Chapter 4. Three-Dimensional Path Independent Integral for Coupled

Magneto-Thermo-Elastic Fracture Domain

4.1. Introduction

The analysis of the magneto-elastically coupled fracture problem for giant magnetostrictive
material such as Terfenol-D is essentially a magnetization and stress dependent elasticity
problem requiring a meticulous evaluation of the state of stress. Additionally, the nature of
the failure in such bi-nonlinear material is influenced by the state of tension and compression
regions in the flexure loading. When the stress-strain behaviour is different in tension and
compression, it becomes necessary to formulate a bi-nonlinear fracture theory to account the
singularity at the crack front. This happen to be a classical stress-dependent elasticity
problem and additionally, for magnetostriction fracture studies, the multi-physics of
magnetic field domain must be coupled to the elasticity solution. It would be unwise to
ignore this real field phenomena which might otherwise have caused many unwarranted
failures in design. So cause, the three-dimensional treatment is necessary to analyses this

nonlinear fracture phenomenon [55,61,62].

Hence, a coupled multiphysics three-dimensional numerical approach was required to
evaluate the path independent fracture parameter referred to as the 3D J-integral. In chapter,
a three-dimensional J-integral definition for characterizing the fracture behaviour has been
formulated employing the Eshelby [63] four-dimensional dynamic energy-momentum
tensor. The formulated 3-D path independent integral is limited to mode I crack cases. For
maintaining the generality, the influence of magneto-thermo-elasticity as discussed in
previous chapter is taken care of with the thermal strain, magnetic strain, and the magnetic

body force terms. However, the experimental investigation in this thesis is primarily focused
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on the magneto-elastic physics. But the generalised expression has the application in the

coupled magneto-thermoelastic domain also.

4.2. Formulation of the path independent 3D J-Integral
In elastodynamics, considering the rectangular cartesian coordinates X;, X,, X5 along with

the time variable as X, = t and taking for the Lagrangian density L =T — W where T =
% pu? is the kinetic energy density, and W is the strain energy density; Eshelby [63] defined

the components of a four-dimensional dynamic energy-momentum tensor with components
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where 0 is stress tensor, u; is the displacement, §,; is Kronecker symbol and (&) represents

the time derivative.

Considering a homogeneous medium and external body forces f; in the account, Eshelby

gives the conservation law

oy 09 _ . (4.5)
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The conservation law, with the help of Eq. (4.1) and (4.3), is transformed as

0 1. . (4.6)
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Figure 4.1 Configuration of three-dimensional crack front in solid; A4,: fracture process
region

Figure 4.2 Arbitrary integration contour perpendicular to crack front at O, in the
plane X3 = 0.
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Consider a three-dimensional solid material with traction-free crack and the local axes
(0 — X1,X,,X5) defined at a point O along the crack front, as shown in Figure 4.1. The
directions of X;, X, are taken as coincidental with the normal of the crack front contour and
the direction of X3 is set as tangential to the crack front contour. Figure 4.2 shows an
arbitrary integration area A, containing a crack tip in the plane X5 = 0. Let A, is the similar
surface area which accommodated the crack tip singularity. Here, I' and y represent the
contours of area A; and 4, respectively. Now, taking conservation law for Eshelby dynamic
energy-momentum tensor [63] into account, as shown in Eq.s (4.1)-(4.4), we can integrate

Eq. (4.6) over any area in the plane X; = 0, which does not contain the singularity. Then

9 1 o 4.7)
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Considering the superposition of integration domain Eq. (4.7) can be rearranged as
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With the area A, containing the crack front singularity tends to zero, the path independent

J-integral can be defined as

d 1 0 (4.9)
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where J[*(s) denote the rate of energy dissipated in the fracture process region with respect
to crack extension per unit area and is dependent on the position of crack front s. The
superscript n is defined to make clear that the contour area A; should be perpendicular to

the crack front.

116



n d 0y o (4.10)
]l (S) = W[W6U - ai]-ul-,l] dA — puiﬁ&jdA + puiui_ldA
Al ] A1 ] A1

+ | (pil; = f)uidA

Aq

The strain energy density W for a magnetostrictive material subjected to the coupled

magneto-thermo-elastic field is defined by [63]

b aeij

4.2.1. Coupled Magneto-Thermo-Elastic field contribution in J-integral
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Figure 4.3 Stress-strain curves predicted by the constitutive model at different magnetic
field levels when N,,, = 0.096

