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4. CHAPTER  

MULTI-PERIOD MATERNAL HEALTHCARE FACILITY  

PLANNING CONSIDERING POPULATION GROWTH 

 

4.1 Introduction 

To respond to the increase in the demand with growth in the size of population with time, the 

capacity of the existing health facilities are generally increased as well as the same is upgraded 

to provide a higher level of services. It is quite common to find in India. With the growth in 

the population, the existing facilities get overburdened, and the quality of service deteriorates. 

Since proper healthcare is a priority of the governments in India, and particularly so for MTBs, 

as mentioned in Chapter 1, the quality of service should not be compromised beyond a point. 

To address this reality in the healthcare network planning, the mathematical models presented 

in earlier chapters cannot suffice as they did not consider the possibility of expanding and 

upgrading healthcare facilities to fulfil anticipated demand owing to population growth. This 

chapter addresses the strategic and tactical planning issues related to locating new facilities 

and upgrading various types of existing maternal healthcare facilities over a planning horizon. 

This problem is posed as a mixed-integer linear programming (MILP) model for the multi-

period facility location-allocation model. The objective considered is the minimization of the 

overall cost, which includes the cost of establishment, cost of up-gradation, operating cost of 

the facilities, and transportation cost borne by mothers-to-be visiting these facilities. The model 

presented in this chapter is basically an extension of the HCFL model proposed in Chapter 2. 

Thus it is also computationally challenging to solve the model in real-time. To solve the 

problem described using the developed model in a computationally efficient manner, the 
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Benders decomposition algorithm is proposed along with several acceleration strategies such 

as valid inequalities, disaggregated Benders cuts, rolling horizon heuristic and parallelism to 

accelerate the performance. Besides, a heuristic involving the use of Benders decomposition 

philosophy is also proposed to solve considered problems efficiently. Particle swarm 

optimization metaheuristic along with local search is also proposed to obtain a good quality 

solution in much lesser time.  Additionally, a hybridized fix-and optimize and simulated 

annealing approach is also proposed with various search space reduction techniques to obtain 

a good quality solution in a reasonable amount of CPU time.  

The organization of the remaining part of the chapter is as follows. Section 4.2 describes the 

problem, and the mathematical formulation of the problem is presented in Section 4.3. The 

solution approaches are described in Section 4.4. The results of computational experiments are 

given in Section 4.5. Section 4.6 demonstrates the effectiveness of the proposed model by 

solving the maternal healthcare planning problem for the upcoming 15 to 20 years for the 

district of Chandauli in India. Finally, Section 4.7 concludes the chapter and presents the scope 

for future research work.  

4.2 The Problem 

The maternal healthcare problem considered here has the same features as described in 

Chapters 2 and 3. Additionally, the issues resulting from population growth are also addressed. 

Mid and long-term strategic plans are required to open new healthcare facilities and upgrade 

and expand the existing healthcare facilities to handle the increased demand in future due to 

the number of MTBs growth. Therefore, it would require revisiting the network of maternal 

healthcare facilities to determine the location of the new healthcare facilities and up-gradation 

of the existing ones to serve the MTBs at different locations in various time periods of the 
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considered planning horizon. A facility type will keep providing the related type of services 

until it is upgraded. The problem considered here does not consider the possibility of expanding 

the capacity of the related service types that the facility type is meant to provide. It means that 

SC can be upgraded from PHC to CHC. CHC is the highest level of facility type, and the 

question of its up-gradation has been considered. It is assumed that the cumulative capacity for 

each service type over each facility type is much more than the demand of MTBs in any time 

period. Allocation of MTBs to a facility type has to be made such that it does not exceed the 

capacity available therein for a particular service type, or if so, only at a penalty. 

Thus, the fixed cost incurred for establishing a facility at a location will depend upon its type 

and not the location. The same is also applicable to the up-gradation and operating cost of the 

facility. To meet the service demand of MTB in a given time period, sometimes up-gradation 

of the existing facility is more economical rather than opening a new one. The facility, once 

opened, cannot be closed, and thus its service will be available in future. The opened facility 

or existing facility at any given time period can be upgraded to a higher-level facility type in 

any subsequent time period to meet the demand of various service types. The up-gradation cost 

includes the cost incurred on the increase in the number of beds, staff, additional services, etc. 

For example, a lower-level facility type PHC can be upgraded to a higher-level facility type 

CHC by additionally providing neonatal services. The operating cost includes the doctor's 

salary, staff salary, maintenance cost, etc. The cost of construction, daily operating costs, and 

other expenses generally change with time and are mostly governed by the inflation rate 

prevailing in that period.  

A transportation cost will be incurred by an MTB at location i to visit a facility at location j. It 

will generally be in proportion to the distance between locations i and j. Transportation cost is 
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also incurred during the referral visits. The transportation cost taken is constant over the whole 

planning horizon. The objective is to minimize the sum of the costs on establishing the 

facilities, up-gradation of the facilities, operating cost of the facilities, cost incurred on visiting 

these facilities, including referrals, and penalty costs. As the facilities and the services provided 

by them are nested, the problem is referred to as a Multi-Period Hierarchical Capacitated 

Facility Location-Allocation (MHCFL) problem in subsequent elaborations and discussions. 

4.3 Model Formulation 

Most of the expressions used in the formulation are the same as were developed in Chapters 2 

and 3. However, the same is rewritten here for ready reference and continuity. 

Sets and Indices 

:I  set of locations of MTBs,   1,2,...,I b , indexed by i  

:eJ set of locations where facilities are already existing, indexed by ej   

:nJ set of potential locations where new facilities can be established, indexed by nj   

:J  set of potential locations of facilities,  e nJ J J , indexed by j , k  and a  

:L  set of service types offered,   1,2,3L , indexed by ,l m  and p  

:F  set of types of facility,   , ,F I II III , indexed by f  and g  

:T  set of the time periods,  1,2,...,T c , indexed by t  and   

Parameters 

:M a big number  

:P penalty cost per additional MTB beyond the capacity of any service type at any facility 

1 :d a limit on the maximum distance to be covered by an MTB during a non-referral visit  
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2 :d a limit on the maximum distance to be covered by an MTB during the referral visit 

:ijd distance between locations i I  and j J  (used for locations of MTBs) 

:jkd distance between locations j J and k J (used for locations of facilities) 

:ijC travel cost incurred by an MTB for visiting the facility at a location j J  from its current 

location i I  

:jkC travel cost incurred by an MTB for referral visit from current facility location j J to a 

referral facility at the location k J  

:ft

jF fixed cost on establishing a facility of type f F at the location nj J  in a time period 

t T  

:ft

jO operating cost of a facility of type f F at the location j J  during a time period t T  

:lfQ available capacity of service type l L  rendered by facility type f F  

:fgt

jU  cost to upgrade the facility of type f F to facility of type g F at the location j J  

during a time period t T  where g f  

:l

iW  number of MTBs at a location i I  requiring service type l L  

t

i : fraction showing growth in  number of MTBs at a location i I  during a time period 

t T  

:lm  proportion of referrals for service type m L  from service type l L , where m l  

1
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0, other

a facility for non-referral visit 

e

at a locatio  

w s

n  

i

ijij

j J

i I d d




  



 

2

if  is within the coverage distance of a lower level facility
1,

at location  (i.e., ),

0, other

l

wi

a referral facility at a ocat

se

ion  

jkjk

J

j J d d

k






  



 



134 
 

1, if ,

0, otherwi

a facility type  is located

s

 at 

e

ef

jk
f F j J 

 


 

Decision variables 

:lt

ijx number of MTBs at location i I  allocated to a facility at a location j J  to receive 

service    type l L  during a time period t T  

:lmt

jkx number of MTBs seeking service type l L  at a facility j J  and which are referred to 

a      facility k J  for a higher service type m L  during a time period t T  

:lt

jx  an excess number of MTBs allocated to a facility at a location j J  to receive service 

type l L  during a time period t T  

a new facility of type
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Using the above notations, the mathematical model of the Multi-Period Hierarchical 

Capacitated Facility Location-Allocation (MHCFL) problem is presented hereunder. 
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Subject to 

Flow constraints 

(1 ) , , ,lt t l

ij i i

j J

x W i I l L t T


          (4.2)

, , , , ,lmt lm lt plt

jk ij aj

k J i I a J p L

x x x j J l L m L t T m l p
   

 
            

 
    (4.3) 

Capacity constraints 

, , , ,
   

           lt plt lt lf ft

ij kj j j

i I k J p L f F

x x x Q z j J t T l L p l  (4.4) 

Constraints related to coverage distance 

, , , ,lt ft lf

ij ij j

f F

x z M i I j J l L t T


          (4.5) 

, , , , , ,lmt ft mf

jk jk k

f F

x z M j J k J l L m L t T m l


                                                      (4.6)

  

Constraints related to establishing a facility at new locations 

1, ,ft ft

j j nz y t j J f F                                                                                                      (4.7) 

1 2, , ,



        ft ft ft fgt

j j j j n

g F

z z y y t j J f F f g  (4.8) 

,

2, ,ft f

j j n

f F T t f F

z y t j J t T

    

                        (4.9) 

1 2, ,



     fgt ft

j j n

g F

y z t j J f F                (4.10) 

1 , ,


      ft fgt

j j n

g F

y y j j f F t T                (4.11) 

1 ,ft

j n

f F

z j J t T


                    (4.12) 

1ft

j n

t T f F

y j J
 

              (4.13) 
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Constraints related to existing facilities 

1 ,ft

j e

f F

z j j t T


                            (4.14) 

1, , ,


       fgt f

j j e

g F

y k t j J f F g f         (4.15) 

1, , ,


       ft f gft

j j j e

g F

z k y t j J f F g f         (4.16) 

1 2, , ,



       ft ft fgt

j j j e

g F

z z y t j J f F g f         (4.17) 

Integrality and other constraints 

2 3 3  0I I IIQ Q Q               (4.18)  

0 , , , ,      fgt

jy j J f F g F f g t T         (4.19) 

, 0, , , , , ,lt lmt

ij jkx x i I j J k J l L m L t T                                                   (4.20)  

, , {0,1}, , , ,        ft ft fgt

j j jy z y j J f F g F t T                                                (4.21) 

Figure 4.1 shows the flows of MTBs to various facility types from a location. The mathematical 

model can be understood from this. The objective function (4.1) shows the minimization of the 

total cost over the planning horizon. Various terms in the objective function expression 

respectively represent the fixed cost of establishment, up-gradation cost, operating cost of the 

healthcare facility, cost on travel for visiting a facility, cost on travel upon referral, and the 

penalty cost, on overall basis. Constraint (4.2) ensures complete fulfillment of the demand of 

various service types of all the MTBs in each time period. The number of MTBs referred from 

lower to higher level service types is determined by Constraint (4.3). Constraint (4.4) is a 

capacity constraint that determines excess number of MTBs allocated to each facility type for 

the realted service types in each time period. From this constraint and the last term of the 
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objective function expression (4.1), it is obvious that the model will not permit any allocation 

beyond the capacity if the penalty cost (P) is made very high. The proposed formulation 

assumes that the up-gradation and/or addition of a facility will increase the availability in the 

same time period of the planning horizon. Constraint (4.5) states that the MTBs at a location 

𝑖 ∈  𝐼  can only be assigned to a facility at location 𝑗 ∈ 𝐽 if the required service type is available 

in that facility and the same is available within the coverage distance. Constraint (4.6) will 

ensure the referral of MTBs for a higher level of service type to a facility within its permissible 

maximum coverage distance. Constraints (4.7) to (4.13) are concerned with establishing new 

facilities or up-gradating of facilities in a period of the planning horizon. Upgradation is 

applicable for all the facilities irrespective of when these were established or upgraded. 

Constraint (4.7) takes cognizance of the operation of a facility from a location even if it is 

newly established at that location in the first period itself. Constraint (4.8) ensures the 

continuation of a facility in subsequent periods, whether it is newly established or upgraded to 

provide a higher-level service type. Constraint (4.9) is to ensure the continuity of a facility in 

providing the related services. Constraint (4.10) ensures the possibility of up-gradation of a 

facility to a higher level only when it was operating in the earlier time period. Constraint (4.11) 

restricts the opening and up-gradation of a facility in the same time period. Constraints (4.12) 

and (4.13) impose the restriction that only a single facility can operate at a location at any time 

period, whether existing, upgraded, or newly located. Constraint (4.14) will ensure the working 

of only one facility type at any location at any point in time. Constraints (4.15) to (4.17) are 

concerned with the up-gradation of an existing facility. Constraint (4.15) permits only the up-

gradation of an existing facility type at the beginning of the planning horizon. Constraint (4.16) 

states that a facility type f will be operating in the first time period only if exist or upgraded to 
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facility type f. permits the up-gradation of a facility at a location in the first time period 

provided it exists. Upgradation in subsequent periods is taken care of by constraint (4.17). 

Upgradation of SC (represented by index 'I') to PHC (represented by index II) or CHC 

(represented by index III), or PHC to CHC may bring change in the capacity of these facilities 

for various service types. Constraint (4.18) takes care of the factual nature of the various 

facility types. SCs cannot provide services of types 1 and 2. Similarly, PHCs cannot provide 

service type 3. Constraints (4.19) to (4.21) express the nature of decision variables. In fact, the 

number of allocations  and lt lmt

ij jkx x should be an integer as the number of MTBs cannot be 

fractional. The number of referrals taken as a proportion of the MTBs allocated to the 

healthcare facilities is given by the constraints (4.2) and (4.3). As a result, the resulting number 

may be fractional. This will ask for equating some of the integer numbers to be equal to a real 

number, and the same is impossible. To avoid this difficulty, allocation variables are being 

treated as continuous variables. Since numbers defining the corresponding allocations are 

reasonably high in the Indian context, even rounding off non-integer values to the nearest value 

will not practically create much of a problem. Besides, treating these variables as non-integer 

variables will help in reducing the computational complexity of the problem.  



139 
 

 

Figure 4.1: Allocation of mothers-to-be to different types of facility 

4.4 Solution Approaches 

MHCFL formulation was coded in Python 3.8 (Rossum & Drake, 2011) to solve the related 

problems using Gurobi 9.0.3, which is the state of the art mathematical programming solver. 

The solver could provide optimal solutions for small and some medium-size problem instances 

within a reasonable time. However, the numerical experiments revealed that the computational 

time increases exponentially as the problem size increases. The solver could not even produce 

a feasible solution for many large-size instances. Therefore, obtaining an optimal or a good 

quality solution in a reasonable amount of time is a challenge for the MHCFL problem. To 
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address this issue, various approaches are proposed to solve the problem considered in this 

chapter efficiently and effectively. The same are elaborated below. 

4.5 Benders decomposition 

Benders Decomposition (BD) algorithm is a widely used exact solution approach for solving 

large-scale combinatorial optimization problems pioneered by Benders (2005). It takes 

advantage of the problem's structure by partitioning it into a master problem (MP) and a sub-

problem (SP). MP taken is a relaxed version of the original problem with complicating 

variables (binary variables - as in our case) and associated constraints. SP framed has to deal 

with continuous variables of the original problem and the remaining constraints while taking 

the values of binary variables from the current solution of MP. MP and the SP are solved 

iteratively by providing solution from each other until the optimal solution to the problem 

resulted where going through the iteration no change in the solution of MP or SP is observed. 

