

210

Appendix-A

Code in R language for estimation of wind energy potential
>library(MASS)

>hist(ANNUAL.100$V1,breaks=94)

>plot(density(ANNUAL.100$V1))

>rug(ANNUAL.100$V1)

>mean(ANNUAL.100$V1)

>min(ANNUAL.100$V1)

>max(ANNUAL.100$V1)

>library(fitdistrplus)

>fitgmme<-fitdist(ANNUAL.100$V1,"gamma",method="mme")

>summary(fitgmme)

>fitw<-fitdist(ANNUAL.100$V1,"weibull")

>fitg<-fitdist(ANNUAL.100$V1,"gamma")

>fitln<-fitdist(ANNUAL.100$V1,"lognormal")

>summary(fitg)

>summary(fitln)

>cdfcomp(list(fitw,fitg,fitln),legendtext=c("weibull","gamma","lognormal"))

>denscomp(list(fitw,fitg,fitln),legendtext=c("weibull","gamma","lognormal"))

>qqcomp(list(fitw,fitg,fitln),legendtext=c("weibull","gamma","lognormal"))

>ppcomp(list(fitw,fitg,fitln),legendtext=c("weibull","gamma","lognormal"))

>gofstat(list(fitw,fitg,fitln),fitnames=c("weibull","gamma","lognormal"))

211

Appendix-B

Code in R language for estimation of load demand distribution

>library(MASS)

>hist(mydata$V1,breaks=94)

>plot(density(mydata$V1))

>rug(mydata$V1)

>mean(mydata$V1)

>min(mydata$V1)

>max(mydata$V1)

>library(fitdistrplus)

>fitln<-fitdist(mydata$V1,"lnorm")

>fitg<-fitdist(mydata$V1,"gamma")

>fitw<-fitdist(mydata$V1,"weibull")

>summary(fitln)

>summary(fitg)

>summary(fitw)

>cdfcomp(list(fitln,fitg,fitw),legendtext=c("lognormal","gamma","weibull"))

>denscomp(list(fitln,fitg,fitw),legendtext=c("lognormal","gamma","weibull"))

>qqcomp(list(fitln,fitg,fitw),legendtext=c("lognormal","gamma","weibull"))

>ppcomp(list(fitln,fitg,fitw),legendtext=c("lognormal","gamma","weibull"))

>gofstat(list(fitln,fitg,fitw),fitnames=c("lognormal","gamma","weibull"))

212

Appendix-C

Code in Java language for optimal planning of renewable distributed generation

package optimization.project;

public class OptimizationProject {

System.out.println("Objective" + calculation.optimizationFunction());

System.out.println("Surplus All Years" + calculation.cForAllYears());

System.out.println("Consumption " + calculation.cForAllYearsConsumptionPower());

System.out.println("Investment Cost" + calculation.investmentCost());

System.out.println("Operation & Maintenance Cost" +
calculation.cDistributorGenerationForAllYears());

System.out.println("Power Purchase" + calculation.cPowerPurchaseForAllYears());

System.out.println("RDGSUM=" + calculation.RDGUnitsSum);

 }

}

package optimization.project;

import java.util.HashMap;

public class OptimizationCalculation{
//***
***//

public String toString() {

 return "Objective="+ optimizedvalue + ", Surplus All Years=" + cForAllYears() +
",Consumption=" + cForAllYearsConsumptionPower() + ",Investment Cost=" +
investmentCost() + ",Operation & Maintenance Cost=" +
cRenewableDistributorGenerationForAllYears() + ",Power Purchase=" +
cPowerPurchaseForAllYears() + ",RDGSUM=" + RDGUnitsSum;

 }

//***
***//

double ldrandomnumber=Utilities.random();

double wsrandomnumber=Utilities.random();

public int lifeinyears,numberofunit,costofeachturbine;

