Numerical and experimental studies on single phase natural circulation loop using water and oil based hybrid nanofluids

Thesis submitted in partial fulfillment for the

Award of Degree

Doctor of Philosophy

By

Mayaram Sahu

DEPARTMENT OF MECHANICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU UNIVERSITY) VARANASI-221005 INDIA

Roll No. 17131012

2022

CERTIFICATE

It is certified that the work contained in the thesis titled "**Numerical and experimental studies on single phase natural circulation loop using water and oil based hybrid nanofluids**" by Mayaram Sahu has been carried out under our supervision and that this work is not submitted elsewhere for any degree. It is further certified that the student has satisfactorily fulfilled all the requirements of the Comprehensive examination, Candidacy, and SOTA for the award of the Ph.D. degree.

Shr129.7.22

Prof. Jahar Sarkar

(Supervisor)

Department of Mechanical Engineering

IIT (BHU) Varanasi

Latro Ch Dr. Laltu Chandra

(Co-supervisor) Department of Mechanical Engineering

IIT (BHU) Varanasi

DECLARATION BY THE CANDIDATE

I, Mayaram Sahu, certify that the work embodied in this thesis is my own bonafide work carried out by me under the supervision of Prof. Jahar Sarkar and Dr. Laltu Chandra for a period of 5 years from July 2017 to July 2022 at IIT (BHU), Varanasi. The material contained in this thesis has not been submitted for the award of any other degree. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any others' work, paragraphs, text, data, results, etc. reported in journals, books, magazines, reports, dissertations, theses, etc. or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 29/07/22

Place: IIT (BHU), Varanasi

(Mayaram Sahu)

CERTIFICATE BY THE SUPERVISORS

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Prof. Jahar Sarkar

(Supervisor)

date CR

Dr. Laltu Chandra

(Co-supervisor)

Head of the Department

Mechanical Engineering Department, IIT (BHU), Varanas विभागाध्यक्ष / HEAD यान्त्रिक अपियान्त्रिकी विभाग/Deptt. of Mechanical Eng. भारतीय प्रौद्यौगिकी संस्थान /Indian Institute of Technology 11 (का U.) 171005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Numerical and experimental studies on single phase natural circulation loop using water and oil based hybrid nanofluid.

Candidate's Name: Mayaram Sahu

COPYRIGHT TRANSFER

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Ph.D. degree.

Date: 29/07/2022

Place: IIT (BHU), Varanasi

M. P.

(Mayaram Sahu)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and University's copyright notice are indicated.

ACKNOWLEDGEMENTS

I take this opportunity to express my deep sense of gratitude to my supervisor **Prof. Jahar Sarkar** and **Dr. Laltu Chandra** for their continuous guidance and whole-hearted cooperation in carrying out this work. His meticulous and valuable review and constructive criticism of the manuscript have greatly improved the quality of work. Sir, for your faith in me and the desire to live up to your expectations, has constantly pushed me to work harder.

My grateful appreciation also goes to Prof. Pradyumna Ghosh and Dr. Ravi P. Jaiswal for serving on my research progress evaluation committee (RPEC). Thank you all for sparing your valuable time and assisting me throughout my research and completion of this thesis. I wish to extend my sincere thanks to Prof. Santosh Kumar, Head, Department of Mechanical Engineering for providing me the necessary resources to enable me to complete this research work. During my stay at IIT (BHU) Varanasi, I have met many people who have made this period of my life memorable and very pleasant. Among them, I would like to sincerely acknowledge the assistance and motivation provided by Dr. Rashmi Rekha Sahoo, Dr. Swasti Sundar Mandal, Dr. Om Prakash Singh and Dr. Amitesh kumar. I want to thank my colleagues at IIT (BHU) Varanasi, especially to Mr. Prashant Srivastava, Mr. Satish Upadhyay, Mrs. Archana Kumari, Mr. Mayank Srivastava, Mr. Jayprakash, and Mr. Sarvesh Kashyap for encouraging me to finish this work. The experimental part of this thesis has been carried out at the Department of Mechanical Engineering IIT (BHU) Varanasi. A number of persons have assisted and supported me in designing and development of the test rig. I would like to extend my sincere thanks to Mr. Mulchand and Mr. Sunil bardhan for giving the valuable ideas while performing experiments and providing the measurement tools and instruments whenever needed for the research work without any hesitation.