If the solution of MP is feasible to the SP, an optimality cut is generated to possibly improve 

the solution of MP in consecutive iterations. Otherwise, a feasibility cut is generated and fed 

back to the MP to attain a feasible solution for MP. Thus, the MP's solution provides input in 

the form of values of binary variables to the SP, while the solution of SP is used to provide 

feedback to the MP. Instead of solving the SP directly, its dual problem which is named as 

dual sub-problem (DSP), is solved for the computational advantage. In the present case of the 

minimization problem, the MP gives a lower bound (LB), while the solution of DSP along with 

the objective value of MP provides an upper bound (UB) to the original problem. Problem 

decomposition and iterative solution strategy of BD reduces the computational burden 

significantly making BD a lot more acceptable. BD found its successful application in many 

areas such as scheduling (Canto, 2008), facility location (Boland et al. 2016), health care 
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(Heching et al. 2019; Karamyar et al. 2018),  telecommunications (Kewcharoenwong and 

Üster, 2014), network design (Esmaeilbeigi et al. 2021; Gong and Zhang, 2022; Reddy et al. 

2022; Cheng, 2022) and chemical process design (Zhu and Kuno, 2003) to name a few. The 

work of Rahmaniani et al. (2017) can be referred to for a thorough review of the BD algorithm 

and applications.  

MHCFL model, presented in Section 4.3, can be decomposed into location and allocation 

problems. The location problem deals with binary variables related to location ( ft

jy ), 

upgradation ( fgt

jy ) and operation ( ft

jz ) of a facility only, the variables responsible for the major 

computational burden. The allocation problem would require the value of ft

jz . Since MP has 

resulted the values for ft

jz variable, the same can be taken as such by the allocation problem 

which is a linear programming problem and thus easy to solve. This special structure of the 

MHCFL problem is the main motivational reason to implement and use the BD algorithm. 

Consequently, the location problem is viewed as an MP, and the allocation problem as an SP. 

The formulation of MP is as follows.  

Master Problem (MP)

 
n

ft ft fgt fgt ft ft t

j j j j j j

j J t T f F j J t T f F j J t T f F t T

F y U y O z 
         

  
 
  

     Minimize          (4.22) 

Subject to constraints (4.7) to (4.19) and (4.21) of MHCFL. 

Feasibility cut: 

2, 4,

5, 6,

, ,

(1 )

0

lt lt
t l lf ft

i ji i j

i I l J t T j J l L f F t T

lt lmt
ft lf ft mf

ij jkij j jk k

i I j J l L f F t T i I j k J l m L f F t T

W Q z

z M z M

  

   

      

         

 

  

 

    
          (4.23) 



142 
 

Optimality cut: 

2, 4,

5, 6,

, ,

(1 )
lt lt

t l lf ft
i ji i j

i I l L t T j J l L f F t T

lt lmt
ft lf ft mf t

ij jkij j jk k

i I j J l L f F t T i I j k J l m L f F t T

W Q z

z M z M

  

    

      

         

 

  

 

    
          (4.24) 

The terms in the objective function (4.22) of the MP are in line with the objective function 

(4.1) of the MHCFL model except for a new auxiliary variable 
t ( 0t  ), which takes 

continuous variables terms of the objective function (4.1) into account. Constraints (4.7) to 

(4.19) and (4.21) are from the MHCFL model that relates the binary variables in the model. 

Constraints (4.23) and (4.24) are the feasibility and optimality cuts, respectively. These are 

Benders cuts, are devised from the solution of the DSP. Here 2, 3, 4, 5, 6,, , , ,  and lt lmt lt lt lmt

i j j ij jk    

are the dual variables in DSP and 
2, 3, 4, 5, 6,

, , , ,  and 
lt lmt lt lt lmt

i j j ij jk     represent the values of these 

dual variables obtained by solving the DSP. Formulation of SP and the corresponding DSP are 

as follows. 

Sub-Problem (SP) 

 lt lmt lt

ij ij jk jk j

i I j J l L t T k J j J m L l L t T i I l L t T

c x c x Px
           

 
 
 

   Minimize                      (4.25) 

Subject to 

(1 ) , , ,


        lt t l
ij i i

j J

x W i I l L t T                                                                  (4.26) 

, , , , ,lmt lm lt plt

jk ij aj

k J i I a J p L

x x x j J l L m L t T m l p
   

 
            

 
             (4.27) 
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, , , ,lt plt lt lf ft

ij kj j j

i I k J p L f F

x x x Q z j J t T l L p l
   

                            (4.28)

, , , ,lt ft lf

ij ij j

f F

x z M i I j J l L t T


              (4.29) 

, , , , , ,lmt ft mf

jk jk k

f F

x z M j J k J l L m L t T m l


                                     (4.30) 

The objective function (4.25)of the SP contains allocation and penalty variables. Constraints 

(4.26) and (4.27) are reproduced from the MHCFL model, and they are the same as constraints 

(4.2) and (4.3), respectively. Constraints (4.28), (4.29) and (4.30) deal with the fixed value of 

binary variables. To quickly obtain a better UB, a DSP has to be solved. Considering the dual 

variables 2, 3, 4, 5, 6,, , , ,  and     lt lmt lt lt lmt
i j j ij jk

 associated with respective constraints from (4.26) 

to (4.30), the dual formulation of sub problem is stated below.   

Dual Sub problem (DSP) 

2, 4,

5, 6,

, ,

(1 )

 

t l lt lf ft lt

i i i j j

i I l J t T j J l L f F t T

ft lf lt ft mf lmt

ij j ij jk j jk

i I j J l L f F t T i I j k J l m L f F t T

W Q z

z M z M

  

   

      

         

 
 
 
 
 

 

 

 

    
Maximize          (4.31) 

2, 3, 4, 5, , , , , ,    


            lt lm lmt lt lt
i j j ij ij

m L

C i I j J l L t T m l          (4.32) 

3, 4, 5, 6, , , , , , ,                  lmt lm lmt lt lmt
i j j jk jkC i I j J l L m L t T m l      (4.33) 

4, , , ,       lt
j P j J l L t T                (4.34) 

2, 3,,  are URS lt lmt
i j                   (4.35) 

4, 5, 6,, , 0   lt lt lmt
j ij jk

                  (4.36) 
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The objective function of DSP (4.31) is having a sense of maximization since SP is of a 

minimization nature. Constraints (4.32), (4.33) and (4.34) are the dual constraints related to 

continuous variables lt
ijx , lmt

jkx and lt
jx , respectively. Constraints (4.35) and  (4.36) show the 

nature of the dual variables.  

The above discussed MP and DSP are solved iteratively to obtain the final solution. Many 

different strategies can be used to faster the iteration and improve the bounds. In the following 

discussion, first, we discuss classical Benders decomposition. Then by adding various 

acceleration strategies, accelerated Benders decomposition is explained. Lastly, the Benders 

type heuristic is developed to quickly solve the MP.  

4.5.1 Classical Benders decomposition 

The schematic representation of the Classical BDA is shown in Figure 4.2. In the first iteration 

of classical BD, the MP is solved without any Benders cuts. The solution obtained through MP 

is then used to solve the DSP. The objective function value of DSP and MP (except the value 

of an auxiliary variable) is added to calculate the upper bound (UB). UB will be updated only 

when it has improved value while using the of a binary variable ft

jz obtained from MP. If the 

DSP results in an unbounded solution (i.e., infeasible SP), then a feasibility cut (4.23) will be 

generated. Otherwise, an optimality cut (4.24) is generated if the DSP has a bounded solution 

(i.e. feasible SP). These cuts will be inserted into the MP in each iteration. 
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Figure 4.2: Framework of classical Benders decomposition 

The algorithm terminates when the required convergence or optimality gap is achieved, or it 

touches a specified maximum number of iterations or maximum CPU time limit, whichever is 

touched earlier. The final solution can be obtained by solving the SP using the solution of the 

MP. 
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4.5.2 Accelerated Benders decomposition 

The classical BD algorithm requires a large number of iterations and is difficult to converge 

even for moderate size problem instances of MHCFL. As the size of the problem increases, it 

becomes alomost impossible to have convergence within the specified CPU time limit. This 

can be attributed to the weaker Benders cuts, a lack of appropriate initial solution, and the size 

and complexity of the MP and DSP. To get over these issues, the strategies adopted to 

accelerate the convergence of the BD algorithm are detailed in the following sub-sections. 

4.5.2.1 Additional Valid Inequalities 

Valid inequalities added to the MP help to remove or cut off the non-integer solutions from the 

solution space. Valid inequalities are expected to provide a better lower bound in the case of 

the minimization problem (Pochet & Wolsey, 2006). For this purpose, the following additional 

valid inequalities are proposed.  

Valid Inequality I. At a given time period t T , there should be at least one operating facility 

available within the coverage distance of a location i I . It is expressed as:  

1, ,
 

     ft
ij j

j J f F

z i I t T .                   (4.37) 

The above valid inequality is similar to the set covering constraint and can be proved following 

the description of the problem given in Daskin (2011). 

Valid Inequality II. For a referral from each lower-level facility at a location j J  in time 

period t T , there must be a higher-level facility available at a location k J within the pre-

specified coverage distance from j J and in time period t T .   

, , , ,
 

       ft gt
j jk k

k J g F

z z j J f F t T f g   (4.38) 
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Constraint (4.6) of the MHCFL model imposes a requirement that MTB which is getting a 

service level l L  at a facility j J  in time period t T can only be referred to a facility at 

location 𝑘 ∈ 𝐽 for a higher level service m L , only if 1.jk   Now, if 
,

0gt

jk k

k J g f g f

z
  

  for 

an operating facility at the location j J  in time period t T and 0,lmt

jkx  it would violate 

Constraint (4.6). If there is a referral from a lower-level facility, i.e., 1ft
jz , then, at least one 

higher-level facility should be available to fulfil that demand of referral, i.e., 1gt
kz  within 

coverage distance and in a given time period t T , where f F denotes lower-level facility 

and g F is for the higher-level facility.   

Valid Inequality III. In any time period t T , the cumulative capacity of the operating 

facilities providing service level l L  within the coverage distance from the location i I  

must be greater than or equal to
l

iW . It is expressed as: 

(1 ) , , , 
 

        ft lf t l
ij j i i

j J f F

z M W i I l L t T     (4.39) 

Constraint (4.5) of the MHCFL model ensures the allocation of MTBs from location i I  

seeking service level l L to the appropriate type of facilities, which are operating within a 

pre-specified coverage distance from the location i I in a given time period t T . Further, 

Constraint (4.2) demands that all MTBs at a location i I  in a time period t  who are seeking 

service level l L need to be allocated to an appropriate operating facility. Therefore, if there 

exists a non-zero population of MTBs at a location i I  and if Constraints (4.2) and (4.6) hold 

good, the total availability in the operating facilities within the coverage distance from i must 

at least be equal to the number of MTBs seeking service level l L in time period t T .   
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The valid inequalities I, II and III are found to improve the LB and thus overall computational 

efficiency. 

4.5.2.2 Rolling-horizon heuristic for the initial solution of MP 

The upper bound obtained in initial iterations of BD is observed to be poor. It may cause the 

algorithm to explore inferior parts of the feasible region (Santoso et al. 2005). If BD algorithm 

is provided with a good initial feasible solution (with a good initial upper bound), the algorithm 

eventually will lead to a better quality of Benders cuts.     

In this work, a rolling-horizon heuristic is proposed to find a reasonably good quality feasible 

solution quickly. In this heuristic, the MHCFL model is solved for each individual period of 

the planning horizon sequentially while considering the existing healthcare facilities in the 

immediately preceding period. This decomposition is possible because the facilities, either 

planned to be established or upgraded to a higher level, can come up during the period and 

start providing the related services in the same period itself. In the MHCFL model, the 

allocation decision is mainly governed by Constraints (4.2) to (4.6) are to be applied for the 

corresponding time period. The decision related to the allocation of MTBs in a given time 

period is taken to be independent of the allocation decision of the previous time period. The 

decision of establishing new facilities and up-grading existing ones depends upon the facilities 

operating in the previous time period. Or using this approach, the formulation named as 'P'  

and shown below is based on each time period.  

Objective function (4.1)  

Subject to Constraints (4.2) to (4.6), (4.11) to (4.14) and (4.18) to (4.21) of MHCFL 

, ,


      f f fg
j j j n

g F

z y y j J f F f g              (4.40) 
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1 , ,


     fg
j n

g F

y j J f F f g               (4.41) 

In 'P' , the objective function and the remaining constraints are rewritten for the respective 

time period. Constraints  (4.40) and (4.41) are analogous to Constraints (4.8) and (4.10) of the 

MHCFL model. Each 'P'  is then solved sequentially period wise and the set of the existing 

facility is updated simultaneously. The final solution to the original MHCFL will be obtained 

by integrating the solutions of 'P'  for all the periods of the planning horizon. This sequential 

addressing of the problem requires less computational effort due to the reduced number of 

constraints and variables. This consideration helps in obtaining a reasonably good upper bound 

for the MHCFL problem quickly. The solution obtained by this rolling horizon heuristic is 

used as an initial solution for the DSP in the first iteration of the BD algorithm.  

4.5.2.3 Disaggregation of Benders cuts 

As the Benders algorithm progresses, the size of MP increases due to the cuts added in each 

iteration. The disaggregation of Bender's cut may result in a better convergence at the expense 

of a larger MP (Santoso et al., 2005). The feasibility and optimality cuts added into the MP in 

each iteration of BD can be disaggregated for each time period t T . The modified feasibility, 

expressed by inequality (4.42), and optimality cuts, represented by inequality (4.43), replace 

respective feasibility (4.23) and optimality cuts (4.24).  

Disaggregated feasibility cut 

2, 4,

5, 6,

, ,

(1 )

0

  

   

    

       

 

    

 

    

lt lt
t l lf ft

i ji i j
i I l L j J l L f F

lt lmt
ft lf ft mf

ij jkij j jk k
i I j J l L f F i I j k J l m L f F

W Q z

z M z M t T

         (4.42) 
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Disaggregated optimality cut 

2, 4,

5, 6,

, ,

(1 )  

    

    

       

 

    

 

    

lt lt
t l lf ft

i ji i j
i I l L j J l L f F

lt lmt
ft lf ft mf t

ij jkij j jk k
i I j J l L f F i I j k J l m L f F

W Q z

z M z M t T

          (4.43) 

It should be noted that, with the increase in the number of periods, the disaggregation of cuts 

actually results in an increase in the number of constraints added to the MP, resulting in the 

increased size of the MP. However, the disaggregation helps in exploring the solution space in 

a better fashion, and ultimately reduces the computational complexity and CPU time due to 

fewer number of iterations.  