213

public double ratedwindturbinepowercapacity,sellingprice/*in
rupees/kwh*/,purchasecost/*in rupees/kwh*/,discount/*in
percent*/,maintenancecost/*rupee/kwh*/;

public double
lognormallocationparameter,lognormalscaleparameter,weibullscaleparameter,weibullsh
apeparameter,cutinwindvelocity,ratedwindvelocity,cutoutwindvelocity;

public double optimizedvalue;

//***
***//

double surpluspowersum=0;

public int totalhours,totalyears;

public HashMap<String,InputParameters> lst=new HashMap<>();

public int[] RDGUnits;

public int RDGUnitsSum;

public OptimizationCalculation(OptimizationCalculation input,double random1,double
random2,int[] RDG)

 {

this(input.totalhours,input.totalyears,input.lifeinyears,input.ratedwindturbinepowercapa
city,input.costofeachturbine,input.sellingprice,input.purchasecost,input.discount,input.m
aintenancecost,input.lognormallocationparameter,input.lognormalscaleparameter,input.
weibullscaleparameter,input.weibullshapeparameter,input.cutinwindvelocity,input.rated
windvelocity,input.cutoutwindvelocity);

 this.wsrandomnumber=random1;

 this.ldrandomnumber=random2;

 this.RDGUnits=RDG;

optimizedvalue=optimizationFunction();

 }

 public OptimizationCalculation(int hours,int years, int lifeinyears, double
ratedwindturbinepowercapacity, int costofeachturbine, double sellingprice, double
purchasecost, double discount, double maintenancecost, double
lognormallocationparameter, double lognormalscaleparameter, double
weibullscaleparameter, double weibullshapeparameter, double cutinwindvelocity,
double ratedwindvelocity, double cutoutwindvelocity)

 {

RDGUnitsPer=new int[numberofbus];

for(int i=0;i<=RDGUnits.length-1;i++)

214

 {

RDGUnits[i]=Utilities.getNoOfRDGUnits();

RDGUnitsSum+=RDGUnits[i];

 }

//**//

 this.lifeinyears = lifeinyears;

 this.ratedwindturbinepowercapacity = ratedwindturbinepowercapacity;

 this.costofeachturbine = costofeachturbine;

 this.sellingprice = sellingprice;

 this.purchasecost = purchasecost;

 this.discount = discount;

 this.maintenancecost = maintenancecost;

 this.lognormallocationparameter = lognormallocationparameter;

 this.lognormalscaleparameter = lognormalscaleparameter;

 this.weibullscaleparameter = weibullscaleparameter;

 this.weibullshapeparameter = weibullshapeparameter;

 this.cutinwindvelocity = cutinwindvelocity;

 this.ratedwindvelocity = ratedwindvelocity;

 this.cutoutwindvelocity = cutoutwindvelocity;

//**//

totalhours=hours;

totalyears=years;

for(int year =1;year<=years;year++)

 {

for(int hour=1;hour<=hours;hour++)

 {

 String index=year + "," + hour;

lst.put(index,new InputParameters(year, hour));

215

 }

 }

optimizedvalue=optimizationFunction();

 }

 //***************Total investment
cost************************************//

public double investmentCost()

 {

 // System.out.println("discount" + discount);

 // System.out.println("total years=" + totalyears);

double x1=Math.pow(1+ discount, totalyears)-1;

 // System.out.println("x1=" + x1);

double x2=discount*Math.pow(1+discount,totalyears);

 // System.out.println("x2=" + x2);

double x3=x1/x2;

 // System.out.println("x3=" + x3);

double x4=discount*Math.pow (1+discount,lifeinyears);

 // System.out.println("x4=" + x4);

double x5=Math.pow(1+discount,lifeinyears)-1;

 //System.out.println("x5=" + x5);

double x6=x4/x5;

 // System.out.println("x6=" + x6);

double x7=x3*x6*ratedwindturbinepowercapacity*costofeachturbine;

 //System.out.println("x7=" + x7);

return x7*DGUnitsSum;

