TABLE OF CONTENTS

(CONTENTS	Page No
ABSTRACT		i
ACKNOWLE	DGEMENT	iv
LIST OF FIGURES		vi
LIST OF TABLES		xiv
LIST OF ABI	BREVIATIONS/SYMBOLS	XV
Chapter 1	INTRODUCTION	1-8
1.1	Micromilling background	1
1.2	Sustainable machining techniques	4
1.3	Motivation	5
1.4	Research objectives	6
1.5	Thesis outlines	7
Chapter 2	LITERATURE REVIEW	9-38
2.1	Machining mechanics in micromilling	9
2.1.1	Size effect and minimum undeformed chip thickness	11
2.1.2	Difficulties in micromachining of titanium alloys	13
2.2	Process performances in micro-end milling	14
2.2.1	Burr formation	14
2.2.2	Tool wear	18
2.2.3	Surface roughness	18
224	Cutting forces	19

2.2.5	Cutting temperature	20
2.3	Effect of the thin film-coated tool in micromachining	21
2.4	Metal cutting fluids (MCFs) and sustainable techniques	26
2.4.1	Lubrication mechanism of nanoparticles as lubricant additives	28
2.4.2	Utilization of cutting fluids and nanofluids in micromachining with MQL	29
2.5	Influence of MQL parameters on machining performances	35
2.6	Gaps in knowledge and need for research	36
Chapter 3	Experimental setup	39-46
3.1	Work material and cutting tools	39
3.2	Experimental setup	41
3.3	Summary	46
Chapter 4	Performance evaluation of tool coatings and nanofluid MQL on the micro-machinability of Ti-6Al-4V	47-84
Chapter 4		47-84 47
•	MQL on the micro-machinability of Ti-6Al-4V	
4.1	MQL on the micro-machinability of Ti-6Al-4V Experimental procedure	47
4.1 4.1.1	MQL on the micro-machinability of Ti-6Al-4V Experimental procedure Work material, coated tool, and MQL assisted micromilling	47 47
4.1 4.1.1 4.1.2	MQL on the micro-machinability of Ti-6Al-4V Experimental procedure Work material, coated tool, and MQL assisted micromilling Nano-cutting fluids: preparation and characterization	47 47 53
4.1 4.1.1 4.1.2 4.1.3	MQL on the micro-machinability of Ti-6Al-4V Experimental procedure Work material, coated tool, and MQL assisted micromilling Nano-cutting fluids: preparation and characterization Wettability analysis	47 47 53 57
4.1 4.1.1 4.1.2 4.1.3 4.2	MQL on the micro-machinability of Ti-6Al-4V Experimental procedure Work material, coated tool, and MQL assisted micromilling Nano-cutting fluids: preparation and characterization Wettability analysis Results and discussion	47 47 53 57 58
4.1 4.1.1 4.1.2 4.1.3 4.2 4.2.1	MQL on the micro-machinability of Ti-6Al-4V Experimental procedure Work material, coated tool, and MQL assisted micromilling Nano-cutting fluids: preparation and characterization Wettability analysis Results and discussion Tool wear	47 47 53 57 58
4.1 4.1.1 4.1.2 4.1.3 4.2 4.2.1 4.2.2	MQL on the micro-machinability of Ti-6Al-4V Experimental procedure Work material, coated tool, and MQL assisted micromilling Nano-cutting fluids: preparation and characterization Wettability analysis Results and discussion Tool wear Cutting forces	47 47 53 57 58 58

Chapter 5	Tribological aspects and size effect in micromilling of Ti-6Al-4V alloy using vegetable oil nanofluids with minimum quantity lubrication	85 - 120
5.1	Experimental procedure	86
5.1.1	Work material, coated tool, and MQL assisted micromilling	86
5.1.2	Characterization of nanoparticles and nanofluids	89
5.1.3	Micro-mist droplets measurement	93
5.1.4	Wettability test	94
5.1.5	Tribology tests	95
5.2	Results and discussions	98
5.2.1	Evaluation of tool wear and wear mechanisms	98
5.2.2	Specific cutting force	106
5.2.3	Burr formation	110
5.2.4	Surface roughness and surface topography	114
5.3	Summary	118
Chapter 6	Application of eco-friendly emulsions with different flow rates during MQL assisted micromilling of Ti6Al4V	121- 140
6.1	Experimental procedure	121
6.1.1	Work material and MQL assisted micromilling	121
6.2	Results and discussion	124

6.2.1	Tribology tests and micromilling forces	124
6.2.2	Analysis of surface quality	129
6.3	Summary	138
Chapter 7	Conclusion and Future Research Initiatives	141 - 146
7.1	Conclusion	141
7.1.1	External Delivery Using CuO-Enhanced Environmentally- Benign water-based Cutting Fluids and utilization of different coated microtools	141
7.1.2	External Delivery Using CuO and MoS ₂ -Enhanced Environmentally-Benign vegetable oil-based cutting fluids	142
7.1.3	Variation of emulsions supply at different rotational speeds to enhance machining performance	144
7.2	Future Research Initiatives	145
References		147
List of publications from thesis		158