4.5.2.4 Relaxed Benders Cut 

In the early stage of BD algorithm, multiple cuts can be added into the MP to quickly improve 

the lower bound. To generate such multiple cuts, 'relaxed Benders cut' is a strategy reported in 

the literature (McDaniel and Devine, 1977). Following this strategy, the relaxed version of the 

MP is solved (that is, by relaxing the integrality requirement on the related variables) instead 

of the original MP. The solution of the relaxed MP is fed to the DSP, and optimality or 

feasibility cuts are generated. At any iteration of the BD algorithm, the relaxed Benders cut 

strategy would result in multiple additional cuts that are to be fed back to the original MP, and 

the process of the BD algorithm continues. The relaxed Benders cut is as follows: 

2, 4,

5, 6,

, ,

(1 )  

    

    

       

 

    

 

    

lt ltt l lf ft
i ji i j

i I l L j J l L f F

lt lmtft lf ft mf t
ij jkij j jk k

i I j J l L f F i I j k J l m L f F

W Q z

z M z M t T
         (4.44) 
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In inequality (4.44) 
2, 3, 4, 5, 6,

, , , ,  and 
lt lmt lt lt lmt

i j j ij jk     represent the dual variables obtained during 

relaxation of BD algorithm. Figure 4.4 depicts the framework for relaxed BD algorithm. The 

total number of relaxed Benders cuts generated is equal to the number of relaxed BD algorithm 

iterations ( relaxN ). These cuts were also disaggregated in terms of time period t T . So the 

total number of cuts will be  relaxN X T . These cuts, when inserted into the first iteration of 

regular BD algorithm, drastically reduce the solution space and provide a better initial LB. 

Relaxed BD algorithm performs iterations much faster than regular BD algorithm. However, 

the number of iterations increases, and so the CPU time. Therefore, a suitable trade-off between 

the required number of relaxed Benders cuts and the amount of CPU time is sought by 

specifying optimality gap practical and workable.  

4.4.1.2.5 Parallelism 

Although the DSP is an LP problem and can be solved efficiently for small size instances, its 

solution time dramatically increases for medium and large size problems. Parallel computing 

is an effective and efficient technique to solve the DSP having a special structure (Linderoth, 

2003). The DSP can be disaggregated in terms of time periods, and it can be solved individually 

and simultaneously for each time period. Therefore, parallel computing is used to solve the 

DSP simultaneously in each iteration of the BD algorithm.   

To perform parallel computing, the DSP is first decomposed into multiple DSPs that are 

independent of the time period. Each CPU core solves one DSP (independent of the time 

period) and provides the value of the objective function and the dual variables. The final 

objective function value of the original DSP is obtained by adding time-independent objective 

function values of each DSP, and the values of dual variables are saved for a later iteration. If 
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the number of DSPs is more than the number of CPU cores available, then remaining problems 

will be addressed sequentially. For example, if a 4-core processor is used to solve a 10-time 

period problem, then there will be we 10 DSPs to solve. The first four problems are assigned 

to each core, while the remaining six problems are queued. As soon as a core becomes 

available, it will select the next problem in the queue. Figure 4.3 illustrates the framework for 

implementing parallel computing.  

 

Figure 4.3: Framework for implementation of parallelism to solve DSP 

The above-mentioned strategies are employed to accelerate the BD algorithm. Figure 4.4 

depicts the proposed framework. The steps and criteria for termination are similar to those used 

in classical BD algorithm. The varied colours represent the proposed acceleration strategies, 

and the arrows represent their proper position. 
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Figure 4.4: Framework for accelerated Benders decomposition algorithm 



154 
 

4.5.3 Benders type heuristic 

In the implementation of the classical as well as accelerated BD algorithm, it is observed that 

the time required to solve the master problem (MP) increases exponentially due to its 

combinatorial nature. It is very time consuming to solve the MP to optimality in each iteration 

of the BD algorithm using the off-the-shelf solvers, and it results in slower convergence. In 

such cases, the MP can be solved efficiently using a heuristic. The resulting solution might not 

be optimal. However, with an appropriate selection of the heuristic, a good bound is 

guaranteed. This strategy has been named as Benderss type heuristic in the literature (Santoso 

et al., 2005). In this work, we use a matheuristic, namely relax-and-fix (R&F), to quickly solve 

the MP that results in the Benders type heuristic. The relax-and-fix (R&F) is a heuristic that 

decomposes a large Integer Programming (IP) problem into several smaller and manageable 

sub-problems. As the problems are partially relaxed, IPs have only a small number of binary 

variables to be optimized. They are easy to solve using exact methods like a branch and bound. 

In the R&F heuristic, the key is managing the set of binary variables. Here, most of the binary 

variables are either relaxed (i.e., treated as continuous variables) or kept fixed (to their values 

obtained in the previous step), and only a few binary variables are kept free (i.e., to be 

optimized). These problems are solved sequentially to build a complete solution to the 

problem. It is observed that, due to their origin in solving lot-sizing problems (Pochet & 

Wolsey, 2006), these heuristics have been widely used in the lot-sizing, scheduling and 

production planning context for the last decade. The solution provided by the R&F heuristic 

may not be optimal, but it will provide a good quality solution in comparatively less CPU time. 

The steps involved in Relax and Fix heuristic are shown in Table 4.1, and the pseudo-code is 
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shown in Figure 4.5. In each step, the problem is to optimize till the terminating condition – 

optimality gap or CPU time is reached. The proposed approach works as follows. 

To solve the MP using R&F heuristic, the variables related to the location of facilities are 

focused first. The corresponding ft

jy variables are taken as binary, while this requirement is 

relaxed for ft
jz and fgt

jy  variables. With a relaxed condition, the proposed MP is solved to obtain 

the location of facilities. In the next step, the MP is solved by setting ft
jz variables as binary 

and keeping the values of ft

jy variables obtained in Step 1 (Figure 4.5) as fixed. The solution 

thus obtained is ready with a set of operating and located facilities. In Step 3, fgt

jy variables are 

kept as binary, and the MP is solved by keeping the values of other sets of binary variables 

fixed. This step completes the construction of the feasible solution to the MP. The numerical 

experiments revealed that the R&F heuristic produces near-optimal or a very good quality 

solution to the MP in several instances.      

Table 4.1: Steps for relax-and-fix  

 
Step 

Binary variables related to facility 

Location (
ft

j
y ) Operation (

ft

jz ) Upgradation (
fgt

jy ) 

1 Binary Continuous Continuous 

2 Fixed Binary Continuous 

3 Fixed Fixed Binary 
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Figure 4.5: Pseudo-code for proposed Benders type heuristic 

4.6 Particle Swarm Optimization  

Particle Swarm Optimization (PSO) is one of the popular evolutionary population-based 

stochastic optimization techniques developed by Kennedy and Eberhart (1997). PSO is 

inspired by the social behaviour of birds flocking in their search for food and shelter. In PSO, 

a swarm consists of a number of interactive particles that fly around the high-dimensional 

search space. Each particle represents a potential solution to the problem. Each particle has a 

randomly initialized position and velocity. The position and velocity of the particle are updated 

using the particle's own experience and also swarm experience to allow it to fly to the next 

position. The iterative procedure of updating the position and velocity of the particle improves 

the quality of the solution of each particle calculated based on a fitness function. PSO has been 

successfully applied for various optimization problems. Kennedy et al. (1997) have also 

Benders-type heuristic – to solve MP in each iteration of BDA  

1: Initialize ( , , , , 0; 0)l lm ft ft fgt

ij jk j j jx x y z y Obj   

 Step 1 

2:  Set  0,1 , ,ft

jy j J t T      

3:  Solve MP by the solver  

4:  Set 
MPObj Obj  and , ,

ft ft

jj
y y j J t T     

 Step 2 

5:  Set  0,1 , ,ft

jz j J t T      

6: Add a constraint ,
ftft

j j
y y j J   to MP 

7: Solve MP by the solver  

8: Update MPObj Obj and  , ,
ft ft
j jz z j J t T     

 Step 3 

9: Set  0,1 , , , ,fgt

jy j J f F g F t T        

10: Add a constraint , , ,
ftft
jjz z j J f F t T     to model MP 

11: Solve MP by the solver  

12:  Update MPObj Obj and  , ,
ft ft
j jz z j J t T     

13: Remove constraints added in Steps 6 and 10 from the MP 
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developed a binary version of PSO for discrete optimization problems. In binary PSO, the 

position of a particle does not completely depend on the velocity but also on the random 

number. Binary PSO has also been used by many other researchers for various combinatorial 

optimization problems. Taşgetiren and Liang (2004) applied the binary PSO for the lot-sizing 

problem. A modified multi-objective PSO for healthcare facility planning was implemented 

by Elkady and Abdelsalam (2016). Kaushik et al. (2020) applied binary PSO to improve the 

performance of wireless sensor networks. Various other researchers (Ali et al., 2020; Guo et 

al., 2014; Premalatha and Natarajan, 2008; Zhao et al., 2010) have also worked to improve the 

performance of PSO using local search strategy for discrete problems. After going through the 

literature review carried out by Basu et al. (2015), it is observed that the number of applications 

of binary PSO on discrete facility location problems is still small. In this chapter, binary PSO 

with local search is applied to solving the multi-period facility location-allocation problem for 

determining the location of the facilities. Binary PSO is hybridized with the Gurobi solver for 

obtaining allocation decisions. The local search helps in improving the quality of solutions 

obtained from binary PSO.  

The mathematical model presented in Section 4.3 can be decomposed into two sub-problems: 

(i) location and (ii) allocation problems. The location problem will consist of three binary 

variables: ft

jy , fgt

jy and ft

jz . ft

jz  derives its values from the other two binary variables. Therefore, 

binary PSO deals with only ft

jy and fgt

jy . The value of ft

jz  will be decided based on the values 

of  ft

jy and fgt

jy . Thus, the problem of the location is to be solved by binary PSO and will 

determine the values of ft

jy  and fgt

jy . ft

jz  will be assigned a value from the values of these two 

variables. The allocation problem will involve variables as lt

ijx , lmt

jkx , lt

jx  and ft

jz .  
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In the initial phase of the development of binary PSO, it was observed that the random 

allocation to the facilities resulted in a small value of the fitness function. A large number of 

iterations were required to improve the fitness function value for a very large size of 

population. A large number of iterations required very high computational time. So, the 

random allocation of MTBs was not computationally efficient and thus not suitable. Allocation 

of MTBs is thus carried out usin Gurobi solver. It is observed that it takes very little time to 

provide a better solution. The framework of binary PSO, proposed as a solution strategy for 

the MHCFL model, is shown in Figure 4.6 and its various steps are detailed below.  

1. Parameter initialization  

The values for the parameters of binary PSO were decided after conducting various 

computational experiments for widely random values assigned to parameters of a medium-size 

problem and are taken as, 

Swarm size (Number of particles) = 10, 

Maximum number of iterations = 100, 

Inertia weight parameter (C1) = 0.1, 

Cognitive parameter (C2) = 0.1, and  

Social parameter (C3) = 0.1. 

Each particle (p) has three parameters, namely, position ( ,ft fgt

jp jy y ), velocity (
pv ), and the 

particle's best position (pbest). The overall best position of the particles having the best fitness 

value is called the global best (gbest) position (Yang et al., 2014). The position of each particle 
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in the search space is represented by a set of coordinates. During the search, the current 

positions of all the particles are evaluated using the fitness function.  

Figure 4.6: Flowchart showing binary PSO implementation  

2.Generation of random initial solution 

The initial solution is generated using a greedy heuristic, detailed in Figure 4.7. First, the total 

demand and the total availability in the first period of the planning horizon are determined for 

each service type. Suppose the demand is more than the availability of high-level services. In 

that case, the lower-level facilities are first upgraded to higher-level facilities until the available 

capacity for the higher-level service type is at least equal to the corresponding demand. 

Upgradation is first worked out as it is economical compared to the opening of new facilities. 

Even after exhausting the option of up-gradation of facilities, it may be found that the demand 
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is still more than the availability. If so, the option of addition of facilities is exercised. 

Upgradation is carried out randomly, but first looking into the demand of service type 3 and 

then for service type 2. To meet the demand for service type 3, the up-gradation of SC to CHC 

is carried out first. After all the SCs have been tried, then PHCs are taken up for up-gradation. 

After resolving the issue with the demand for service type 3, service type 2 is taken up in a 

similar manner. In case demand is in excess of the availability even when the up-gradation 

option is completely exhausted, the new facilities are established at new locations. While 

locating new facilities, first, the demand of service type 3 is focused that has to be satisfied by 

establishing CHCs, thereafter for service type 2 by PHCs and SCs in the last. 

For the subsequent time periods, the determination of required facilities of each type is 

calculated based on the capacity of existing facilities in the previous time period and the 

demand during the period. If the existing facilities are not sufficient to meet the demand, then 

a decision regarding up-gradation of existing facilities or opening of new facilities will be taken 

up as done earlier. Following this strategy, each particle will represent a random initial solution 

( ,ft fgt

jp jy y ) that will be feasible and good.  

 

 

 

3.Calculation of fitness function 
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The current position ( ,  ft fgt ft

jp j jpy y and z )  of each particle and the value of allocation variables (

lt

ijx , lmt

jkx , lt

jx )  are used to calculate the fitness value. The fitness value of each particle in each 

iteration is evaluated using expression (4.1) of the MHCFL model.   

4.Updatation of particle best and global best 

The fitness value of each particle, determined in the previous step, is then compared with the 

value corresponding to the current position and the best position of the particle. If the current 

position of the particle has a better fitness function value compared with the previous best, then 

the best position of the particle, i.e., pbest
, is updated with this value. The same scheme is 

followed for all the particles. The global best (gbest) position of the swarm is also updated if 

found better than the previous one.    

5. Calculating particle velocity and position 

The velocity of a particle (
pv ) in the next iteration (k+1) is determined using Equation (4.45), 

where 1c  is the inertia weight, 2c the cognition learning factor, 3c the social learning factor, 

and 1r  and 2r are the uniformly generated random numbers in the range of [0, 1]. Further, each 

particle will move to the next position ( 1 1,   ftk fgtk

jp jpy y ) by adding the velocity ( 1t

pv  ) to the current 

position  ( ,ftk fgtk

jp jpy y ) following Equation (4.46). 

 

1

1 2 1 3 2( ) ( )k k k k

p p p p pv c v c r pbest y c r gbest y                                                                     (4.45) 

1 1t t t

p p py y v                     (4.46) 

After adding the velocity to the particle, it is observed that the binary variables may assume 

non-binary values. To deal with this issue, both piece-wise linear function and sigmoid 
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function are used to update the position of the particle. These functions are detailed in 

respective Equations (4.47) and (4.48), respectively. Next, the position of the particle is 

updated using Equation (4.49) that ensures the position of a particle to be 0 or 1. The velocity 

and position calculation discussed above is also followed for the up-gradation variable ( fgt

jpy ). 

1,  if 1

, if 0 < 1

0,  if 0

ftk

jp

ftk ftk ftk

jp jp jp

ftk

jp

y

y y y

y

 


 
 

                 (4.47) 

1
( )

1
ftk
jp

ftk

jp y
sigmoid y

e





                (4.48) 

1,   (0,1) ( )

0,  

ftk

jpftk

jp

if U sigmoid y
y

Otherwise

 
 


               (4.49) 

6. Feasibility check 

A feasibility check is carried out to ensure the feasibility of the solution represented by the 

positions of the particles obtained in the previous step. A feasibility issue will be encountered 

due to the restriction on the coverage distance, be it referral or otherwise. An infeasible solution 

means some of the locations are not covered by the existing facilities planned so far. To arrest 

this problem, some new facilities are to be established at locations with no facilities. The type 

of facility selected will depend upon the service type, demand from those locations, etc.  