 }

 //**************Objective function
minimization******************************//

public double optimizationFunction()

 {

216

return -cForAllYears()-
cForAllYearsConsumptionPower()+cDistributorGenerationForAllYears()+cPowerPurc
haseForAllYears()+investmentCost();

 }

 //****************Total operating and maintenance
cost*************************//

public double cRenewableDistributorGenerationForAllYears()

 {

double sum=0;

for(int year=1;year<=totalyears;year++)

 {

sum=sum + cRenewableDistributorGenerationPerYear(year);

 }

return sum;

 }

public double cRenewableDistributorGenerationPerYear(int year)

 {

double surplussum=doRenewableDistributorGenerationHourSum(year);

return surplussum*(maintenancecost)/Math.pow(1+ discount,year);

 }

public double doRenewableDistributorGenerationHourSum(int year)

 {

double sum=0;

for(int hour=1;hour<=totalhours;hour++)

 {

 String index=year + "," + hour;

 InputParameters ip=lst.get(index);

double dg=ip.renewabledistributorGeneration() * Math.pow(RDGUnitsSum,year);

sum=sum + dg;

 }

return sum;

217

 }

 //******Total revenue due to power saving by renewable distributed
generation********//

public double cForAllYearsConsumptionPower()

 {

double sum=0;

for(int year=1;year<=totalyears;year++)

 {

sum=sum + consumptionPerYear(year);

 }

return sum;

 }

public double consumptionPerYear(int year)

 {

double surplussum=doLoadDemandHourSum(year);

return surplussum*(purchasecost)/Math.pow(1+ discount,year);

 }

public double doLoadDemandHourSum(int year)

 {

double sum=0;

for(int hour=1;hour<=totalhours;hour++)

 {

 String index=year + "," + hour;

 InputParameters ip=lst.get(index);

double ld=ip.loadDemand();

double dg=ip.renewabledistributorGeneration();

 // System.out.printf("ld is %f, dg= %f, dg*RDGUnitsSum %f
\n",ld,dg,dg*RDGUnitsSum);

if(ld<=dg*RDGUnitsSum)

sum=sum + ld;

218

else

sum=sum + dg*RDGUnitsSum;

 }

return sum;

 }

 //******************Revenue from total power supplied to
grid******************//

public double cForAllYears()

 {

double sum=0;

for(int year=1;year<=totalyears;year++)

 {

sum=sum + cPerYear(year);

 }

return sum;

 }

public double cPerYear(int year)

 {

double surplussum=doSurplusHourSum(year);

return surplussum*(sellingprice)/Math.pow(1+discount,year);

 }

public double doSurplusHourSum(int year)

 {

double sum=0;

for(int hour=1;hour<=totalhours;hour++)

 {

 String index=year + "," + hour;

 InputParameters ip=lst.get(index);

sum=sum + ip.surplusPowerToGrid();

 }

219

return sum;

 }

 //**************Total power purchase
cost***********************************//

public double cPowerPurchaseForAllYears()

 {

double sum=0;

for(int year=1;year<=totalyears;year++)

 {

sum=sum + cPowerPurchasePerYear(year);

 }

return sum;

 }

public double cPowerPurchasePerYear(int year)

 {

double surplussum=doPowerPurchaseHourSum(year);

return surplussum*(purchasecost)/Math.pow(1+ discount,year);

 }

public double doPowerPurchaseHourSum(int year)

 {

double sum=0;

for(int hour=1;hour<=totalhours;hour++)

 {

 String index=year + "," + hour;

 InputParameters ip=lst.get(index);

sum=sum + ip.powerPurchasedFromGrid();

 }

return sum;

 }

220

 //************************Sub
Class*************************************//

class InputParameters {

double ldrandomnumber=Utilities.random();

double wsrandomnumber=Utilities.random();

public int planperiodinyears,operatinghours;

public InputParameters(int year,int hour) {

 this.planperiodinyears=year;

 this.operatinghours=hour;

