TABLE OF CONTENTS

CERTIFICATE	ii
DECLARATION BY THE CANDIDATE	iii
COPYRIGHT TRANSFER CERTIFICATE	iv
ACKNOWLEDGEMENT	v
DEDICATION	vii
TABLE OF CONTENTS	ix
LIST OF FIGURES	xiv
LIST OF TABLES	xviii
LIST OF ABBREVIATIONS & SYMBOLS	xix
PREFACE	xxiii
Chapter 1	1
Introduction	1
Chapter- 2	5
Literature review	5
2.1 Biomaterial	5
2.2 Basic requirement of a biomaterial	6
2.2.1 Biocompatibility	6
2.2.2 Corrosion resistance	6
2.2.3 Mechanical properties	7

2.2.4 Wear resistance	7
2.2.5 Osseo-integration	8
2.2.6 Antibacterial properties	8
2.3 Conventional metallic implant material	9
2.3.1 Stainless steel	9
2.3.2 Cobalt-chromium alloys	10
2.3.3 Titanium and its alloys	10
2.4 Titanium properties and microstructure	12
2.5 Powder metallurgy technique for development of titanium alloys	14
2.6 Peri-implantitis	15
2.7 Corrosion	16
2.7.1 Types of corrosion	16
2.7.2 Corrosion of titanium and its alloys	18
2.8 Tribology	19
2.8.1 Friction	19
2.8.2 Wear	19
2.8.3 Tribology of titanium and its alloys	22
2.9 Effect of alloying Cu and Nb to titanium alloys on microstructure, mechanical	
properties, corrosion behaviour, wear resistance, antibacterial property, and	
cytocompatibility	23
2.10 Formulation of the problem and objective of the study	29
Chapter- 3	31

Materials and Methodology	31
3.1. Material selection for the development of ternary titanium alloy	31
3.2. Development of ternary titanium alloy	31
3.3. Phase Evaluation and Microstructural Characterizations	34
3.3.1 X-ray diffraction analysis of hybrid composites	34
3.3.2 Microstructural characterization	35
3.4 Mechanical properties testing	35
3.4.1 Density measurement of sintered alloy	35
3.4.2 Micro-hardness measurements	36
3.4.3 Compression test	37
3.5 Electrochemical corrosion measurements	38
3.6 Wear test of the sintered alloys	40
3.7 Cell culture and antibacterial test	42
3.7.1 Cell Study:	42
3.7.2 Cell proliferation	43
3.7.3 Morphological analysis:	43
3.7.4 Antibacterial test	4 4
3.7.4.1 Preparation	44
3.7.4.2 Plate count method	44
Chapter-4	46
Results and Discussion	46
MICROSTRUCTURAL, PHYSICAL, AND MECHANICAL BEHAVIOUR OF SINTALLOY	ΓEREC

4.1 Introduction	46
4.2 Phase identification and microstructure characterization	46
4.3 Physical and Mechanical properties	54
Chapter-5	59
Result and Discussions	59
CORROSION AND TRIBOLOGICAL BEHAVIOUR OF SINTERED ALLOY	
5.1 Introduction	59
5.2 Corrosion study	59
5.2.1 Open-circuit potential	59
5.2.2 EIS measurements	61
5.2.3 Potentiodynamic polarization behavior	65
5.2.4 Surface Analysis	68
5.3 Wear and frictional behavior of alloys	71
5.3.1 Coefficient of friction	71
5.3.2 Worn surface width and lateral depth	74
5.3.3 Wear volume and wear rate	77
5.3.4 Worn surface characterization	79
5.3.5 Scanning probe microscope analysis	85
Chapter- 6	88
Result and Discussions	88

ANTIBACTERIAL AND CYTOCOMPATIBILITY BEHAVIOR OF SINTERED

ALLOYS

6.1 Introduction	88
6.2 Antibacterial properties of the sintered alloys	88
6.3 Cytocompatibility assessment of sintered alloys	91
6.3.1 Cell culture and morphological analysis	91
6.3.2 MTT Assay	93
Chapter-7	94
CONCLUSIONS AND FUTURE SCOPE	94
REFERENCES	102