7. Local search 

After ensuring a feasible solution corresponding to each particle, a local search is conducted 

to ameliorate the fitness value further.  A local search can be performed for all the particles or 

taking a few ones (Premalatha and Natarajan, 2008). Since swarm size is large, performing a 

local search for all the particles will consume a lot of time. Therefore, the local search is carried 
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out with only 10% of the total particles. The information of the fittest particle will be shared 

with other particles to help in improving their positions and fitness values. The local search 

involves moving the facility being planned for the current location to be established at a new 

location through further optimization using the MHCFL model. Following the local search 

iteratively, we try to improve the fitness value of the particles.  The pseudo-code for the local 

search is shown in 4.8.  

8.Stopping criterion  

The algorithm is terminated if the limit on either the maximum number of iterations or the 

maximum time limit is reached, whichever is earlier. The best-known fitness function value 

(gbest) and CPU time are reported. 

Figure 4.7: Steps for generation of random initial solution 

Step 0: For time period t =1: 

Step 1:  Calculate the total demand and availability for each service type  

Step 2:  Upgrade existing facilities randomly 

Step 3:  Determine the number of CHCs required for service type 3 

(based on the demand of service type 3 and availability with existing CHCs) 

Step 4:  Determine the number of PHCs required for service type 2 

(based on the demand for service type 2 and availability with existing PHCs and CHCs, 

including that added in step 3) 

Step 5:  Determine the number of SCs required for service type 1 

(based on the demand for service type 1 and availability with existing SCs, PHCs and 

CHCs and including that added in steps 3 and 4) 

Step 6:  Locate the CHCs, PHCs, and SCs randomly identified in steps 3, 4 and 5 

Step 7:  if randomly-opened facilities cover all the locations: 
Step 8:         Allocate the MTBs to the facilities and move to the next step 

  else: 
         Open new required facilities and repeat step 7 

Step 9:  If all the locations are covered (for both referral and non-referrals): 

          Move to the next step 

  else: 

          Open new required facilities and repeat 

Step 10: Set t = t + 1  

Step 11: For time period t :  

Step 12:  if the availability with the existing facilities is sufficient to fulfil the demand  : 
Step 13:        Allocate the MTBs to the required facility type  

  else: 
Step 14:        Upgrade existing facilities or open new required facility-type randomly 
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Step 15:  Repeat step 10 onwards until the whole planning horizon is covered 

 

Figure 4.8: Pseudo-code for local search 

 

4.7 Hybridized Simulated Annealing 

Simulated Annealing (SA) is a metaheuristic developed by Kirkpatrick et al. (1983). SA was 

inspired by an analogy between the physical annealing process of metals and the problem of 

solving large combinatorial optimization problems. Annealing requires metals to be cooled 

from being at a high temperature to a desired temperature following a cooling schedule. SA, 

following this approach, starts with some solution and, seeks improvement in the crystalline 

structure of the metal (solution quality) following a cooling schedule (going through some 

iterations). The process is terminated when desired low temperature (or the desired quality of 

the solution) is obtained. In the recent decades, SA has been used for solving numerous 

combinatorial optimization problems such as crew scheduling and rostering problems (Emden-

Weinert and Proksch, 1999; Hadianti et al., 2014), vehicle routing problems (Czech and 

 Pseudo-code for local search  

Step 0: ( )lcoalpRandomly select particle  for local search  

Step 1:  0, , ,ft

j ny j J f F t T      Initialize  

Step 2: , , ,
local

ft ftk

j jp ny y j J f F t T      set  

Step 3:   ,  1
r

ft ft

j jy if y select randomly  

Step 4:  0 , ,
r

ft

j r ny j J f F t T      add constraint  

Step 5: 

1:

 , , ,

 0,
r r

ft

j

ft ft

j j

fg f

j j

if y

y y j J f F t T

y and z t T  



      

   

   add constraint 

   add constraint 

 

Step 6: 0
Set timelimit = t  

Step 7: Optimize MHCFL model  

Step 8: 
local

ftk ft

jp jy y Report
localp

 (Fitness value) Objective value and  
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Czarnas, 2003; Wang et al., 2015; Zhou et al., 2018), facilities location problem (Arostegui et 

al., 2006), Knapsack problem (Dantas and Cáceres, 2018), facility layout problem (Defersha 

and Hodiya, 2017) and many more. Ghaderi and Jabalameli (2013) developed a simulated 

annealing approach to solve healthcare facility network design problems using in conjunction 

Fix-and-Optimize heuristic.  Recently, Turhan and Bilgen (2020) proposed a hybrid approach 

(using Fix-and-Relax and Fix-and-Optimize into Simulated Annealing) to solve a nurse 

rostering problem. They generated the initial solution using the Fix-and-Relax approach, to be 

used by SA. Further, 2-exchange, 3-exchange, multi-exchange, shift-on, and shift-off concepts 

were applied to improve the solution quality. The Fix-and-Optimize method was applied after 

no improvement was witnessed. Looking into the benefits of hybridisation, the present work 

uses the fix-and-optimise approach along with SA. The proposed hybrid approach has not been 

applied so far to solving the maternal healthcare problem. Since SA was reported to perform 

better if it starts with a good initial solution,  fix-and-optimise (F&O) heuristic was used to 

feed a good quality solution to the proposed SA. However, the problem is first solved as a set 

covering problem before applying F&O heuristic to reduce the search space. This improves 

the quality of the solution to be provided by the F&O heuristic. The proposed hybrid FO & SA 

approach is discussed in further sub-sections.  

4.7.1 Set covering problem 

The initial solution of the relaxed MHCFL problem is determined by treating it as a set 

covering problem. In Section 4.3, the restrictions in terms of maximum coverage distance (d1) 

are incorporated in the MHCFL model using a binary parameter (
ij ). In order to cover all the 

MTBs, at least one facility should operate within the maximum coverage distance of each 

location of MTBs. From this perspective, a set covering model is applied to the location 
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problem to determine the minimum number of locations of the healthcare facilities. The binary 

variables, 
jz , are taken to formulate the set covering problem. The other notations used in the 

set covering formulation have the same definition as described in Section 4.3.  

if a healthcare facility is l

i

a1, oc ted in  lo ,

0, otherw se

ncatio
 


th

j

j
z  

Minimize 

 j
j J

z                                                                                                                              (4.50) 

1


   ij j
j J

z i I                              (4.51) 

1,  j ez j J                               (4.52) 

The objective function (4.50) minimizes the total number of locations for healthcare facilities 

to cover all the locations. Constraint (4.51) stipulates that each location (i) must be covered by 

at least one facility. Constraint (4.52) shows that the facility will remain operating in future if 

it is already existing. 

4.7.2 Fix-and-optimize  

The set-covering problem provides locations of the healthcare facilities without considering 

allocation decisions (step '0' of Figure 4.9). To start with, it is assumed that each of these 

selected locations will have CHCs in the first period of the planning horizon (Steps 1 to 17 of 

Figure 4.9). While solving this problem with this assumption, the selected locations with 

facility type III (CHC) will be capable (because of availability of all service types) of meeting 

the demand from the nodes covered within the maximum permissible distance. It may so 

happen that the current solution may have a very high cost due to high travel, penalty, 

establishment, and operating costs. To reduce this cost, the current solution may require lower-
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level facilities (PHC or SC) replacing a CHC planned to be at a location, or altogether a new 

location may be chosen instead of establishing SC, PHC or CHC, as the case may be. It will 

be illogical to consider the existing facilities for possible removal. Such facilities will be 

considered only for upgradation at some later period of the planning horizon. For solving the 

associated problem, the MHCFL formulation is not used as such because of the resulting large 

size of the formulation. Instead, all the locations are chosen one by one, considered the same 

as a potential location for a healthcare facility while freezing the earlier location decisions.  It 

is carried out irrespective of whether a nonexistent facility (which will be a CHC) was located 

in it earlier. With this consideration incorporated into MHCFL formulation, now mainly the 

allocation problem has to be solved while identifying the suitability of the location under 

consideration to have the right type of facility with possible up-gradation at a later period. It is 

reiterated that when a facility already existed at the location under consideration, the problem 

is solved while acknowledging the facility-type existing there. This process is iterated until no 

improvement in objective function value is witnessed going through all the locations. Because 

of the combinatorial and complex nature of the problem at this stage, the termination of this 

iterative procedure may not be witnessed in a reasonable amount of time. In view of this, it is 

logical to set a limit on the total CPU time for this stage. For the experimental analysis detailed 

in Section 4.5, a time limit of 2 hours was considered.  

 

 

Figure 4.9: Pseudo-code for fix-and-optimize 

Steps Description 

Step 0:             Use the solutions obtained from solving set covering problem for initializing the variables  
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Step 1: 0, 0 0 , , ,ft ft fgt

j j jInitialize local parameters zstatus ystatus and ystatus j f g t     

Step 2: while j J do  

Step 3:           1:jif z   

Step 4:                    3:if f   

Step 5:                            1ft

jzstatus t T    

Step 6: nwhile j J do  

Step 7:          1:jif z   

Step 8:          3:f   

Step 9:                          1:if t   

Step 10:                                  1ft

jystatus   

Step 11: ewhile j J do  

Step 12:           1:jif z   

Step 13:                   1:if t      

Step 14:                          2:if f   

Step 15:                              1:ft

jif k   

Step 16:                                     3:if g   

Step 17:                                               1fgt

jystatus   

Step 18: 
 

   ,   &     

     0  min

Taking the above input Now F O approach is started

as Iteration Counter IC and Obj
 

Step 19:       :for j J  

Step 20:            , ,ft ft

l ly ystatus l J f F t T where l j       

Step 21:            , ,ft ft

l lzstatus l J f F t T where l j     z  

Step 22: 

              

            , , ,fgt fgt

l ly ystatus l J f F g F t T where l j        

Step 23:              MHCFL model and obtain the value of , , , ,ft ft fgt

j j jSolve z y and y j f g t  

Step 24:              , , , ,ft ft ft ft fgt fgt

j j j j j jupdate zstatus z ystatus y and ystatus y j f g t     

Step 25: Return , , , ,ft ft fgt

j j jzstatus ystatus and ystatus j f g t  

 

4.7.3 Implementation of Simulated annealing 

Because of (i) the sequential approach used in the F&O method and (ii) the time limit on the 

CPU time, the F&O stage may not necessarily yield an optimal or a good quality solution. In 

order to further improve the solutions, the simulated annealing (SA) method is applied, 
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proceeding with the current solution obtained from the F&O to generate the neighbourhood 

solutions in the search for an improved solution. The flowchart showing the framework of the 

proposed hybridized simulated annealing is provided in Figure 4.10. Various important 

strategies and components of the proposed SA are detailed below.  

Neighbourhood search  

At this stage, three sets of locations will be formed. The first set (set I) will be of the locations 

having the existing facilities, the second one (set II) will have those locations that are going to 

house new facilities, and the third one will be of locations without any allocated facilities. The 

process of identifying neighbourhood locations is also shown in Figure 4.11. The proposed SA 

follows a cooling schedule where control on the cooling is carried out at some locations but 

choosing them randomly. For this purpose, a node from set II (planned currently to house the 

facilities) is chosen randomly. Next, all the unassigned nodes within their coverage distance 

are identified. Out of all these nodes, only those nodes are considered for swapping the 

facilities from the node under consideration that will not violate the restrictions on the 

maximum travel distance either by incoming or outgoing referrals. Now, keeping all the earlier 

decisions intact, removing the current node from consideration, and taking all identified 

neighbourhood locations as candidates for possible swapping, the problem is solved using the 

MHCFL formulation. Naturally, the improved solution is retained. However, an inferior 

solution is also accepted based on a probability value calculated using the energy magnitude 

equation with the Boltzman constant taken as 1 (Liang, 2020). The current cooling schedule 

completes in two parts, each of 10 iterations. Acceptance of an inferior solution is sometimes 

carried out to escape from the local minima and to explore the search space. The acceptance 

of an inferior solution requires a uniformly distributed random number [0,  1]r U  with valye 
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'r' value to be more than the probability value defined as 
E

KTP e


  with K equal to 1. The 

probability depends on the current temperature (T) and the amount of degradation ( E ) taken 

as the difference between objective function values of the best solution obtained so far and the 

generated neighbourhood solution. During the initial iterations, when the temperature is high, 

the probability of accepting the worst solution is high. As the SA algorithm progresses, the 

temperature comes down, and thus, the probability of accepting the inferior solution decreases. 

At a particular temperature, 20 iterations are performed for computational experimentation, 

with the probability of accepting the solution being high if the amount of degradation is low.  

Use of removal of inactive capacity constraints  

The annealing schedule is followed in two steps. The first half iterations go with some inactive 

capacity constraints left out. While in the remaining half, all the capacity constraints are 

considered. The capacity constraints that are neglected in the first half are a maximum of 5% 

of the total number of such inactive constraints having higher slack than those that are retained 

in the current solution. While working on a number of problems, such a strategy was found to 

result in a good solution in a comparatively lesser amount of CPU time.  

Defining initial and final temperatures 

The initial temperature is kept very high and is fixed at a value while considering a worst-case 

scenario of having too many facilities to completely meet the demand. It is assumed that MTBs 

do not violate the restriction on the maximum coverage distance. While working with various 

hypothetical problems with a varying number of nodes, setting the initial temperature using 

the method described above and reducing it by 10% until attaining a low temperature of 100, 

the SA approach was found to provide a good result in general.  
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Figure 4.10: Flowchart of proposed simulated annealing framework 
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Figure 4.11: Framework for the generation of neighbourhood solutions 
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4.8 Computational Experiments 

In this section, the performance of the proposed solution approaches has been studied. For 

solving the mathematical models, the Gurobi optimization solver was used with an interface 

in Python 3.8 (Rossum and Drake, 2011). Other solution approaches were also developed in 

Python 3.8 interface. Extensive computational experiments were performed on the 

supercomputer "PARAM-SHIVAY" with configuration as 2* Intel Xeon SKL G-6148, 4 core, 

2.4GHz with a memory of 192 GB, DDR4 2666 MHz. The generation of test instances and 

computational results are discussed in subsequent sub-sections. 

4.8.1 Generation of test instances 

The computational experiments were conducted with problems of varying sizes. The size of 

the problem is mainly governed by the length of the planning horizon and the number of 

locations. For the experimentation, four planning horizons having lengths of 5, 10, 15, and 20 

time periods and the number of locations as 50, 100, 200, and 300 were taken. These problem 

classes are designated as D50, D100, D200, and D300. Thus a total of 16 different sizes of 

problem classes with five instances of each (total 80 problems) were generated to have 

meaningful insights from the computational experiments. Based on the number of binary and 

general variables, the problems were grouped into three categories, i.e., small, medium, and 

large, as shown in Table 4.2 and Figure 4.12. The spatial coordinates of the demand nodes or 

the locations of MTBs were generated randomly following Uniform Distribution: [0,  200]U . 

For the purpose of experimentation, the distance between two nodes i  and j  is taken as 

Euclidean distance. However, the proposed model and solution approaches are not limited to 

the consideration of Euclidean distance. The cost of visiting a facility is taken to be 

proportional to the distance. To be close to reality in the Indian context, maternal healthcare 
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facilities are assumed to exist in only 20% of the locations. The type of facilities existing at 

these locations is decided randomly. A location is assumed not to have more than one facility. 