I would like to acknowledge my parents, especially my elder brother (**Heturam Sahu**) and family for not engaging me in any other affairs during my research duration and handling all the matters by themselves. I thank my parents for assisting me financially whenever needed and motivating me for my work. Your sacrifices for allowing me to completely devote my attention to my research work are greatly acknowledged and appreciated.

I would also like to thank GOD the Almighty for giving me the strength to remain on the path to success.

Date: 29/07/2022

M. P.

Place: IIT (BHU), Varanasi

(Mayaram Sahu)

TABLE OF CONTENTS

Chapte	er 1: Introduction1
1.1	Background and motivation1
1.2	Natural circulation loop
1.3	Mono and hybrid nanofluids6
1.4	Objective and novelty of the thesis
1.5	Thesis structure10
Chapte	er 2: Literature review12
2.1	Experimental Studies12
2.2	Theoretical and numerical studies19
2.3	Research gaps24
Chapte	er 3: Numerical modelling for Single Phase Natural
Circula	ation Loop using various working fluids27
3.1	Methodology27
3.1.1	Governing Equations28
3.1.2	Properties of the working fluids
3.1.3	Nusselt number and friction factor32
3.1.4	Numerical scheme and performance parameters
3.1.5	Grid and time-independent test36
3.1.6	Model validation

3.2	Results and discussion40
3.2.1	Water-based binary hybrid nanofluids40
3.2.2	Water-based ternary hybrid nanofluids59
3.2.3	Thermal oils71
3.3	Important findings77
Chapter	e 4: Effect of modelling assumptions on SPNCL
perform	ances
4.1	Methodology79
4.1.1	Governing Equations:81
4.1.2	Properties of working fluids84
4.1.3	Nusselt number and friction factor correlation85
4.1.4	Numerical scheme and performance parameters
4.1.5	Grid and time-independent test88
4.2	Results and Discussion
4.2.1	Effect of various assumptions on the performance of VHHC SPNCL .89
4.2.2	Effect of different working fluids on the performance of VHHC SPNCL
	97
4.2.3	Influence of different nature of heat flux distribution on the performance
param	104 neters
4.3	Important highlights111

Chapter	r 5:	Experi	mentati	on or	n SPNO	CL u	ising	water-based
mono/hy	ybrid	l nanof	luids		•••••	•••••	•••••	
5.1	Prepa	ration of	and Chara	cterizat	ion	•••••	•••••	113
5.1.1	Pre	paration	of mono/hy	brid na	nofluids	•••••	•••••	
5.1.2	Cha	racteriza	tion of nan	opartic	les	•••••	•••••	115
5.1.3	Stal	bility of m	ono/hybrid	l nanofl	uids	•••••	•••••	116
5.1.4	Cal	culation o	f thermoph	ysical p	properties	of nan	ofluids	117
5.2	Exper	rimentatio	n methodo	logy		•••••	•••••	118
5.2.1	Exp	erimenta	l setup and	instrun	nentation	•••••	•••••	118
5.2.2	Exp	erimenta	l procedure			•••••	•••••	122
5.2.3	Dat	a analysis	and perfor	mance	paramete	er	•••••	123
5.2.4	Unc	certainty a	malysis	•••••		•••••	•••••	124
5.3	Result	ts and dis	cussion	•••••		•••••	•••••	125
5.3.1	Rep	eatability	test	•••••		•••••	•••••	126
5.3.2	Con	nparison	of the expe	rimenta	l and nun	nerical	results	
5.3.3	Tra	nsient bel	navior of Sl	PNCL f	or various	s hybri	d nano	fluids127
5.3.4	Infl	uence of i	nput powei	r on stea	ady-state]	perfori	mance	parameter 130
5.3.5	Effe	ect of cool	ant inlet te	mperat	ure on the	e perfoi	rmance	parameters133
5.3.6	Effe	ect of loop	inclination	n on the	performa	ance pa	aramete	er136
5.4	Impor	rtant find	ngs	•••••		•••••	•••••	140