 }

public double powerPurchasedFromGrid()

 {

 //Power purchased from grid when demand is greater than RDG generation

double ld=loadDemand();

doublerdg=renewabledistributorGeneration();

if(ld>rdg)

return ld-rdg;

else

return 0;

 }

public double surplusPowerToGrid()

 {

 //Surplus power supplied to grid

double ld=loadDemand();

doublerdg=renewabledistributorGeneration();

if(rdg>ld)

returnrdg-ld;

else

return 0;

 }

221

public double renewabledistributorGeneration()

 {

 //Hourly power generation based on generated wind speed values for a single rdg
unit

double ws=windSpeed();

if(ws>=0 && ws< cutinwindvelocity || ws>=cutoutwindvelocity)

return 0;

if(ws>=cutinwindvelocity && ws<=ratedwindvelocity)

return ratedwindturbinepowercapacity*(ws-cutinwindvelocity)/(ratedwindvelocity-
cutinwindvelocity);

return ratedwindturbinepowercapacity;

 }

public double loadDemand()

 {

 //Random generation of load demand values

while(true)

 {

ldrandomnumber=Utilities.random();

double rand=ldrandomnumber;

double x1=2*lognormallocationparameter -Math.sqrt(2)*lognormalscaleparameter;

double x2=x1*x1 + 4*(lognormallocationparameter*lognormallocationparameter +
2*Math.sqrt(Math.PI)* lognormalscaleparameter*lognormalscaleparameter*rand);

double retvalue=Math.exp(0.5*(x1+x2));

if(retvalue<=11)

continue;

return retvalue;

 }

 }

public double windSpeed()

 //Random generation of wind speed values

 {

222

double rand=wsrandomnumber;

double exp= Math.exp(Math.log((weibullscaleparameter*rand)/weibullshapeparameter)
+ (weibullshapeparameter-1)* Math.log(weibullscaleparameter)) ;

 // System.out.println(exp);

double temp=(weibullshapeparameter/weibullscaleparameter) * exp;

temp=Math.pow(temp,1/(weibullshapeparameter-2));

return temp;

 }

}

 //**//

223

Appendix-D

VIKOR method

Opricovic (1998), Opricovic and Tzeng (2002) developed VIKOR, the Serbian name:

VlseKriterijumska Optimizacija I KompromisnoResenje, means multi-criteria

optimization and compromise solution (Chu et al., 2007). The VIKOR method was

developed for multi-criteria optimization of complex systems (Opricovic and Tzeng,

2004). This method focuses on ranking and selecting from a set of alternatives, and

determines compromise solutions for a problem with conflicting criteria, which can help

the decision makers to reach a final decision. Here, the compromise solution is a

feasible solution which is the closest to the ideal, and a compromise means an

agreement established by mutual concessions (Opricovic and Tzeng, 2007). It

introduces the multi-criteria ranking index based on the particular measure of

‘‘closeness” to the ‘‘ideal” solution (Opricovic, 1998).

Ranking by VIKOR may be performed with different values of criteria weights,

analyzing the impact of criteria weights on proposed compromise solution. The VIKOR

method determines the weight stability intervals, using the methodology presented in

Opricovic (1998). The compromise solution obtained with initial weights (wi, i = 1; . . . ;

n), will be replaced if the value of a weight is not within the stability interval. The

analysis of weight stability intervals for a single criterion is performed for all criterion

functions, with the same (given) initial values of weights. In this way, the preference

stability of an obtained compromise solution may be analyzed using the VIKOR

program.

224

Matching MCDM methods with classes of problems would address the correct

applications, and for this reason the VIKOR characteristics are matched with a class of

problems as follows (Opricovic and Tzeng, 2007):

• Compromising is acceptable for conflict resolution.

• The decision maker (DM) is willing to approve solution that is the closest to the ideal.

• There exist a linear relationship between each criterion function and a decision

maker’s utility.