For the first time period, the demand for service types 1, 2, and 3 at each location are taken as 

random numbers following Uniform Distribution as U[50, 1000], U[20, 400], and U[1, 20], 

respectively. The numbers taken were representative of the real situation where the 

requirement of service type 1 is the highest, and that of service type 3 is the lowest. For the 

subsequent time periods, the constant growth rate ( )t

i  of 1% in demand is considered for all 

the service types. The proportion of referrals from service types 1 to 2, 1 to 3, and 2 to 3 were 

taken as 0.1, 0.03, and 0.05, respectively. The maximum distance that an MTB can travel to 

reach a facility from her origin (i.e., coverage distance) was taken as 120 units, while in the 

case of referral as 150 units. The capacity for various service types at the three facility types, 

along with establishment, up-gradation, and operating costs applicable for the first time period, 

are shown in Table 4.3. A facility is taken to be of a typical size.  Therefore, the capacity for a 

service type at a facility type does not grow with time. Whereas establishment, up-gradation, 

and operating costs are taken to increase at a rate of 4% per period because of inflation.  
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Table 4.2: Various problem sizes 

Binary  Continuous  
Time periods 

in planning horizon  
Nodes  Problem class Problem size 

1456 56670 5 50 1 

Small 

3045 212895 5 100 2 

7200 751500 10 50 5 

10800 1127250 15 50 9 

14400 1503000 20 50 13 

14520 3003000 10 100 6 

Medium  

14610 6003000 5 200 3 

21780 4504500 15 100 10 

21960 13504500 5 300 4  

29040 6006000 20 100 14 

29220 12006000 10 200 7 

43830 18009000 15 200 11 

Large  

43920 27009000 10 300 8 

58440 24012000 20 200 15 

65880 40513500 15 300 12 

87840 54018000 20 300 16 

 

 

Table 4.3: Values of problem parameters used in computational experiments 

Parameters 
 Facility type 

 SC PHC CHC 

Capacity 

Service type 1  1000 1200 1500 

Service type 2  0 1000 1200 

Service type 3  0 0 300 

Establishment cost  1000000 5000000 10000000 

Upgradation cost 
SC - 2000000 5000000 

PHC - - 3000000 

Operating cost  25000 125000 250000 

*each data is in units 
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Figure 4.12: Various problem sizes 

 

4.8.2 Experimental results 

The experimental results from the use of the approaches proposed in Section 4.4 are provided 

in Table 4.4, Table 4.5, Table 4.6, Table 4.7, Table 4.8, Table 4.9, Table 4.10 and Table 4.11 

for respective planning horizon lengths of 5, 10, 15, and 20 years. A maximum CPU time limit 

of 24 hours is set for experimentation for each problem instance in the case of Gurobi solver, 

classical BD algorithm, accelerated BD algorithm and Benders type heuristic. Whereas this 

limit is reserved as 12 hours for hybridized SA and PSO. 

In these tables, the columns indexed with number as 7, 11, 15 and 19 are labelled as 

‘Gap’showing the amount of gap between upper bound (UB) and lower bound (LB) values of 
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the objective function as a percentage of UB obtained from the MHCFL model using Gurboi, 

classical Benders, accelerated Benders and Benders type heuristic, respectively. The UB 

obtained from these approaches is then compared with the solution obtained from hybridized 

SA and PSO. The comparison was made based on the UB value as the problem seeks to 

minimize the overall cost and UB corresponds to a feasible solution. The difference in UB 

values obtained from the two solution approaches is reported in terms of percentage. The 

columns indexed as 22, 23, 24 and 25, labelled as 'DGurobi-hSA', 'DCBD-hSA', 'DABD-hSA', and 'DBDh-

hSA', represent the percentage deviation between the objective value obtained from the 

application of hybridized SA and the UB values obtained from MHCFL model using Gurboi, 

classical ss, accelerated Benders and Benders type heuristic, respectively. The columns 

indexed as 28, 29, 30, 31 and 32, labelled as 'DGurobi-PSO', 'DCBD-PSO', 'DABD-PSO', 'DBDh-PSO', and 

'DhSA-PSO' represent the percentage deviation between objective function values obtained from 

the application of PSO and the UB value obtained from MHCFL model using Gurboi, classical 

Benders, accelerated Benders, Benders type heuristic and hybridized SA, respectively. A 

positive value in these columns indicates that the solution obtained using approach 1 is inferior 

to approach 2; while a negative value suggests that approach 2 outperforms approach 1. For 

the large size problem instances, the comparison of the solution from the use of Gurobi was 

not possible due to the non-encountering of any feasible solution within the considered 

maximum CPU time limit. Therefore, these values are not reported in some cases.  
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Table 4.4: Computational results for 5-time period 
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(1) (2) (3) (4) (5) (6) (7) (8)  (9) (10) (11) (12)  (13) (14) (15) (16)  (17) (18) (19) (20) 

sm
al

l 

50 

1 1 19884302 19884302 0.00 238  16718270 20047847 16.61 86400  19404285 20321149 4.73 86400  19519914 20247460 3.73 86400 

2 2 21941169 21941169 0.00 1666  19337826 21961522 11.95 86400  20946634 21956157 4.82 86400  22217460 22058543 -0.72 532 

3 3 20080105 20080105 0.00 60  17582861 20227739 13.08 86400  19895820 20149619 1.28 86400  19898126 20136030 1.20 86400 

4 4 19489989 19489989 0.00 15  19472026 19489980 0.09 22769  19231081 19500196 1.40 86400  19243224 19526692 1.47 86400 

5 5 19884448 19884448 0.00 118  17323562 20036864 13.54 86400  19591041 19884448 1.50 86400  19598270 19964558 1.87 86400 

sm
al

l 

100 

1 6 39306076 39306076 0.00 32904  26791640 45174227 40.69 86400  37702683 39527820 4.84 86400  38149553 39619401 3.85 86400 

2 7 37360158 37443217 0.22 86400  27656227 40376725 31.50 86400  36501287 37543970 2.86 86400  37162890 37566324 1.09 86400 

3 8 40532999 40642900 0.27 86400  26786640 46115272 41.91 86400  39824985 40667169 2.11 86400  40430811 40739010 0.76 86400 

4 9 35191860 35263831 0.20 86400  24761436 38156056 35.10 86400  34559865 35281948 2.09 86400  35180998 35500306 0.91 86400 

5 10 36493120 36493120 0.00 4039  24250009 40221060 39.71 86400  35687547 36508418 2.30 86400  36300479 37947086 4.54 86400 

m
ed

iu
m

 

200 

1 11 82363888 82459771 0.12 86400  40443080 159044786 74.57 86400  81092264 82695487 1.98 86400  81759597 83254642 1.83 86400 

2 12 79470115 79782380 0.39 86401  42198072 129754569 67.48 86400  77979758 80090118 2.71 86400  78463771 80136074 2.13 86400 

3 13 81314346 81436503 0.15 86400  39593284 147942792 73.24 86400  80001376 81706586 2.13 86400  80595409 82001205 1.74 86400 

4 14 76530091 76540609 0.01 86400  46140925 99394195 53.58 86400  75046269 77071708 2.70 86400  76216822 77618431 1.84 86400 

5 15 79263136 79542084 0.35 86400  44945959 117706816 61.82 86400  77722456 79765921 2.63 86400  78371991 80041334 2.13 86400 

m
ed

iu
m

 

300 

1 16 121879774 134330930 9.27 86400  55030716 246794888 77.70 86400  95789928 140628103 46.81 86400  98797224 140599751 42.31 86400 

2 17 125204086 133204817 6.01 86400  58258272 245770071 76.30 86400  94862186 141345791 49.00 86400  99530335 141344751 42.01 86400 

3 18 126665011 146597388 13.60 86400  62093980 243221915 74.47 86400  98162637 141389355 44.04 86400  100048341 141389355 41.32 86400 

4 19 116057765 122507002 5.26 86400  54714103 241692113 77.36 86400  95919960 129398169 34.90 86400  98237766 129394466 31.72 86400 

5 20 124112918 134051913 7.41 86401  57256531 261651915 78.12 86400  100614460 140453905 39.60 86400  104164117 140453905 34.84 86400 
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Table 4.5: Computational results for 5-time period 
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(1) (2) (3) (4)  (21) (22) (23) (24) (25) (26)  (27) (28) (29) (30) (31) (32) (33) 

sm
al

l 

50 

1 1  19885531 0.01 -0.81 -2.14 -1.79 2160  19884302 0.00 -0.82 -2.15 -1.79 -0.01 3740 

2 2  21946916 0.03 -0.07 -0.04 -0.51 1008  21941169 0.00 -0.09 -0.07 -0.53 -0.03 5804 

3 3  20080105 0.00 -0.73 -0.34 -0.28 375  20083503 0.02 -0.71 -0.33 -0.26 0.02 3254 

4 4  19504302 0.07 0.07 0.02 -0.11 93  19489989 0.00 0.00 -0.05 -0.19 -0.07 4238 

5 5  19884448 0.00 -0.76 0.00 -0.40 132  19884448 0.00 -0.76 0.00 -0.40 0.00 4090 

sm
al

l 

100 

1 6  39398322 0.23 -12.79 -0.33 -0.56 10715  39337475 0.08 -12.92 -0.48 -0.71 -0.15 15147 

2 7  37438126 -0.01 -7.28 -0.28 -0.34 12097  37478619 0.09 -7.18 -0.17 -0.23 0.11 27366 

3 8  40726587 0.21 -11.69 0.15 -0.03 17112  40821342 0.44 -11.48 0.38 0.20 0.23 22276 

4 9  35286326 0.06 -7.52 0.01 -0.60 9576  35265423 0.00 -7.58 -0.05 -0.66 -0.06 31042 

5 10  36498028 0.01 -9.26 -0.03 -3.82 7060  36511084 0.05 -9.22 0.01 -3.78 0.04 32657 

m
ed

iu
m

 

200 

1 11  84397022 2.35 -46.94 2.06 1.37 43200  94449671 14.54 -40.61 14.21 13.45 11.91 41384 

2 12  82203200 3.03 -36.65 2.64 2.58 43200  89282785 11.91 -31.19 11.48 11.41 8.61 40735 

3 13  86299133 5.97 -41.67 5.62 5.24 16290  94500818 16.04 -36.12 15.66 15.24 9.50 38468 

4 14  82756635 8.12 -16.74 7.38 6.62 43200  86359040 12.83 -13.11 12.05 11.26 4.35 41475 

5 15  86270952 8.46 -26.71 8.16 7.78 43200  88587587 11.37 -24.74 11.06 10.68 2.69 39930 

m
ed

iu
m

 

300 

1 16  128260991 -4.52 -48.03 -8.79 -8.78 28838  163314157 21.58 -33.83 16.13 16.16 27.33 41594 

2 17  133417136 0.16 -45.71 -5.61 -5.61 14426  151382466 13.65 -38.40 7.10 7.10 13.47 32792 

3 18  139078462 -5.13 -42.82 -1.63 -1.63 14420  154057096 5.09 -36.66 8.96 8.96 10.77 36841 

4 19  120884659 -1.32 -49.98 -6.58 -6.58 30629  156901524 28.08 -35.08 21.25 21.26 29.79 38390 

5 20  129406612 -3.47 -50.54 -7.87 -7.87 14426  151850940 13.28 -41.96 8.11 8.11 17.34 36950 
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Table 4.6: Computational results for 10-time period 
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(1) (2) (3) (4) (5) (6) (7) (8)  (9) (10) (11) (12)  (13) (14) (15) (16)  (17) (18) (19) (20) 
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al
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50 

1 21 35837986 35837986 0.00 7937   26068042 36386905 28.36 86400   34356996 35837986 4.13 86400   35423454 36062700 1.77 86400 

2 22 35996895 35996895 0.00 1071  30108842 36192152 16.81 86400  34582379 36063808 4.11 86400  36264370 36219899 -0.12 1055 

3 23 36778154 36778154 0.00 2778  27389003 37230372 26.43 86400  35818360 36836073 2.76 86400  36560487 36859086 0.81 86400 

4 24 34446146 34446146 0.00 75  32009281 34996745 8.54 86400  33808897 35183146 3.91 86400  33915082 34499389 1.69 86400 

5 25 35819821 35819821 0.00 1957   26506204 36861934 28.09 86400   34960492 35819821 2.40 86400   35354795 35835103 1.34 86400 

m
ed

iu
m

 

100 

1 26 66258080 68247924 2.92 86400   43595810 82923579 47.43 86400   65437852 68507271 4.48 86400   67137291 68812613 2.43 86400 

2 27 65776818 65776818 0.00 69400  43486020 80085831 45.70 86400  63241926 66215500 4.49 86400  64961628 67857179 4.27 86400 

3 28 70110603 71927115 2.53 86400  41715371 92714935 55.01 86400  69281290 72625049 4.60 86400  71234583 76044946 6.33 86400 

4 29 64556288 64556288 0.00 50234  39695327 81225475 51.13 86400  62196039 65260119 4.70 86400  63275822 65302710 3.10 86400 

5 30 64095196 65915313 2.76 86400   41580158 83488131 50.20 86400   63205431 66232683 4.57 86400   65232424 67967907 4.02 86400 

m
ed
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m

 

200 

1 31 135711033 164055181 17.28 86400   72282998 298477364 75.78 86400   117683523 146529300 19.69 86400   134573452 148622727 9.45 86400 

2 32 131708441 162677081 19.04 86400  68361721 291103899 76.52 86400  114278868 138575597 17.53 86400  122530068 142860306 14.23 86400 

3 33 134440896 164789507 18.42 86400  67636653 343160408 80.29 86400  117928370 142211568 17.08 86400  120624839 145761305 17.24 86400 

4 34 127586963 149444104 14.63 86400  70982810 263425947 73.05 86400  127418133 133723286 4.72 86400  126525060 134672500 6.05 86400 

5 35 131406233 154859503 15.14 86400   68382521 300545433 77.25 86400   121555749 138769270 12.40 86400   114022733 139500252 18.26 86400 

la
rg

e 

300 

1 36 - - - -   70035499 646987945 89.18 86400   156852657 222572311 29.53 86400   161746601 222572311 27.33 86400 

2 37 - - - -  70035499 666721274 89.50 86400  157316568 225288927 30.17 86400  161424550 222941685 27.59 86400 

3 38 - - - -  70035499 673069066 89.59 86400  158578879 227477765 30.29 86401  162174576 227477765 28.71 86400 

4 39 - - - -  70035499 616335438 88.64 86400  154966468 213017148 27.25 86402  158330943 213017148 25.67 86400 

5 40 - - - -   70035499 663794720 89.45 86400   160566612 221304838 27.45 86403   163573446 221327257 26.09 86400 
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Table 4.7: Computational results for 10-time period 
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(1) (2) (3) (4)  (21) (22) (23) (24) (25) (26)  (27) (28) (29) (30) (31) (32) (33) 

sm
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50 

1 21  35845574 0.02 -1.49 0.02 -0.60 1692  35844384 0.02 -1.49 0.02 -0.61 0.00 25609 

2 22  36032883 0.10 -0.44 -0.09 -0.52 4300  35996895 0.00 -0.54 -0.19 -0.62 -0.10 22827 