Chapter	r 6:	Experimenta	l investi	igations	of	SPNCL	using
mono/h	ybrid 1	nano-oils	•••••	•••••	•••••	••••••	142
6.1	Experin	nentation method	lology	•••••		•••••	142
6.1.1	Expe	rimental setup an	d procedure	2	••••••	•••••	142
6.1.2	Nano	oil preparation,	characteriza	tion and p	roper	ties	143
6.1.3	Evalu	ation of perform	ance param	eters		•••••	145
6.1.4	Uncer	tainty analysis		••••••	•••••	••••••	147
6.2	Results	and discussion		•••••	•••••	••••••	147
6.2.1	Repea	atability test		••••••	•••••	••••••	148
6.2.2	Comp	parison of experin	nental and n	umerical r	esults	••••••	149
6.2.3	Trans	sient behavior of	SPNCL for 1	mono/hybri	id nar	10-oils	150
6.2.4	Effect	t of input power	on the tra	nsient and	stead	ly-state perf	ormance
param	neters			•••••	•••••	•••••	152
6.2.5	Effect	t of loop inclination	on on the pe	rformance	parar	neters	160
6.2.6	Perfo	rmance comparis	son of Thern	ninol VP1 a	nd So	yabean oil .	168
6.3	Importa	ant findings		•••••		•••••	170
Chapter	r 7: Co	onclusions an	d future :	scope		••••••	171
7.1	Conclus	ions		••••••	•••••	••••••	171
7.2	Future	scope		••••••	•••••	••••••	173
Referen	ces					1	75-189

List of Publications	190-191
----------------------	---------

TABLE OF FIGURES

Fig. 3.10 Effect of heater power input on mass flow rate for different binary hybrid
nanofluids
Fig. 3.11 Effect of power input on the effectiveness for different binary hybrid nanofluids
Fig. 3.12 Effect of power input on the total entropy generation for different binary hybrid
nanofluids51
Fig. 3.13 Effect of diameter on steady state mass flow rate for Al2O3+ Ag+ Water hybrid
nanofluids53
Fig. 3.14 Effect of diameter on the effectiveness for Al ₂ O ₃ + Ag+ Water hybrid nanofluids
Fig. 3.15 Effect of diameter on the total entropy generation for Al ₂ O ₃ + Ag+ Water hybrid
Fig. 3.16 Effect of loop height on steady state mass flow rate for Al ₂ O ₃ + Ag+ Water55
Fig. 3.17 Effect of loop height on the effectiveness for Al ₂ O ₃ + Ag+ Water
Fig. 3.18 Effect of loop height on the total entropy generation for Al ₂ O ₃ + Ag+ Water56
Fig. 3.19 Effect of loop inclination on the steady state mass flow rate for Al_2O_3+ Ag+
Water
Fig. 3.20 Effect of loop inclination on the effectiveness for Al ₂ O ₃ + Ag+ Water58
Fig. 3.21 Effect of loop inclination on the total entropy generation rate for Al ₂ O ₃ + Ag+
Water
Fig. 3.22Transient variation of mass flow rate for different water based ternary hybrid
nanofluids at 500 W input power61
Fig.3.23 The fluid temperature distribution along the loop for water and
Al ₂ O ₃ +Cu+CNT+water at 500 W power input
Fig. 3.24 Variation of computed steady-state mass flow rate with input power

Fig. 3.25 Computed steady-state effectiveness at various input power	4
Fig. 3.26 The computed steady-state entropy generation rate various input power6	5
Fig. 3.27 The computed steady-state mass flow rate at various inclinations of loop6	9
Fig. 3.28 The computed steady-state effectiveness at a various loop inclination angle6	9
Fig. 3.29 The computed steady-state total entropy generation rate at various loop inclinatio	n
angle7	0
Fig. 3.30 Comparison of transient variation of mass flow rate with water and thermal oil	ls
7	2
Fig. 3.31 Steady-state mass flow rate for water and thermal oils7	3
Fig. 3.32 Effectiveness of heat exchanger for water and thermal oils	3
Fig. 3.33 Total entropy generation rate for water and thermal oils	4
Fig. 3.34 Variation of steady-state mass flow rate with height-to-width ratio for therma	al
oils7	5
Fig. 3.35 Variation of effectiveness with height-to-width ratio for thermal oils7	6
Fig. 3.36 Variation of entropy generation rate with height-to-width ratio for thermal oils	s.
	7
Fig. 4.1 Schematic illustration of VHHC Single phase natural circulation loop, (b) Cros	SS
sectional view of heating section and (c) Cross sectional view of cooler section	1
Fig. 4.2 Comparison of steady state mass flow rate obtained numerically for different case	2S
(i-vi) with experimental data [97] using water9	1
Fig. 4.3 Effect of different cases (i-vi) on steady state effectiveness of cooler with power	er
input	2
Fig. 4.4 Effect of different cases (i-vi) on steady-state total entropy generation rate wit	h
power input9	3