• The criteria are conflicting and noncommensurable (different units).

• The alternatives are evaluated according to all established criteria (performance

matrix).

• The DM’s preference is expressed by weights, given or simulated.

• The VIKOR method can be started without interactive participation of DM, but the

DM is in charge of approving the final solution and his/her preference must be included.

• The proposed compromise solution (one or more) has an advantage rate.

• A stability analysis determines the weight stability intervals.

The main steps of multi-criteria decision making are the following (Opricovic and

Tzeng, 2004):

(a) Establishing system evaluation criteria that relate system capabilities to goals;

(b) Developing alternative systems for attaining the goals (generating alternatives);

(c) Evaluating alternatives in terms of criteria (the values of the criterion functions);

225

(d) Applying a normative multi-criteria analysis method;

(e) Accepting one alternative as ‘‘optimal’’ (preferred);

(g) If the final solution is not accepted, gather new information and go into the next

iteration of multi-criteria optimization.

When the decision maker is unable to take a decision or doesn't know to express their

preferences at the beginning stage of the system design, the VIKOR method would be

an effective tool for the multi-criteria decision-making process. For the value of a

maximum group utility of the ‘‘majority” (min S, given by Eq. (2)), and a minimum

individual regret of the ‘‘opponent” (min R, given by Eq. (3)), obtained compromise

solution would be accepted by the decision makers. Based on the involvement of the

decision-makers' preferences by weights of criteria, the compromise solutions would be

the base for negotiation. The result of the VIKOR ranking depends on the ideal solution

Q with values of v, which will be only for a given set of alternatives. Any changes to a

given set of alternatives will lead to the result of modified VIKOR ranking for the new

set of alternatives. The fixed ideal solution would be defined by the decision maker

based on the best fi and the worst fi values, but it could be avoided.

Here each alternative would be evaluated with each criterion function and, the

compromise ranking would be performed with the comparison of the measure of

closeness to ideal solution F*. Compromise solution FC will be a feasible solution that

will be the closest to the ideal solution and will have a compromise established by

mutual concessions (Polatidis et al., 2006). With multi-criteria measure for the

compromise ranking of alternatives is developed from the Lp-metric by using an

aggregating function from the compromise programming method (Yu, 1973; and

Zeleny, (1982) :

226

 (1)

∞, j=1, 2,....., J

where L1, j denoted as Sj in Eq. (2) and ∞ denoted as Rj in Eq. (3), are used to

formulate the ranking measure.

For the VIKOR method, the number of j alternatives is denoted as a1, a2,..., aj. For any

alternative aj the rating of the ith facet is denoted by fij, and this is the value of the ith

criterion for the alternative aj; where j=1,2,....,m and i=1,2,.....,n. The compromise

ranking algorithm of the VIKOR method is divided into the following four steps which

are given below (Opricovic and Tzeng, 2004):

Step I: For all the criterion functions, find out the best fi
* and the worst fi

- values, i =

1,2,...,n. If the ith function represents a benefit then and ,

whereas if the ith function represents a cost and .

Step II: Compute the values of Sj and Rj, j = 1,2,...,m from the relations of

 (2)

 (3)

Where wi denotes the weights of criteria, which expresses the decision maker’s

preference for the relative importance of the criteria.

Step III: compute the values of Qj, from the given relation

227

 (4)

Where ; ; ; and as a weight v has

been introduced for the strategy of maximum group utility, while (1 - v) is for the

weight of the individual regret. The solution will be obtained by with a

maximum group utility based on “majority” rule, where the solution will be obtained by

 with a minimum individual regret of the “opponent”. In general, the value of

the v is taken as 0.5, but we can take any value of v in the range of 0 to 1.