3 23  36840773 0.17 -1.05 0.01 -0.05 4753  36783064 0.01 -1.20 -0.14 -0.21 -0.16 14915 

4 24  34446146 0.00 -1.57 -2.09 -0.15 246  34446146 0.00 -1.57 -2.09 -0.15 0.00 3831 

5 25  35832720 0.04 -2.79 0.04 -0.01 2156  35822877 0.01 -2.82 0.01 -0.03 -0.03 28497 

m
ed

iu
m

 

100 

1 26  69866988 2.37 -15.75 1.98 1.53 4674  70984701 4.01 -14.40 3.62 3.16 1.60 26426 

2 27  66325521 0.83 -17.18 0.17 -2.26 14690  69091579 5.04 -13.73 4.34 1.82 4.17 33429 

3 28  73121554 1.66 -21.13 0.68 -3.84 8480  74763040 3.94 -19.36 2.94 -1.69 2.24 22623 

4 29  64986637 0.67 -19.99 -0.42 -0.48 8665  64644368 0.14 -20.41 -0.94 -1.01 -0.53 26417 

5 30  66598021 1.04 -20.23 0.55 -2.02 9083  66019019 0.16 -20.92 -0.32 -2.87 -0.87 33871 

m
ed
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m

 

200 

1 31  145896480 -11.07 -51.12 -0.43 -1.83 3839  156741589 -4.46 -47.49 6.97 5.46 7.43 37008 

2 32  142958749 -12.12 -50.89 3.16 0.07 3871  149236889 -8.26 -48.73 7.69 4.46 4.39 34796 

3 33  145991876 -11.41 -57.46 2.66 0.16 4046  159233707 -3.37 -53.60 11.97 9.24 9.07 31216 

4 34  139204640 -6.85 -47.16 4.10 3.37 4113  151482371 1.36 -42.50 13.28 12.48 8.82 36832 

5 35  142874545 -7.74 -52.46 2.96 2.42 4274  150728317 -2.67 -49.85 8.62 8.05 5.50 39821 

la
rg

e 

300 

1 36  213882500 - -66.94 -3.90 -3.90 18000  247238389 - -61.79 11.08 11.08 15.60 43200 

2 37  221619462 - -66.76 -1.63 -0.59 7290  253024694 - -62.05 12.31 13.49 14.17 30698 

3 38  209009804 - -68.95 -8.12 -8.12 7221  279247752 - -58.51 22.76 22.76 33.61 41196 

4 39  209009804 - -66.09 -1.88 -1.88 7208  249119593 - -59.58 16.95 16.95 19.19 33242 

5 40  216453004 - -67.39 -2.19 -2.20 18000  246302946 - -62.89 11.30 11.28 13.79 37958 
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Table 4.8: Computational results for 15-time period 
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(1) (2) (3) (4) (5) (6) (7) (8)  (9) (10) (11) (12)  (13) (14) (15) (16)  (17) (18) (19) (20) 
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1 41 55195583 55195583 0.00 61440   42015940 56423600 25.53 86400  52720424 55725979 5.39 86400   52913208 55574093 4.79 86400 

2 42 54975714 54975714 0.00 11051  44015826 55767968 21.07 86400  52135383 55195711 5.54 86400  54516446 55152480 1.15 86400 

3 43 55971310 55971310 0.00 65681  40000178 59145572 32.37 86400  53743812 56165161 4.31 86400  54259474 56300253 3.62 86400 

4 44 53289593 53289593 0.00 2462  43037026 54307237 20.75 86400  51483739 53289593 3.39 86400  52778633 53649620 1.62 86400 

5 45 55107888 55107888 0.00 42049   41506206 57107741 27.32 86400  53166346 55403651 4.04 86400   53371778 55234731 3.37 86400 

m
ed

iu
m

 

100 

1 46 99931974 103614761 3.55 86400   64060948 145670194 56.02 86400  99350002 104451117 4.88 86400   101245831 109560010 7.59 86400 

2 47 96957242 100964928 3.97 86400  66040834 136587491 51.65 86400  96502266 101835183 5.24 86400  97757267 101479671 3.67 86400 

3 48 105104117 109765634 4.25 86400  64035948 154644255 58.59 86400  105243591 110860356 5.07 86400  106396856 110466536 3.68 86400 

4 49 95963329 99951084 3.99 86400  59534088 133376144 55.36 86400  96747904 101543821 4.72 86400  96909676 100033008 3.12 86400 

5 50 97555131 100963199 3.38 86400   60038622 136099953 55.89 86400  96692442 101361223 4.61 86400   97942889 101216894 3.23 86400 

la
rg

e 

200 

1 51 - - - -   104070470 523401500 80.12 86400  170844018 221670528 22.93 86400   174191622 217710677 19.99 86400 

3 53 - - - -  96563018 596117041 83.80 86400  165860254 218962474 24.25 86400  166945574 218964495 23.76 86400 

4 54 - - - -  95042435 544542263 82.55 86400  171208856 203554532 15.89 86400  174228931 204576476 14.83 86400 

5 55 - - - -   92560692 587746959 84.25 86400  167179400 216394562 22.74 86400   170261876 216413941 21.33 86400 

la
rg

e 

300 

1 56 - - - -   116136904 1044180075 88.88 86400  229007622 325466525 29.64 86400   233762410 325466525 28.18 86400 

2 57 - - - -  116136904 1074198487 89.19 86400  231130467 332713637 30.53 86400  234624408 332713637 29.48 86400 

3 58 - - - -  116136904 1084556305 89.29 86400  228921278 339591886 32.59 86400  236151600 340030920 30.55 86400 

4 59 - - - -  116136904 997196340 88.35 86400  227551124 313820212 27.49 86400  230665766 313820212 26.50 86400 

5 60 - - - -   116136904 1069597382 89.14 86400  231609793 334973269 30.86 86400   236478578 334973269 29.40 86400 
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Table 4.9: Computational results for 15-time period 
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(1) (2) (3) (4)  (21) (22) (23) (24) (25) (26)  (27) (28) (29) (30) (31) (32) (33) 
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1 41  55238729 0.08 -2.10 -0.87 -0.60 11254  55549702 0.64 -1.55 -0.32 -0.04 0.56 31901 

2 42  54985252 0.02 -1.40 -0.38 -0.30 5699  55089813 0.21 -1.22 -0.19 -0.11 0.19 13339 

3 43  55584586 -0.69 -6.02 -1.03 -1.27 11254  56519351 0.98 -4.44 0.63 0.39 1.68 31715 

4 44  53289593 0.00 -1.87 0.00 -0.67 1100  53289593 0.00 -1.87 0.00 -0.67 0.00 19762 

5 45   55231400 0.22 -3.29 -0.31 -0.01 13419  55478462 0.67 -2.85 0.14 0.44 0.45 30087 

m
ed

iu
m

 

100 

1 46  105464724 1.79 -27.60 0.97 -3.74 6719  111478247 7.59 -23.47 6.73 1.75 5.70 26075 

2 47  105230751 4.23 -22.96 3.33 3.70 3610  109591244 8.54 -19.76 7.62 7.99 4.14 25867 

3 48  115320544 5.06 -25.43 4.02 4.39 3222  118272940 7.75 -23.52 6.69 7.07 2.56 17334 

4 49  105193210 5.24 -21.13 3.59 5.16 4457  106287768 6.34 -20.31 4.67 6.25 1.04 28360 

5 50   105834353 4.82 -22.24 4.41 4.56 7095  109116736 8.08 -19.83 7.65 7.80 3.10 24772 

la
rg

e 

200 

1 51  215743152 - -58.78 -2.67 -0.90 10800  229945387 - -56.07 3.73 5.62 6.58 37130 

3 53  215384502 - -63.87 -1.63 -1.63 10810  221760583 - -61.44 4.97 4.97 6.71 37611 

4 54  203782113 - -62.58 0.11 -0.39 10828  229846308 - -58.09 12.12 11.56 11.99 30345 

5 55   211419174 - -64.03 -2.30 -2.31 10809  228220520 - -61.90 3.50 3.49 5.93 34729 

la
rg

e 

300 

1 56  339460912 - -67.49 4.30 4.30 18026  223959841 - -63.52 17.04 17.04 12.22 41298 

2 57  349924000 - -67.42 5.17 5.17 18000  380928624 - -63.71 17.18 17.18 11.41 39560 

3 58  345152479 - -68.18 1.64 1.51 18070  389866549 - -63.36 17.01 16.86 15.12 40017 

4 59  318369126 - -68.07 1.45 1.45 18072  397354039 - -61.23 23.21 23.21 21.45 43200 

5 60   351695216 - -67.12 4.99 4.99 18000  386653001 - -62.82 18.71 18.71 13.06 43200 
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Table 4.10: Computational results for 20-time period 
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(1) (2) (3) (4) (5) (6) (7) (8)  (9) (10) (11) (12)  (13) (14) (15) (16)  (17) (18) (19) (20) 

sm
al

l 

50 

1 61 76881125 76881125 0.00 67274  54637818 84112030 35.04 86395  73545003 77207271 4.74 86400  75017450 77401522 3.08 86400 

2 62 76530950 76530950 0.00 6961  59793268 80531305 25.75 86396  73156832 76597895 4.49 86400  75175038 76903081 2.25 86400 

3 63 78344393 78344393 0.00 69286  54903863 85319073 35.65 86397  75478178 78547600 3.91 86400  77227998 78379560 1.47 86400 

4 64 75258187 75258187 0.00 8556  60412543 75921015 20.43 86398  72330319 75258187 3.89 86400  72460937 75258187 3.72 86400 

5 65 76871419 76871419 0.00 47203  55786568 82026890 31.99 86399  74073121 76871419 3.64 86400  75176220 76916363 2.26 86400 

m
ed

iu
m

 

100 

1 66 141558877 148005946 4.36 86400  92129187 214040698 56.96 86400  140842632 148523960 5.17 86400  142036318 148675327 4.47 86400 

2 67 137924861 145837921 5.43 86400  92617705 213189420 56.56 86400  137335495 143502272 4.30 86400  138523051 144155473 3.91 86400 

3 68 148236698 155207481 4.49 86400  90936184 222026744 59.04 86400  148085430 155617894 4.84 86400  149151119 155515351 4.09 86400 

4 69 136351248 142081078 4.03 86400  85140887 196566695 56.69 86400  135550470 141771979 4.39 86400  137353247 142067172 3.32 86400 

5 70 138210751 142839915 3.24 86400  88603729 199472688 55.58 86400  137593763 142992805 3.78 86400  138940938 143431501 3.13 86400 

la
rg

e 

200 

1 71 - - - -  141877427 845654087 83.22 86400  230376294 314066328 26.65 86400  234377768 314066328 25.37 86400 

2 72 - - - -  132030124 872676074 84.87 86400  222000149 304315194 27.05 86400  230029742 304315194 24.41 86400 

3 73 - - - -  135476742 855701438 84.17 86400  226533290 310645504 27.08 86400  237414808 310645504 23.57 86400 

4 74 - - - -  132757389 827489641 83.96 86400  230571990 297526245 22.50 86400  240080024 299347856 19.80 86400 

5 75 - - - -  128796035 870407916 85.20 86400  226028205 302820571 25.36 86400  234147612 302820571 22.68 86400 

la
rg

e 

300 

1 76 - - - -  172226738 1495870337 88.49 86401  317845276 461958312 31.20 86400  320167678 462152076 30.72 86400 

2 77 - - - -  172226738 1536681141 88.79 86402  321720866 463957617 30.66 86400  327306211 463957617 29.45 86400 

3 78 - - - -  172226738 1551387856 88.90 86403  323731484 474096621 31.72 86400  329703191 474096621 30.46 86400 

4 79 - - - -  172226738 1431977195 87.97 86404  318354612 443474416 28.21 86400  320832694 443474416 27.65 86400 

5 80 - - - -  172226738 1530390960 88.75 86405  323907982 461184592 29.77 86400  329648546 465705409 29.22 86400 
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Table 4.11: Computational results for 20-time period 
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(1) (2) (3) (4)  (21) (22) (23) (24) (25) (26)  (27) (28) (29) (30) (31) (32) (33) 

sm
al

l 

50 

1 61  77173301 0.38 -8.25 -0.04 -0.29 9833  77388665 0.66 -7.99 0.23 -0.02 0.28 28744 

2 62  76584906 0.07 -4.90 -0.02 -0.41 39426  76989609 0.60 -4.40 0.51 0.11 0.53 26767 

3 63  78819256 0.61 -7.62 0.35 0.56 43200  78850855 0.65 -7.58 0.39 0.60 0.04 25449 

4 64  75301914 0.06 -0.82 0.06 0.06 30414  75414318 0.21 -0.67 0.21 0.21 0.15 27923 

5 65   76917763 0.06 -6.23 0.06 0.00 41376  77566047 0.90 -5.44 0.90 0.84 0.84 28662 

m
ed

iu
m

 

100 

1 66  155654529 5.17 -27.28 4.80 4.69 13002  162291995 9.65 -24.18 9.27 9.16 4.26 33024 

2 67  154596967 6.01 -27.48 7.73 7.24 16597  156436384 7.27 -26.62 9.01 8.52 1.19 27188 

3 68  166291126 7.14 -25.10 6.86 6.93 19640  172343562 11.04 -22.38 10.75 10.82 3.64 24113 

4 69  150639252 6.02 -23.36 6.25 6.03 20148  153691188 8.17 -21.81 8.41 8.18 2.03 37091 

5 70  147418791 3.21 -26.10 3.10 2.78 12890  163386356 14.38 -18.09 14.26 13.91 10.83 17194 

la
rg

e 

200 

1 71   301082409 - -64.40 -4.13 -4.13 18085  351675710 - -58.41 11.97 11.97 16.80 41920 

2 72  295159166 - -66.18 -3.01 -3.01 18029  331010889 - -62.07 8.77 8.77 12.15 40802 

3 73  303819181 - -64.49 -2.20 -2.20 18069  330913555 - -61.33 6.52 6.52 8.92 34495 

4 74  286726180 - -65.35 -3.63 -4.22 18104  323550874 - -60.90 8.75 8.09 12.84 30859 

5 75   300886942 - -65.43 -0.64 -0.64 18024  323850231 - -62.79 6.94 6.94 7.63 36435 

la
rg

e 

300 

1 76   481101826 - -67.84 4.14 4.10 18043  - - - - - - - 

2 77  484663886 - -68.46 4.46 4.46 18116  - - - - - - - 

3 78  513697224 - -66.89 8.35 8.35 18060  - - - - - - - 

4 79  471608308 - -67.07 6.34 6.34 18199  - - - - - - - 

5 80   486335745 - -68.22 5.45 4.43 18063  - - - - - - - 
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Out of the total 80 problem instances Gurobi solver could obtain optimal solutions for 24 

instances and feasible (non-optimal) solutions for 31 instances. In the case of the remaining 25 

problem instances, Gurobi could not even produce a feasible solution within the imposed time 

limit. The majority of these problem instances are of large size. As expected, the optimal 

solutions are obtained only for small size problem instances, whereas the feasible but not 

optimal solutions are observed mostly for medium-size instances. This clearly shows that the 

computational requirement increases significantly with the problem size in taking up the 

classical optimization approach. 