Fig. 4.5 Comparison of transient pressure drop obtained by different cases (i-vi) with
experimental data [97] using water95
Fig. 4.6 Effect of different cases (i-vi) on the transient mass flow rate
Fig. 4.7 Effect of different base fluids on deviation in mass flow rate with power input .98
Fig. 4.8 Show the constant and variable thermophysical properties variation with
temperature, (a) Density, (b) Specific heat, (c) thermal conductivity, and (d) Viscosity of
the different base fluids respectively
Fig. 4.9 Effect of different working fluids on deviation in effectiveness with power input.
Fig. 4.10 Deviation in entropy generation with power input for different working fluids
Fig. 4.11 Comparison of transient mass flow rate of case (i) and case (vi) for different
working fluids104
Fig. 4.12 Different heat flux distribution nature along the heating length105
Fig. 4.13 Effect of different heat flux distribution nature on transient mass flow rate for
$Al_2O_3+Cu+Water$
Fig. 4.14 Effect of different heat flux distribution nature on steady mass flow rate for
Al ₂ O ₃ +Cu +Water
Fig. 4.15 Effect of different heat flux distribution nature on effectiveness for Al ₂ O ₃ +Cu
+Water
Fig. 4.16Temperature distribution along loop length for different heat flux distribution
nature for Al ₂ O ₃ +Cu +Water109
Fig. 4.17 Effect of different heat flux distribution nature on total entropy generation for
$Al_2O_3+Cu+Water.$ 110

Fig. 5.1 Flow chart of preparation of mono/hybrid nanofluids, nanoparticles, and equipment
used for the preparation of nanofluids114
Fig. 5.2 SEM image (a) Al ₂ O ₃ particle (b) Al ₂ O ₃ +CNT nanoparticles mixture116
Fig. 5.3 Photographs of prepared nano/hybrid nanofluids with time117
Fig. 5.4 (a) Schematic layout out Experimental facility, (b) Photographic view of
Experimental facility
Fig. 5.5 The measured water mass flow rate for three different experiments under an
identical operating condition to ensure repeatability126
Fig. 5.6 Comparison of experimental transient mass flow rate with the numerical result for
different power inputs
Fig. 5.7 Experimental transient mass flow rate for different mono/hybrid nanofluids129
Fig. 5.8 Experimental transient heater temperature difference for different Fluids129
Fig. 5.9 Steady-state mass flow rate for different mono/hybrid nanofluids at power input.
Fig. 5.10 Steady state effectiveness for different water-based mono/hybrid nanofluid at
different power input131
Fig. 5.11 Steady state total entropy generation rate for different mono/hybrid nanofluids at
different power input
Fig. 5.12 Experimental transient mass flow rate at different coolant inlet temperatures 133
Fig. 5.13 Steady state experimental mass flow rate for different water-based mono/hybrid
nanofluids at different coolant inlet temperatures
Fig. 5.14 Steady state experimental effectiveness for different water-based mono/hybrid
nanofluids at different coolant inlet temperatures
Fig. 5.15 Steady state experimental total entropy generation rate for different water-based
mono/hybrid nanofluids at different coolant inlet temperatures