Step IV: Now rank the alternatives with the sorting of the results of S, R, and Q in

decreasing order. From this we will have three ranking lists for S, R, and Q. Suppose we

have a compromise solution of the alternative A1 best ranked by the minimum value of

the measure Q, then it should satisfy the given conditions. Propose as a compromise

solution the alternative A1, which is the best ranked by the measure Q (minimum), if t

he following two conditions are satisfied:

a. First one is the acceptable advantage. , where DQ=1/(J-1)

and A2 is the alternative with the second position on the ranking list by Q;

b. The second one is the acceptable stability in decision-making. The alternative A1

should also be the best ranked by S or/and R. This compromise solution should

be stable for a decision-making process, that could be the strategy of maximum

group utility (when v > 0.5 is needed), or by consensus (v ≈ 0.5), or with veto

(v< 0.5).

If one of the above conditions is not satisfied, then we will have to propose a set of

compromise solutions, which will consist of:

228

c. Alternative A1 and A2 when the condition b is not satisfied, or

d. Alternatives A1, A2,..., AM when the condition a is not satisfied and, AM is determined

by the relation for maximum value n means the positions of

these alternatives are “in closeness”.

In brief, we can say that VIKOR method works on ranking and selection of the

alternatives from the given one in the existence of conflicting criteria. It gives a

compromise solution that will be accepted by the decision makers because of its

maximum group utility for the ‘‘majority’’, and of the minimum individual regret for

the ‘‘opponent’’. By the use of linear normalization, this method representing the

closeness to the ideal solution based on aggregating function.

229

List of Papers Published/

Accepted/Communicated/Presented

A. Journals

1. Kumar, M., and Samuel, C. (2017). Selection of best Renewable Energy Source by
using VIKOR Method. Technology and Economics of Smart Grids and Sustainable

Energy, 2(1): 8. (Springer, Published)
2. Kumar, M., and Samuel, C. (2017). Stochastic Demand Side Management in Smart
Grid. International Journal of Networking and Virtual Organisations. (Inderscience,
Accepted)
3. Kumar, M., and Samuel, C. (2017). Wind energy potential estimation with prediction
of wind speed distribution. International Journal of Intelligent Systems Technologies

and Applications. (Inderscience, Accepted)
4. Kumar, M., and Samuel, C. (2017). Green Practices with Renewable Distributed
Generation Technology in India. Energy & Environment. (SAGE, Accepted)
5. Kumar, M., and Samuel, C. (2017). Future of Renewable Distributed Generation in
India.TERI Information Digest on Energy and Environment. (The Energy and
Resources Institute, Accepted)
6. Kumar, M., Samuel, C. and Jaiswal, A. (2015). An overview of distributed generation
in power sector. International Journal of Science, Technology & Management, 4(1):

1407-1423.
7. Kumar, M., and Samuel, C. (2017). Optimal Planning of Stochastic Renewable
Distributed Generation System. Energy Sources, Part B: Economics, Planning, and

Policy. (Taylor & Francis, Communicated)
8. Kumar, M., and Samuel, C. (2017). Increasing Demand of Renewable Distributed
Generation Technologies in Modern Power System. Renewable & Sustainable Energy

Reviews. (Elsevier, Communicated)
9. Kumar, M., and Samuel, C. (2017). The Economics of Smart Grid Integrated
Renewable Distributed Generation. Technology and Economics of Smart Grids and

Sustainable Energy. (Springer, Communicated)

B. Conferences

1. Kumar, M., and Samuel, C. (2016, September). Statistical analysis of load demand
distribution at Banaras Hindu University, India. In Advances in Computing,
Communications and Informatics-2016 (ICACCI-2016), Jaipur, India (pp. 2318-
2323).IEEE.

2. Kumar, M., and Samuel, C. (2016, May). Modern Green Building Concept in India:
A New Face of Ancient Methodologies with Novel Features. National Conference on
Cultural Heritage and Management-2016 (NCCHM-2016), Indian Institute of
Technology (Banaras Hindu University), Varanasi.

3. Kumar, M., and Samuel, C. (2016, February). Increasing Demand of Renewable
Distributed Generation Technology in Power Sector. National Conference on