In contrast to the direct use of MHCFL formulation using Gurobi, all three Benders 

decomposition approaches provide feasible solutions for all problem instances within the 

imposed CPU time limit. Figure 4.13 depicts the optimality gap that is the difference between 

UB and LB reported by all the three Benders based approaches. It can be seen that due to the 

time-consuming iterations and complex nature of the MP and DSP, the classical BD algorithm 

results in extremely high optimality gaps even for small-size problem instances. In this case, 

the average optimality gap obtained within the specified CPU time limit of 24 hours for small, 

medium, and large size problem instances are 25.13%, 63.64%, and 86.68%, respectively. On 

the other hand, Gurobi reports an average optimality gap of 0.03% within 7.7 hours and 7.00% 

within 24 hours for small and medium-size problem instances, respectively. Looking into the 

high optimality gap reported by classical BD algorithm, it is reasonable to conclude that 

classical BD algorithm underperforms Gurobi for small and medium-sized problems. 

However, for large-size problem instances, it at least provides a UB for the problem within the 

specified time limit whereas Gurobi solver fails to do so. The preceding observations 
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substantiate the role of some acceleration strategies that have been earlier proposed for 

speeding up iterations and eventually to result in a better bound for the BD algorithm. 

  

(a) (b) 

 

(c) 

Figure 4.13: Optimality gap obtained for (a) small, (b) medium and (c) large size problem 

instances 

Within 24 hours of the CPU time limit, the accelerated BD algorithm reported an average 

optimality gap of  3.54 % and 12.26 % for small and medium-size problem instances, 

respectively. It can be seen that these solutions are not superior to those from Gurobi solver in 
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the case of small and medium instances. They, however, are comparable to Gurobi's solution 

and significantly better than that from the use of classical BD algorithm. In the case of large-

size problem instances, the average optimality gap is 27.47 % in the use accelerated BD 

algorithm, producing as well a definitive bound on the solution obtained. The results are 

slightly improved when using the Benders type heuristic. Within the specified CPU time limit 

of 24 hours, the average optimality gap for small, medium, and large size problem instances in 

the case of Benders type heuristic are 2.06 %, 10.92 %, and 25.75 %, respectively. In some of 

the small size problem instances (problem number 2, 8, 22 and 23), the Benders type heuristic 

even produced an optimality gap of less than 1%.  Thus, the results of the Benders type 

heuristic are far superior to those obtained by classical BD algorithm and are comparable to 

those obtained by accelerated BDA and Gurobi. It is evident that the use of LB improvement 

strategies such as relaxed Benders cut and parallelism have increased the lower bound up 

across all the problem classes. However, even after employing various acceleration strategies, 

both Benders decomposition based approaches struggle with convergence. A representative 

picture of the convergence reported by all the three Benders decomposition approaches and 

also by Gurobi is shown in Figure 4.14.  

Although the optimality gap obtained by accelerated BD algorithm and Benders type heuristic 

is not superior to Gurobi, it can be seen that both Benders decomposition based strategies 

outperform Gurobi solver if the comparison is made based on upper bounds. Figure 4.15 

depicts a comparison based on UB obtained from all the proposed approaches. Here, the 

comparison is made considering the UB reported by Gurobi as the base. For small and medium-

sized problem instances, the average deviation of the UB obtained through accelerated BDA 

is 0.35% and -1.11%, respectively. This means that the UB obtained through the accelerated 
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BDA is only 0.35% higher than that from Gurobi solver for small instances, and it is better 

than that for Gurobi sovler for medium instances on an average. A deviation of less than 1% 

is observed in 23 out of 25 small size problems and 25 out of 30 medium-size problems. A 

similar pattern is observed in the case of the Benders type heuristic. For small and medium-

sized problem instances, the average deviation in UB from Gurobi solver and Benders type 

heuristic is 0.58 % and -0.34 %, respectively. In this case, less than 1% deviation is observed 

in 23 out of 25 small size problems and 20 out of 30 medium-size problems. 

  
(a) Gurobi (b) Classical Benders 

  

(c) Accelerated Benders (d) Benders Type Heuristic 

Figure 4.14: Convergence of a problem of 50 nodes 5 time period and 2nd instance 
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(a) 

 

(b) 
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(c) 

Figure 4.15: Comparison of UB obtained for (a) small, (b) medium (c) large size problem 

instances 

In terms of CPU time, it can be seen that Gurobi solver is efficient as compared to the other 

approaches. It produces an optimal solution for small size problem instances in 7.7 hours on 

an average basis. It took 24 hours of time for almost all the instances to solve the problem. In 

contrast, all Benders decomposition based approaches are run for 24 hours, and so they are not 

as efficient as Gurobi solver. It is interesting to note that for medium-size problems, the 

accelerated BD algorithm and Benders type heuristic reported better UB the Gurobi solver 

within the same CPU time limit of 24 hours.  

The use of hybridized SA is experienced to be found better in most of the problem instances 

compared to Gurobi. For small size problem instances, hybridized SA yielded a near-optimal 

solution for 19 problem instances out of 25, and for 2 problem instances, it provides better UB 
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than that from Gurobi solver. For the medium size problem instances, , hybridized SA reported 

better solutions in 9 problems (out of 30) than from Gurobi solver. The maximum deviation is 

8.84%. The hybridized SA also provide a good feasible solution for large size problem 

instances in very less CPU time. It is worth mentioning that even the maximum CPU time limit 

of 12 hours is not touched by hybridized SA for 76 problem instances. The comparison of UB 

obtained from all the proposed approaches is shown in Figure 4.15. Furthermore, looking at 

the resulting objective function values for the problem instances, it is observed that hybridized 

SA outperform the other three Benders decomposition approaches. However, for some medium 

and large size problem instances, the Benders type heuristic outperformed hybridized SA in 

terms of UB. 

The objective value obtained from PSO is now compared with all other approaches discussed 

above, and the percentage deviation is shown in Table 4.5, 4.7, 4.9 and 4.11. When the 

objective function value of the solution obtained from PSO is compared with the UB from 

Gurobi solver, it is found that the deviation is less than 1% in all the small size problem 

instances. For the medium size problem instances, mixed results are obtained. For 5 time-

period problems, the deviation is higher, whereas as the problem size increases (for medium 

and large size problems), the deviation improves to the better side. PSO provides a good quality 

solution in a specified time limit of 12 hours for large-scale problems whereas Gurobi solver 

fails to report any feasible solution. PSO approach has also failed to report feasible solutions 

for 5 large-scale problem instances. PSO performed better compared to the classical Benders 

decomposition, but fell short compared with accelerated Benders decomposition and Benders 

type heuristic.  The solutions from PSO are also compared with the solutions from hybridized 

SA. It is found that, hybridized SA reported better solutions than PSO in 70 problem instances. 
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In many cases, the deviation and reported CPU time are very close in both the cases. So to 

have a clear and exact conclusion on the comparative performance of PSO and hybridized SA, 

Wilcoxon Signed-Rank tests were conducted. The test found the hybridized SA to be better 

than PSO in terms of solution quality (p = 0.00001) and CPU time (p = 0.00001).  

An analysis of the CPU time used by all six approaches shows that the direct use of MHCFL 

formulation using a solver is not advisable compared to the other five approaches except for 

when it results in the optimal solution. It can further be observed that out of the three variants 

of Benders decomposition, classical BD algorithm performed worst, whereas Benders type 

heuristic and accelerated BD algorithm performed comparatively better in terms of solution 

quality. PSO performed well compared to Gurobi solver but fell short when compared to other 

approaches in terms of both solution quality and CPU time. The hybridized SA approach is 

found to be the most efficient and effective for several problem instances.  

4.9 Integrated vs Disaggregated Planning 

In the earlier chapters, the healthcare network plans were designed keeping a particular period 

in mind. The problem and the corresponding mathematical model did not consider the 

possibility of upgrading the facilities. The problem and the corresponding MHCFL model 

design the maternal healthcare facilities network plan considering the possibility of upgrading 

the existing facilities. The model proposed in the chapters established various facility types in 

the first period and considered the possibility of their upgradation in subsequent years. Thus 

the planning size for the second period will take into cognizance the healthcare facilities that 

are planned to be created in the first period. This possibility could not be captured by the 

mathematical model presented in the earlier chapters.  
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The earlier section of this chapter has shown that the multi-period problem involves too many 

design variables and constraints while formulating it as a mathematical programming model. 

To avoid this problem, one may think of solving the problem sequentially and period-wise. 

Though the computational complexity is expected to decrease, the quality of the solution in 

terms of the objective function value is likely to deteriorate. Therefore one needs to analyse 

how much beneficial the integrated consideration of the problem could be viz-a-viz when they 

are solved sequentially. If the difference is not very large, one may like to follow the sequential 

approach. To analyze this aspect from the managerial perspective, a detailed what-if analysis 

has been carried out.  

The experimentation has been carried out on a 50 node problem for a planning horizon of 5, 

10, 15 and 20 years. The results of this analysis have been presented in Tables 4.12, 4.13, 4.14, 

4.15, 4.16, 4.17, 4.18, 4.19 and 4.20. The results shown in these tables exhibit that the 

sequential approach asks for a lesser number of facilities to be established by permitting 

degradation in service quality (high penalty cost and more overburdening).  At the same time, 

the sequential approach absorbs more of the cost. The cost considered here is the inclusion of 

penalty cost. The cost considered here is the inclusion of penalty cost. On making penalty costs 

very high for 20-time period problem, it is found that overburdening becomes zero. (for this 

purpose, please refer to Tables 4.19 and 4.20). To avoid overburdening, it is observed that 

facilities are upgraded at a later stage besides establishing more of the facilities. The results 

presented in Table 4.21 clearly show that integrated consideration is advantageous compared 

to the sequential approach. The amount of advantage increases with the increase in the number 

of periods in the planning horizon.   
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Table 4.12: Solution of MHCFL formulation  for 5-time period 

Time 

period 

Number of new 

 
Number of facilities 

upgraded from 

 
Number of facilities 

operating 

 

Overburdening 

Objective 

function 

value 

SC PHC CHC 
 SC to 

PHC 

SC to 

CHC 

PHC to 

CHC 

 
SC PHC CHC 

 
BU MH NC  

1 3 0 0  1 0 1  6 4 3  0 0 206 

1.99E+07 

2 0 0 0  0 0 0  6 4 3  0 0 220 

3 0 0 0  0 0 0  6 4 3  0 0 232 

4 0 0 0  0 0 0  6 4 3  0 0 245 

5 0 0 0  0 0 0  6 4 3  0 0 258 

 

Table 4.13: Solution of sequential approach for 5-time period 

Time 

period 

Number of new 

 

Number of facilities 

upgraded from 

 

Number of facilities 

operating 

 

Overburdening 

Objective 

function 

value 

Total 

objective 

function 

value 

SC PHC CHC 

 
SC to 

PHC 

SC to 

CHC 

PHC 

to 

CHC 

 

SC PHC CHC 

 

BU MH NC   

1 2 0 0  0 0 1  6 3 3  315 631 207 8.11E+06 

2.38E+07 

2 0 0 0  0 0 0  6 3 3  491 714 221 3.43E+06 

3 0 0 0  0 0 0  6 3 3  659 797 232 3.75E+06 

4 0 0 0  0 0 0  6 3 3  828 880 245 4.07E+06 

5 0 0 0  0 0 0  6 3 3  1000 972 260 4.41E+06 

 

Table 4.14: Solution of MHCFL formulation for 10-time period 

Time 

period 

Number of new 

 
Number of facilities 

upgraded from 

 
Number of facilities 

operating 

 

Overburdening 

Objective 

function 

value 

SC PHC CHC 
 SC to 

PHC 

SC to 

CHC 

PHC to 

CHC 

 
SC PHC CHC 

 
BU MH NC  

1 4 0 0  1 0 1  7 4 7  0 0 207 

3.58E+07 

2 0 0 0  0 0 0  7 4 7  0 0 221 

3 0 0 0  0 0 0  7 4 7  0 0 232 

4 0 0 0  0 0 0  7 4 7  0 0 245 

5 0 0 0  0 0 0  7 4 7  0 0 260 

6 0 0 0  0 0 0  7 4 7  0 55 271 

7 0 0 0  0 0 0  7 4 7  0 145 283 

8 0 0 0  0 0 0  7 4 7  0 230 298 

9 0 0 0  0 0 0  7 4 7  0 318 313 

10 0 0 0  0 0 0  7 4 7  0 416 326 
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Table 4.15: Solution of sequential approach for 10-time period 

Time 

period 

Number of new 
 Number of facilities 

upgraded from 

 Number of facilities 

operating 

 
Overburdening 

Objective 

function 

value 

Total 

objective 

function 

value 
SC PHC CHC 

 
SC to 

PHC 

SC to 

CHC 

PHC 

to 

CHC 

 

SC PHC CHC 

 

BU MH NC 

1 2 0 0  0 0 1  6 3 3  315 631 207 8.11E+06 

5.10E+07 

2 0 0 0  0 0 0  6 3 3  491 714 221 3.43E+06 

3 0 0 0  0 0 0  6 3 3  659 797 232 3.75E+06 

4 0 0 0  0 0 0  6 3 3  828 880 245 4.07E+06 

5 0 0 0  0 0 0  6 3 3  1000 972 260 4.41E+06 

6 0 0 0  0 0 0  6 3 3  1174 1053 271 4.74E+06 

7 0 0 0  0 0 0  6 3 3  1349 1143 283 5.09E+06 

8 0 0 0  0 0 0  6 3 3  1525 1229 297 5.43E+06 

9 0 0 0  0 0 0  6 3 3  1704 1318 311 5.78E+06 

10 0 0 0  0 0 0  6 3 3  1887 1415 326 6.15E+06 

 

Table 4.16: Solution of MHCFL formulation for 15-time period 

Time 

period 

Number of new 

 
Number of facilities upgraded 

from 

 
Number of facilities 

operating 

 

Overburdening 

Objective 

function 

value 

SC PHC CHC 
 SC to 

PHC 

SC to 

CHC 

PHC to 

CHC 

 
SC PHC CHC 

 
BU MH NC  

1 5 0 0  1 1 0  7 5 3  0 0 207 

5.52E+07 

2 0 0 0  0 0 0  7 5 3  0 0 221 

3 0 0 0  0 0 0  7 5 3  0 0 232 

4 0 0 0  0 0 0  7 5 3  0 0 245 

5 0 0 0  0 0 0  7 5 3  0 0 259 

6 0 0 0  0 0 0  7 5 3  0 0 271 

7 0 0 0  0 0 0  7 5 3  0 0 283 

8 0 0 0  0 0 0  7 5 3  0 0 298 

9 0 0 0  0 0 0  7 5 3  0 0 313 

10 0 0 0  0 0 0  7 5 3  0 0 326 

11 0 0 0  0 0 0  7 5 3  0 0 339 

12 0 0 0  0 0 0  7 5 3  0 0 351 

13 0 0 0  0 0 0  7 5 3  0 0 366 

14 0 0 0  0 0 0  7 5 3  0 0 379 

15 0 0 0  0 0 0  7 5 3  0 0 392 
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Table 4.17: Solution of sequential approach for 15-time period 

Time 

period 

Number of new 

 

Number of facilities 

upgraded from 

 