Fig. 5.16 a) Counter clockwise inclination of the loop, (b) Clock wise inclination of the
loop from vertical
Fig. 5.17 Experimental transient mass flow rate for different loop inclinations
Fig. 5.18 Variation of the central distance between heater and cooler at different loop
inclination
Fig. 5.19 Steady state experimental mass flow rate for different water-based mono/hybrid
nanofluids at different loop inclinations
Fig. 5.20 Steady state experimental effectiveness for different water-based mono/hybrid
nanofluids at different loop inclinations
Fig. 5.21 Steady state experimental effectiveness for different water-based mono/hybrid
nanofluids at different loop inclinations
Fig. 6.1 Photographic view of the installed single-phase natural circulation loop (SPNCL)
experimental facility
Fig. 6.2 Variation of thermophysical properties: (a) density, (b) specific heat capacity, (c)
thermal conductivity, and (d) absolute viscosity for the primary fluids
Fig. 6.3 The measured temperature with Soyabean oil at the inlet and outlet of heater for
three different experiments and at an identical operating condition for repeatability 149
Fig. 6.4 A comparison between the experimental and numerical temperature difference
across the heater for an input power of 400 W at the transient and steady-state conditions.
Fig. 6.5 Experimental temperature difference across the heater for the TVP1-based mono
and hybrid nano-oils
Fig. 6.6 Experimentally obtained temperature difference across the heater for the Soyabean
oil-based mono and hybrid nano-oils151

Fig. 6.7 Experimentally obtained temperature difference across the heater for TVP1 at
different input powers
Fig. 6.8 Experimentally obtained temperature difference across the heater for Soyabean oil
at different input powers
Fig. 6.9 Temperature distribution along loop length at different power input for (a)
Therminol VP1 and (b) soyabean oil154
Fig. 6.10 Steady state mass flow rate for different Therminol VP1-based mono/hybrid
nanofluids with power input
Fig. 6.11 Steady state mass flow rate for different soyabean-based mono/hybrid nanofluids
with power input
Fig. 6.12 Steady-state effectiveness of cooler for TVP1 based nano-oils for the different
input powers
Fig. 6.13 Steady-state effectiveness of cooler for Soyabean oil and its nano-oils for the
different input powers158
Fig. 6.14 The total entropy generation rates at the steady-state conditions for TVP1 and
TVP1-based nano-oils at different input powers
Fig. 6.15 The total entropy generation rates at the steady-state conditions for Soyabean oil
and Soyabean oil-based nano-oils at different input powers
Fig. 6.16 The photographs showing VHHC arrangement of SPNCL with (a) counter-
clockwise and (b) clockwise inclinations
Fig. 6.17Experimental transient temperature differences across the heater for the different
loop inclinations with TVP1
Fig. 6.18 Experimental transient temperature differences across the heater for the different
loop inclinations with Soyabean oil

Fig. 6.19 Variation of the central distance between heater and heat exchanger at different
loop inclinations163
Fig. 6.20 Steady state experimental mass flow rate for different Therminol VP1-based
mono/hybrid nanofluids at different loop inclinations163
Fig. 6.21 Steady-state experimental mass flow rate for different Soyabean-based
mono/hybrid nanofluids at different loop inclinations164
Fig. 6.22 Steady state experimental effectiveness for different Therminol VP1-based
mono/hybrid nanofluids at different loop inclination165
Fig. 6.23 Steady state experimental effectiveness for different Soyabean-based
mono/hybrid nanofluids at different loop inclination165
Fig. 6.24 Steady state experimental total entropy generation rate for different Therminol
VP1-based mono/hybrid nanofluids at different loop inclination167
Fig. 6.25 Steady state experimental total entropy generation rate for different soyabean-
based mono/hybrid nanofluids at different loop inclination167
Fig. 6.26 Performance assessment of VHHC configuration of SPNCL with TVP1 with
Soyabean oil based on (a) mass flow rate (b) effectiveness and (c) total entropy generation
rate