Giant magnetostrictive materials exhibit distinct nonlinear stress-strain behaviour under
tension and compression as plotted in Figure 4.3 employing numerical evaluation (Ref: Eqn.
(3.29) and (3.30)). Depending on the stress and magnetization distribution, this nonlinear
elastic nature of material must be considered in Eq. (4.10) for the J-integral computation. In
the present investigation, the novel hysteretic nonlinear magneto-thermo-elastic constitutive

model proposed in Chapter 2. (ref. [127]) was implemented. To better understand the
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nonlinear magneto-elastic behaviour, stress-strain curves for the uncracked Terfenol-D
specimen have been plotted for the unidirectional case (i.e., in its longitudinal direction or
x-direction) in Figure 4.3, as predicted by the constitutive model at different magnetic field
levels. Considering that the Terfenol-D specimen have no internal defects, the geometric
demagnetizing factor acts as a sole contributor to the demagnetizing factor (N). For a cuboid
shape Terfenol-D specimen, the value of shape demagnetizing factor is calculated from the
approximate expression given in the existing study [60]. The demagnetization factor in x-
direction is evaluated as Ny, = 0.096 and in remaining directions as Ny, = N,, = 0.452.
The plot shows that the rotation or movement of magnetic domains generates nonlinearity
in the stress-strain curve before the material is magnetized (i.e., at 0 T). The linear stress-
strain curve independent of domain rotation is sketched as a black line with the slope of Ej;,.
As previously discussed, E;;, is the intrinsic Young’s modulus value when the magnetization
of the magnetostrictive material approaches a saturation. Here, the nonlinear contribution

caused by the magnetic domain rotation is expressed by the A,(¢). For an isotropic positive
- . 2
magnetostrictive material (e.g., Terfenol-D), the A,(0) adheres the value — 75 when stresses

approaches to —oo and A; when stress approaches to co [4]. Further, the contribution of

magnetization increases the stress-strain curve nonlinearity in the presence of a low magnetic

field (i.e., at 0.03 T and 0.05 T).

Thus, for the 3-D magneto-elastic field, we can broadly decompose the strain tensor ¢;; into
four components [127] as given in as Eq. (3.29), that are linear elastic strain &;;, nonlinear
n T

{j» thermal strain &;; and magnetostrictive strain &;. Now &;; can be expressed

elastic strain & i

as

g =&+ el + el + el 4.12)
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The linear strain siej caused by the applied stresses alone, which is independent of domain

rotation and external field variables, can be expressed as

1 (4.13)
efj = E_m [(1 +v)o;; — vakk&-j]

The applied stresses can rotate the magnetic domains and generate the nonlinear strain
ei"j or Ag;j even in the absence of magnetic field. ei"j exhibits a saturation phenomenon once
the rotation of all domains is completed. After the saturation level, ei"j gives a constant strain

value as the stress increases. el-”j can be written as
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The magnetostrictive strain, &, is induced on the application of a magnetic field and has a

functional dependency on the coupled interaction of the magneto-thermo-elastic variables,

can be derived as

(4.15)
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The thermal strain component ¢&;;, shows the effect of temperature variation on the linear

thermal expansion and the magnetostriction of the material, can be derived as
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The elastic strain energy density function, W* (efj), using the Eq. (4.11) obtained as

oW (ef) (4.17)

e
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and We(sl-ej) does not explicitly rely on X;. As well as, in the presence of an external

magnetic field By; (= poHy;), the external force f; acting on a body is [4]

9By; (4.18)
fi = M; X,

Here, introducing equations (4.11)-(4.18) into equation (4.10) leads to

. o . oy N (4.19)
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Taking | = 1 for a traction free crack, the path independent J-integral can be simplified as

i o (4.20)
Ji(s) = Ll [a_xl we) —a—Xj(Uijui,1)] dA
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On the application of Gauss's divergence theorem to the first integral of equation (4.20), the

terms related to j = 1,2 are coplanar with area A; in the plane X3 = 0 and can be
transformed to a line integral. The terms related to j = 3 is not coplanar with area 4; and
cannot be expressed as a line integral. Thus, the final form of the 3-D J-integral is obtained

as
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where n; represents the components of the outward normal vector 7 to the contour I' of the

area A, in the plane X3 = 0. The right-hand side expression of equation (4.21) is path-area

independent and constant for any contour.

For a two-dimensional problem, upon ignoring the variation in the X3 direction, the J-

integral can be derived as

]1(5) = j[werh - Gi,-njuill]dl“ (4.22)
r
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Since the fracture parameter characterization analysis in this thesis is only limited to

magneto-elastic field, thus Eqns (4.21) and (4.22) can be updated by removing thermal stress

terms as

a 4.23
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For a two-dimensional problem,
(4.24)
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4.3. Summary

The analysis of the magneto-elastically coupled fracture problem for giant magnetostrictive
material is mainly a magnetization and stress-dependent elasticity problem. Thus, a new
expression of conservation integral /; (s) for a mode I crack has been proposed to have the
physical meaning of energy release rate (both in two dimensional and three dimensional
cases) for a homogeneous, isotropic giant magnetostrictive material considering combined

effects of inertia, thermal and magnetostriction effect.
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