Number of facilities 

operating 

 

Overburdening 

Objective 

function 

value 

Total 

objective 

function 

value 

SC PHC CHC 
 SC to 

PHC 

SC to 

CHC 

PHC to 

CHC 

 
SC PHC CHC 

 
BU MH NC   

1 2 0 0  0 0 1  6 3 3  315 631 207 8.11E+06 

8.73E+0

7 

2 0 0 0  0 0 0  6 3 3  491 714 221 3.43E+06 

3 0 0 0  0 0 0  6 3 3  659 797 232 3.75E+06 

4 0 0 0  0 0 0  6 3 3  828 880 245 4.07E+06 

5 0 0 0  0 0 0  6 3 3  1000 972 260 4.41E+06 

6 0 0 0  0 0 0  6 3 3  1174 1053 271 4.74E+06 

7 0 0 0  0 0 0  6 3 3  1349 1143 283 5.09E+06 

8 0 0 0  0 0 0  6 3 3  1525 1229 297 5.43E+06 

9 0 0 0  0 0 0  6 3 3  1704 1318 311 5.78E+06 

10 0 0 0  0 0 0  6 3 3  1887 1415 326 6.15E+06 

11 0 0 0  0 0 0  6 3 3  2072 1503 337 6.51E+06 

12 0 0 0  0 0 0  6 3 3  2258 1599 351 6.89E+06 

13 0 0 0  0 0 0  6 3 3  2445 1691 365 7.27E+06 

14 0 0 0  0 0 0  6 3 3  2633 1784 378 7.65E+06 

15 0 0 0  0 0 0  6 3 3  2822 1880 391 8.04E+06 

Table 4.18: Solution of MHCFL formulation for 20-time period 

Time 

perio

d 

Number of new 

 
Number of facilities 

upgraded from 

 
Number of facilities 

operating 

 

Overburdening 

Objective 

function 

value 

SC PHC CHC 
 SC to 

PHC 

SC to 

CHC 

PHC to 

CHC 

 
SC PHC CHC 

 
BU MH NC  

1 5 0 0  0 1 1  8 3 4  0 0 0 

8.11E+07 

2 0 0 0  0 1 1  8 3 4  0 0 0 

3 0 0 0  0 1 1  8 3 4  0 0 0 

4 0 0 0  0 1 1  8 3 4  0 0 0 

5 0 0 0  0 1 1  8 3 4  0 0 0 

6 0 0 0  0 1 1  8 3 4  0 0 0 

7 0 0 0  0 1 1  8 3 4  0 0 0 

8 0 0 0  0 1 1  8 3 4  0 31 0 

9 0 0 0  0 1 1  8 3 4  0 118 13 

10 0 0 0  0 1 1  8 3 4  0 216 26 

11 0 0 0  0 1 1  8 3 4  0 303 40 

12 0 0 0  0 1 1  8 3 4  0 400 51 

13 0 0 0  0 1 1  8 3 4  0 492 67 

14 0 0 0  0 1 1  8 3 4  0 585 80 

15 0 0 0  0 1 1  8 3 4  0 682 93 

16 0 0 0  0 1 1  8 3 4  0 773 106 

17 0 0 0  0 1 1  8 3 4  0 873 121 

18 0 0 0  0 1 1  8 3 4  0 967 135 

19 0 0 0 
 

0 1 1 
 

8 3 4 
 

92 
106

5 
150 

20 0 0 0 
 

0 1 1 
 

8 3 4 
 29

1 

116

7 
164 
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Table 4.19: Solution of sequential approach for 20-time period 

Time 

perio

d 

Number of new 

 

Number of facilities 

upgraded from 

 

Number of facilities 

operating 

 

Overburdening 

Objective 

function 

value 

Total 

objective 

function 

value 

SC 
PH

C 
CHC 

 SC to 

PHC 

SC to 

CHC 

PHC to 

CHC 

 
SC PHC CHC 

 
BU MH NC   

1 2 0 0  0 0 1  6 3 3  315 631 207 8.11E+06 

1.34E+08 

2 0 0 0  0 0 0  6 3 3  491 714 221 3.43E+06 

3 0 0 0  0 0 0  6 3 3  659 797 232 3.75E+06 

4 0 0 0  0 0 0  6 3 3  828 880 245 4.07E+06 

5 0 0 0  0 0 0  6 3 3  1000 972 260 4.41E+06 

6 0 0 0  0 0 0  6 3 3  1174 1053 271 4.74E+06 

7 0 0 0  0 0 0  6 3 3  1349 1143 283 5.09E+06 

8 0 0 0  0 0 0  6 3 3  1525 1229 297 5.43E+06 

9 0 0 0  0 0 0  6 3 3  1704 1318 311 5.78E+06 

10 0 0 0  0 0 0  6 3 3  1887 1415 326 6.15E+06 

11 0 0 0  0 0 0  6 3 3  2072 1503 337 6.51E+06 

12 0 0 0  0 0 0  6 3 3  2258 1599 351 6.89E+06 

13 0 0 0  0 0 0  6 3 3  2445 1691 365 7.27E+06 

14 0 0 0  0 0 0  6 3 3  2633 1784 378 7.65E+06 

15 0 0 0  0 0 0  6 3 3  2822 1880 391 8.04E+06 

16 0 0 0  0 0 0  6 3 3  3012 1972 404 8.43E+06 

17 0 0 0  0 0 0  6 3 3  3203 2072 420 8.83E+06 

18 0 0 0  0 0 0  6 3 3  3396 2166 433 9.23E+06 

19 0 0 0  0 0 0  6 3 3  3592 2263 448 9.65E+06 

20 0 0 0  0 0 0  6 3 3  3791 2364 462 1.01E+07 
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Table 4.20: Solution of sequential approach for 20-time period with very high penalty 

Time 

period 

Number of New 
 Number of facilities 

upgraded from 

 Number of facilities 

operating 

 
Overburdening 

Objective 

function 

value 

Total 

Objective 

function 

value 
SC PHC CHC 

 SC 

to 

PHC 

SC 

to 

CHC 

PHC 

to 

CHC 

 

SC PHC CHC 

 

BU MH NC 

1 2 0 0  1 0 2  5 3 4  0 0 0 1.22E+07 

8.42E+07 

2 0 0 0  0 0 0  5 3 4  0 0 0 2.24E+06 

3 1 0 0  0 0 0  6 3 4  0 0 0 3.34E+06 

4 0 0 0  0 0 0  6 3 4  0 0 0 2.34E+06 

5 0 0 0  0 0 0  6 3 4  0 0 0 2.42E+06 

6 0 0 0  0 0 0  6 3 4  0 0 0 2.51E+06 

7 0 0 0  0 0 0  6 3 4  0 0 0 2.61E+06 

8 0 0 0  1 0 0  5 4 4  0 0 0 5.40E+06 

9 0 0 0  0 0 1  5 3 5  0 0 0 7.11E+06 

10 0 0 0  0 0 0  5 3 5  0 0 0 3.12E+06 

11 1 0 0  0 0 0  6 3 5  0 0 0 4.67E+06 

12 0 0 0  0 0 0  6 3 5  0 0 0 3.31E+06 

13 0 0 0  0 0 0  6 3 5  0 0 0 3.44E+06 

14 0 0 0  0 0 0  6 3 5  0 0 0 3.56E+06 

15 0 0 0  0 0 0  6 3 5  0 0 0 3.70E+06 

16 1 0 0  0 0 0  7 3 5  0 0 0 5.60E+06 

17 0 0 0  0 0 0  7 3 5  0 0 0 3.94E+06 

18 0 0 0  0 0 0  7 3 5  0 0 0 4.10E+06 

19 0 0 0  0 0 0  7 3 5  0 0 0 4.25E+06 

20 0 0 0  0 0 0  7 3 5  0 0 0 4.42E+06 

 

Table 4.21: Comparison of the objective value of MHCFL formulation and sequential approach 

Time period MHCFL Sequential 
Difference 

(%) 

5 19884302 23777925.93 19.58 

10 35837986 50974534.9 42.23 

15 55195583 87333533.38 58.22 

20 81064799 133534090.8 64.72 
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4.10 Case example  

The problem of healthcare facility location and allocation for the district of Chandauli in Uttar 

Pradesh, India, has been discussed in this section. According to the 2011 census, Chandauli 

has a population of 19,52,756, with a population density of 769 people per square kilometre 

(Chandauli, 2011). It is divided into three Tehsils (administrative units at the next level): 

Chakia, Chandauli, and Sakaldiha constituting 624, 522, and 494 villages, respectively 

(Chandauli, 2021). The problem of Chandauli Tehsil has been taken as the case problem. The 

population of the village is taken from census statistics (Chandauli, 2011). Several of the 

villages were found to have a population being less than 100 people. Because of the number 

of MTBs from such villages being extremely small, the population of these villages is 

combined with the population of the nearby village. As a result, the number of significant 

villages was reduced to 356. The villages' coordinates (latitude and longitude) were obtained 

using the Google search engine, and the road distance between them was determined using the 

Bing Maps API (Sinani, 2013). The maximum coverage distance for a normal visit is taken as 

5 kilometres, while for the referral visits as 7 kilometres (Rural Health Statistics, 2019). 

According to the Pradhan Mantri Surakshit Matritva Abhiyan's scheme, the number of MTBs 

in a village is calculated by multiplying the population size and the birth rate in that village 

(PMSMA, 2016).  

MTBs at each location were considered to be distributed uniformly throughout the year. The 

population of the district is expected to grow at a rate of 1% per year (Economic survey, 2019). 

The referral proportions are the same as in Section 4.5.1.  Table 4.22 shows values for other 

factors, including capacity, fixed cost, up-gradation cost, and operational cost. The cost of 

establishment, upgradation, and operating the health facilities are considered to increase at a 
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rate of 4% per period due to inflation. The number of doctors, staff nurses, ward boys, and 

other paramedical staff available in each facility type determines the capacity for each service 

type and is kept the same for the facilities of the same type.  

 

Figure 4.16: Locations of the different types of existing facilities 

Legends:       

Facilities at existing locations 
 

SCs 
 

PHC 
 

CHC 

All the solution approaches outlined in Section 4.4 are used to solve the problem. Tables 4.23 

and 4.24 display these results. Table 4.23 finds hybridized SA to yield the best solution. The 

CPU time taken is small and marginally high compared to the least CPU time taken by PSO. 

The performance of Benders decomposition technique, used in any form, is moderate. Table 

4.24 shows establishment of 8 SCs, 59 PHCs, and 48 CHCs in the first year of the planning 

horizon. In Chandauli Tehsil, there are 72 SCs, 5 PHCs, and 3 CHCs, presently existing (Figure 

4.16) and all of these are not solely devoted for MTBs. Existance of 5 PHCs against 59 PHCs, 
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and of 3 CHCs against required 48 CHCs shows a lot of significant improvement required in 

the Indian healthcare system. It should be noted that the comparison is on general healthcare 

to the maternal healthcare. From this perspective, the gap is definitely very wide. It is for this 

reason, it is being emphasised that the existing facilities should be solely devoted to healthcare 

facilities other than that for MTBs. For MTBs, the plan be made for creation of separate 

facilities as desired under SDG of UN.   

The problem of improper mix and shortage of healthcare services in the Tehsil is obvious from 

the solution. Figure 4.17 shows the location of existing facilities along with those locations 

where new facilities are to be established during the planning horizon. Figure 4.17 also shows 

the locations and maximum area covered by the CHCs. Table 4.24 shows the number of 

facilities of each type required over the next 20 years. The capacity of various facility types 

find the final number of CHCs and SCs in the first year to be sufficient to meet the demand 

even at a growth rate of 1%. However, PHCs are required to be increased time to time in 

response to the increased demand. The plan resulted for maternal healthcare is perfect to deal 

with the issue of accessibility and availability in the Chandauli Tehsil for the next 20 years. 

The solution takes care of the service quality and also provides projection for financial outlay.  

Table 4.22: Problem parameters used in the case problem 

Parameters 
 Facility type 

 SC PHC CHC 

Capacity 

Service type 1  300 600 1200 

Service type 2  0 240 500 

Service type 3  0 0 300 

Establishment cost  2000000 20000000 60000000 

Upgradation cost 
SC - 18000000 58000000 

PHC - - 40000000 

Operating cost  3000000 9000000 27000000 

*each data is in units 
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Table 4.23: Objective function value obtained from proposed solution approaches 

 LB UB Gap (%) 
CPU Time 

(in sec) 

MHCFL 62385848552 62520386450 0.22 43200 

Classical BD algorithm 60284532159 69856235103 13.70 43200 

Accelerated BD 

algorithm 
62324136580 62935412602 0.97 43200 

Benders Type Heuristic 6192450364 629214893301 90.16 43200 

Hybridized SA - 62518738687 - 19723 

PSO - 64765705620 - 19680 

 

Table 4.24: Number of different types of facilities required  

By the end 

of the Year 

Facility type  

SC PHC CHC  

1 8 59 48  

2 8 59 48  

3 8 59 48  

4 8 60 48  

5 8 61 48  

6 8 62 48  

7 8 63 48  

8 8 63 48  

9 8 64 48  

10 8 66 48  

11 8 67 48  

12 8 69 48  

13 8 71 48  

14 8 73 48  

15 8 75 48  

16 8 75 48  

17 8 75 48  

18 8 75 48  

19 8 75 48  

20 8 75 48  

Initial 

distribution 
72 5 3 
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Figure 4.17: Locations of the different types of facilities 

Legends:       

Facilities at new 

locations  
CHCs, 

 
PHCs, 

 
SCs 

Facilities at existing 

locations  
SCs 

 

SCs 

Upgraded 
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Upgraded to 
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4.11 Conclusions 

In this chapter, a mathematical model for addressing the multi-period facility location-

allocation problem regarding maternal healthcare has been presented. The proposed model 

takes population growth into account and also considers the up-gradation of existing healthcare 

facilities to respond to the growing demand in various time periods of the planning horizon. 

The issue of accessibility has been addressed by explicitly considering the critical distance an 

MTB has to cover to reach a healthcare facility. The issue of availability and service quality is 
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handled by considering the facility's limited capacity and a penalty cost against overloading of 

the same. The objective also considered is the minimization of the total cost, which includes 

the cost of establishing a new facility, up-gradation cost, facility operating cost, 

and transportation costs. Because of the computational complexity involved in applying usual 

optimization approaches using solver, accelerated Benders decomposition algorithm, Benders 

type heuristic, hybridized simulated annealing, and particle swarm optimization have been 

proposed. Extensive computational experiments were carried out to compare the effectiveness 

and computational efficiency of the proposed solution approaches. On overall basis, 

accelerated BDA and Benders type heuristic outperformed the Gurobi solver, particle swarm 

optimization performed worst, while hybridized SA was found to be the best in terms of 

yielding quality solutions in less time. The analyses carried out shows that it is advantageous 

to consider the planning problem for a long planning horizon. Year to year basis planning is 

not an intelligent proposition in economic terms. The proposed mathematical model was 

utilized for developing the maternal healthcare facility network for the Tehsil of Chandauli in 

Uttar Pradesh, India, for the next 20 years. The resulting solution shows that the present 

scenario is incapable of providing quality service and needs urgent support for establishing 

exclusive maternal healthcare facilities.   
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