LIST OF TABLES

Table 1.1 Temperature range, application and working fluid of SPNCL
Table 2.1 Some important experimental investigations on SPNCL
Table 2.2 Some important numerical investigations on SPNCL 22
Table 3.1 Some important numerical investigations on SPNCL [99-104]31
Table 3.2 Sphericity, Empirical shape factor, and viscosity enhancement coefficient of
different shapes of nanoparticles [105]
Table 3.3 Calculation of discretization error. 36
Table 3.4 Operating condition and geometric parameter used in this analysis
Table 3.5 Geometric parameter and operating condition considered in the analysis59
Table 3.6 The performance enhancement of SPNCL using binary and ternary water-based
nanofluid compared to water at 100 W66
Table 3.7 Geometric parameter and operating condition considered in this analysis71
Table 4.1 Thermophysical properties of nanoparticles [99]. 85
Table 4.2 Considered geometric and operating parameters of VHHC SPNCL
Table 4.3 The effect of different cases (ii-vi) on the performance parameter compared to
case(i) at 1000 W power input96
Table 4.4 Buoyancy force calculation for different nature of heat flux distribution107
Table 5.1 Particle size, shape, and thermophysical properties of nanoparticles used in the
investigation [118]115
Table 5.2 Position of the thermocouples
Table 5.3 Geometric parameters and materials used in the experimentation
Table 5.4 Instruments and their specification used to measure the different parameters 121
Table 5.5 Maximum uncertainties of the calculated parameters 124
Table 5.6 Operating parameters of VHHC SPNCL 125

Table 6.1 Maximum uncertainties of the calculated parameters for the TVP1	147
Table 6.2 Maximum uncertainties of the calculated parameters for the Soyabean oil1	147
Table 6.3 Operating parameters for VHHC configuration of SPNCL	148

LIST OF THE SYMBOLS

NOMENCLATURE

А	Cross section area (m ²)
Cp	Specific heat (J/kg-K)
d	Loop tube diameter (m)
f	Friction factor
g	Acceleration due to gravity, m/s ²
h	Coefficient of heat transfer (W/m ² -K)
k	Thermal conductivity, W/m-K
Κ	Local loss coefficient
Lc	Cooler length (m)
L _H	Heater length (m)
Lt	Total length of the loop (m)
т	Empirical shape factor
<i>m</i>	Mass flow rate (kg/s)
Q	Input power (W)
Ra	Rayleigh number
S	Axial space coordinate (m)
Sgen	Entropy generation rate (W/K)
t	Time (s)
Т	Fluid temperature (K)
w	Tube wall
V	Volume, m ³

Greek Symbols

α	Thermal diffusivity (m ² /s)
β	Volumetric expansion coefficient, (1/K)
μ	Dynamic viscosity of fluid (N-s/m ²)
θ	Change in direction of flow (deg)
φ	Angle of loop inclination (deg)
ϕ	Volume fraction of nanoparticle
ρ	Fluid density (kg/m ³)
ε	Effectiveness
ξ	Perimeter, m

Subscripts

0	References point
avg	Average
1,2,3	Nanoparticle types
c,h	hot leg, cold leg
C,H	Cooler, Heater
bf	Base fluid
hnf	hybrid nanofluid
in	inlet
ins	insulation
out	outlet
р	Nanoparticle
S	secondary fluid
t	total
W	tube wall

Abbreviations

EG	Ethylene Glycol
HF	Heat Flux
PG	Propylene Glycol
SPNCL	Single-Phase Natural Circulation Loop
TR	Temperature ratio
VHHC	Vertical heating horizontal cooling
НННС	Horizontal heating horizontal cooling
TVP1	Therminol VP1

ABSTRACT

Global urbanization and industrialization processes are causing a significant rise in energy usage. The growing energy demand requires a reliable passive device like a natural circulation loop for heat recovery, transfer and use. The selection of a single-phase natural circulation loop is motivated by the independence of any mechanical device or active power source for its simple operation. The difference between buoyancy, generated by the heating and cooling, and pressure-drop leads to the setting up of flow in a natural circulation loop. The safety, reliability, and maintenance cost motivate the use of natural circulation loops for power generation, viz. solar thermal and nuclear, heating and cooling applications, etc., in industries. The literature review revealed the dearth and potential for hybrid nanofluids that are envisaged as a promising working fluid in the futuristic natural circulation loops. Furthermore, many related issues have to be explored, such as the effect of nanoparticle shape and using hybrid nanofluids, the effect of various assumptions for numerical modelling and the effect of oil and nano-oil for medium temperature applications. Considering these issues, the present thesis includes detailed numerical and experimental investigations of a single-phase natural circulation loop with the vertical heater and the vertical cooler arrangement. The objectives are to evaluate the transient and steady-state thermo-hydraulic behaviour, energetic and exergetic performances using water-based binary and ternary hybrid nanofluids for low temperature (< 100 °C) and oils and oil-based mono and hybrid nanofluids for medium temperature (100 °C to 250 °C). Effects of various modelling assumptions and heat flux distribution of heater on steady-state and transient performances are studied as well.

