can say that the 

Weibull distribution is the better one amongst the proposed three distributions.   

Table 5.2:Goodness-of-fit test results 

Distribution function Kolmogorov-Smirnov Anderson-Darling Cramer-von Mises 

Weibull 0.02106212 3.87999752 0.65250478 

Gamma 0.02778126 7.76586366 1.22543889 

Lognormal 0.06997673 78.86732540 12.59881876 
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5.5. Theoretical power density 

Estimation of the wind power depends on wind turbine blade rotational cross-section 

area, wind speed and wind flow kinetic energy. It can also be represented by 

multiplication of kinetic energy with total swept volume of the wind per unit time 

(Ackermann, 2005; Ramirez and Carta, 2005) 

 [W]                                                                       (5.21) 

where ρ is the air density (kg m
-3

). 

Variation of air density depends on upon pressure, temperature, and humidity. For the 

first attempt of resource calculation variation of air, density is not greatly significant. 

With this assumption on a constant pressure surface, the error is probably less than 5% 

(Hennessey Jr, 1977). In standard conditions at sea level with 15
o
C temperature, a 

typical value of air density is . 

Statistical analysis of wind power potential with mean air density  is proportional to 

the cube of the random variable wind speed values. We can calculate the distribution of 

wind power with random wind speed values by multiplying the wind power density of 

each wind speed with the probability of each wind speed. So, this can be written in 

mathematical term 

[Wm
-3

s]                                                                             (5.22) 

With this, we can calculate the annual mean wind power potential from the wind 

resources available at a potential site. This can be determined through 

 [Wm
-2

]                                                       (5.23) 

where  represents the mean of the cube of the wind speed (m
3
s

-3
 ) 

Г                                                                                                       (5.24) 
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An annual power production from the wind turbines is a maximum wind power density 

for the aerodynamically efficient design at v = vme 

 [ms
-1

]                                                                                           (5.25) 

5.6. Wind energy potential 

Potential of wind energy can be estimated with randomly distributed wind speed by 

multiplication of power output from the hourly wind speed dataset and their probability 

distribution (Kwon, 2010), 

∞

                                                                                        (5.26) 

Where T denotes hours, and A equals to the total area swept by wind turbine blades. In 

wind energy estimation we neglect the value of air density because it does not affect the 

wind speed values. In unavailability of wind speed situation, we can exclude that period 

and can identify total number of hours for availability of wind speed in a year, 

                                                                              (5.27) 

Here  means the probability of hours for unavailability of wind speed. We can 

calculate annual wind energy potential for the T hours without having any probability 

distribution from this equation, 

                                                                                                       (5.28) 

Here Figure-5.10 is showing mean monthly wind power density distribution for BHU 

area. We can see maximum potential of wind power for the April month and minimum 

in January month with the 67.09 standard deviation. This will help in optimal capacity 

installation of renewable distributed generation unit at BHU campus and have better 

demand – supply management.                        
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Figure 5.10: Monthly average wind power potential at BHU campus 

5.7. Conclusion 

A decision on making an investment in the renewable distributed generation technology 

planned to be built at BHU region will be made with the help of wind speed data 

measured from the region. Therefore, distribution of the wind speed at BHU region is 

statistically analyzed for twelve months in between 2002-11 on an hourly basis. 

Because of randomness of the wind speed values, it is expected to fit a probability 

density function which will give better fitness. For that, three probability density 

functions have been proposed in this analysis which is Weibull, Gamma and Lognormal 

distributions. Significance level alone cannot help to decide for selection of any 

distribution without going for any statistical goodness-of-fit test and graphical analysis. 

For making scientific decisions, the reliability of the decision is very important factor in 

estimation and investment projects to be made with the help of this decision. Since 

decisions made with the help of statistical analysis are in certain confidence level, in 
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this case, there was 95% confidence level. In this study, authors used three goodness-of-

fit tests named Kolmogorov-Smirnov, Anderson-Darling and Cramer-von Mises along 

with the graphical analysis to identify the fittest distribution. At the end of the 

comparison, Weibull has been determined to be the best-fitted distribution representing 

given wind speed data of the BHU region. Best fitted distribution will reduce chances of 

error and risk in making an investment decision for setup of renewable distributed 

generation units. 

 

  