For numerical investigation, the different water-based binary and ternary hybrid nanofluids with Al₂O₃+Ag, Al₂O₃+Cu, Al₂O₃+TiO₂, Al₂O₃+CNT, and Al₂O₃+Graphene and ternary hybrid nanofluids with Al₂O₃+Cu+CNT, Al₂O₃+Cu+Graphene,

XXV

Al₂O₃+CNT+Graphene, Cu+CNT+Graphene, for 1% volume concentration of nanoparticles, are selected. Also, the different thermal oils, viz. Therminol VP1, Paratherm CR, Dowtherm A, and Dowtherm Q are selected as the base fluids for further investigations. The investigations include the effect of the shape of nanoparticles, geometrical parameters like diameter, height, loop aspect ratio (height to width), loop inclination, nanoparticle shapes, and power input on the energetic and exergetic performance, viz. mass flow rate, effectiveness, and total entropy generation rate of a single-phase natural circulation loop. The results reveal that (a) the energetic and exegetic performance for the binary and ternary nanofluid is better than the respective base fluids. Moreover, ternary nanofluid shows better performance than binary nanofluids, (b) Paratherm CR shows a better performance among all thermal oils, (c) the shape of nanoparticles significantly affect the performance by influencing the mass flow rate, (d) the time required to attain a steady state is reduced with nanofluids, which is beneficial for a system, (e) the mass flow rate and the time required to achieve the steady state increase with tube diameter and height, (f) the effectiveness and entropy generation rate increase with decreasing loop diameter and height, (g) for a low input power the flow stabilizes at an early instant, and the steady state mass flow rate increases, (h) effectiveness decreases and entropy generation increases with increasing heater power, and (i) with the increasing loop aspect ratio the steady-state heat transfer effectiveness decreases, and the total entropy generation rate and the mass flow rate increases at an input power. The optimum value of the height to width ratio can be different for different types of fluids.

A detailed numerical investigation on the effect of different assumptions related to Boussinesq approximation, thermophysical properties, bend loss, heat loss, axial conduction of fluid, and wall conduction on the transient and steady-state characteristics has also been carried out. The effect of assumptions on the above-explained performance parameters for different working fluids, viz. water, brines, and hybrid nanofluids, and the effect of different heat flux distributions, like the uniform, linear, non-linear, sinusoidal, and Gaussian, applied to heater have been explored. The results reveal that using the Boussinesq approximation, the error in the performance parameter is higher for EG and PG brine fluids, which restricts its use for all the fluids. The simulations with non-Boussinesq with temperature-dependent properties, including wall and fluid conduction, bend loss and heat loss, provide the closest agreement with the experiment for steady and transient behavior of a single-phase natural circulation loop.

Finally, experimental investigations are performed to evaluate the transient and steady-state performance of the selected single-phase natural circulation loop using mono and hybrid nanofluids that are based on water, Therminol VP1 and Soyabean oil. The nanoparticles and their combinations, viz. Al₂O₃, Al₂O₃+CuO, Al₂O₃+SiC, and Al₂O₃+MWCNT are selected for a volumetric concentration up to 0.1%. Here, the effect of input power, loop inclination (counter-clockwise and clockwise), and coolant inlet temperature on the performance parameters have been investigated. The result reveals (a) Therminol VP1 shows better performance than the Soyabean oil, (b) Al₂O₃+CNT nanoparticles-based hybrid nanofluid shows the best performance among other hybrid nanofluids, (c) the increasing coolant inlet temperature enhances the mass flow rate and total entropy generation rate and reduces the effectiveness, (d) the decreasing loop inclination reduces the mass flow rate, whereas it increases the effectiveness and total entropy generation rate.