
83

3. CHAPTER 3

MATERNAL HEALTHCARE FACILITY PLANNING WITH

PENALTY ON OVERBURDENING

3.1 Introduction

In the previous chapter (Chapter 2), the planning framework did not allow for over allocation

of MTBs to the health facilities. The fact is, particularly in Indian context, that health facilities

are overburdened. This overburdening on one hand is because of large demand coming from

huge population and the lack of funds for creating sufficient number of facilities. Under such

a scenario, overburdening is unavoidable but is definitely undesirable. To bring a right balance

between the two contradictory emerging scenarios, overburdening should be allowed but only

at a cost. This cost in further elaborations and discussions is termed as penalty cost. The

problem thus considered in this chapter is the same except for possibility of overburdening at

a penalty cost.

As discussed in Chapter 2, the complexity of the HCFL model grows with the problem size,

and the problem may become intractable. In fact, in countries such as India, such planning

problems are large scale problems owing to many administrative regions consisting of more

than a thousand villages. For example, as mentioned in earlier chapters, the Varanasi district

of Uttar Pradesh state in India consists of 1333 villages. Seoni district of Madhya Pradesh state

in India consists of 1593 villages, and the Kolar district of Karnataka state in India consists of

1809 villages (India Village Directory, 2021). There are many districts in India having more

than a thousand villages. In these districts/ regions, some of the villages have a very small

population and are at a short distance from the nearby populated village. During the planning

of the network, planners can merge such villages to constitute a single location. Even after

84

merging, the total number of locations comes out in thousands. To plan a maternal healthcare

network in such a large region using MILP formulation is a challenge for healthcare planners,

particularly when one looks for a high-quality solution in a reasonable amount of time for a

large-scale real-world problem. To solve the large size MILP of HFLPs, metaheuristics such

as iterative local search (Brito et al., 2010), neighbourhood search (Hansen et al., 2010),

simulated annealing (Kirkpatrick et al., 1983), and Tabu search (Glover and Laguna, 1998),

etc., can be used population-based metaheuristics inspired by nature have also received a lot

of attention in recent years. These metaheuristics are typically driven by evolution or swarm

intelligence. Swarm intelligence-based algorithms, in particular, have drawn the attention of

researchers due to their capability of exploration and exploitation. Following a thorough

review of the literature, it appears that several swarm intelligence-based metaheuristics, such

as particle swarm optimization (Li et al., 2021) and artificial bee colony (Akay et al., 2021),

are extremely effective in solving diverse combinatorial optimization problems.

Out of all these approaches, particle swarm optimization (PSO), artificial bee colony (ABC),

and the JAYA algorithm (Rao et al., 2016) have been used in this chapter to solve the

considered maternal healthcare facility location-allocation problem. Extensive computational

experiments have also been performed to analyze the comparative efficiency and usefulness of

these metaheuristics. Besides, the impact of consideration of penalty cost is also analyzed on

the resulting solution.

In this chapter, the issue of service quality due to stochastic demand is also addressed. The

formulation considered in Chapter 2 assumes the service demand from MTBs to be

deterministic. However, in reality, the volume handled by a healthcare facility from a location

need not be constant but random. A heavy load on a day is bound to have a negative impact on

85

the quality of healthcare service. Thus, the Monte Carlo simulation approach is used to find

how the service quality is going to be impacted by the amount of variability in demand

originating from a location.

This chapter is organized as follows. The problem is detailed in Section 3.2, and the

corresponding mathematical model in Section 3.3. The metaheuristics as solution approaches

are described in Section 3.4. The results of computational experiments, along with related

findings, are given in Section 3.5. The impact of change in demand and penalty is discussed in

Section 3.6. The optimization and simulation framework is discussed in Section 3.7. Finally,

Section 3.8 concludes the chapter.

3.2 The Problem

In case the capacity restrictions are removed or relaxed, the mathematical model of Chapter 2

will try to establish fewer number of facilities only to ensure that the required facilities are

within the reach of MTBs. However, in this process, allocation of MTBs to a facility may be

much more than the capacity. These extra allocations above the capacity are bound to cause

serious concern to the quality of service. Therefore, if the overburdening of the facilities is not

penalized, it is bound to cause serious deterioration in the quality of service. The problem

considered in this chapter is the same as considered in Chapter 2 except that overburdening is

allowed here but a penalty cost. This cost has been linearly related to the amount of

overburdening. The penalty cost can be taken as the cost of overtime by doctors, nurses and

other staffs for treating extra number of MTBs; or attributed to many similar concerns. By

doing so, an attempt has to be made to handle the service issue. The maternal healthcare

problem and information related to various facility types, service types and maximum coverage

distance discussed in Chapter 2 are followed as it is here also.

86

3.3 The Mathematical Model

Most of the notations used in the proposed mathematical model in this section are the ones that

have also been defined and used in the Section 2.3. The same are repeated here to provide ease

in understanding of the proposed model that follows it and represents the planning problem

considered in this chapter.

Sets and Indices

:I set of locations of MTBs,  1,2,...,I m , indexed by i

:J set of locations of potential facilities, J I , indexed by j , k and n

:L set of service types offered,  1,2,3L , indexed by l , 'l and ''l

:F set of types of facility,  , ,I II IIIF  , indexed by f and u

Parameters

M : a big number

:P penalty cost per additional MTB allocated beyond the capacity of any service type

available at a facility

1 :d a limit on the maximum distance to be covered by an MTB during a non-referral visit

2 :d a limit on the maximum distance to be covered by an MTB during the referral visit

:ijd distance between locations i I and j J

:jkd distance between facility locations j J and k J

:ijC travel cost incurred by an MTB for visiting the facility at a location j J from its current

location i I

:jkC travel cost incurred by an MTB for referral visit from current facility location j J to a

referral facility at location k J

:f

jF fixed cost on establishing a facility of type f F at location j J

87

:lfQ capacity of service type l L available with facility type f F

:l

iW number of MTBs at a location i I requiring service type l L

' :ll proportion of referrals for service type 'l L from service type l L , where 'l l

1

if is within the coverage distance of an MTB
1, at a location (i.e.,),

0, otherwise

a facility for non-referral visit at a location




  ij

ij

j J
i I d d






2

if is within the coverage distance of a lower level facility
1, at location (i.e.,),

0, otherwise

a referral facility at a location




  jk

jk

J
j J d d

k






Decision variables

:l

ijx number of mothers-to-be at location i I being allocated to a facility at a location j J

to receive service type l L

:lm

jkx number of mothers-to-be receiving service type l L at facility j J who require

referral visit to a facility k J for a higher service type m L

:l

jx number of mothers-to-be allocated to a facility at a location j J to receive service of

type l L but beyond the available capacity of that service type

1, if ,

0, otherwise

a facility of type is located a

t

 
 


f

j

F j Jf
y

The mathematical model of the Hierarchical Capacitated Facility Location-Allocation problem

with Penalty (HCFLP) is presented hereunder using the above notations.

Minimize '

'

f f l ll l

j j ij ij jk jk j

j J f F i I j J l L k J j J f L l L j J l L

F y c x c x Px
          

      (3.1)

Subject to

, ,l l

ij i

j J

x W i I l L


    (3.2)

' ' ''

''

, , , ', '' , where '' 'll ll l l l

jk ij nj

k J i I l L n J

x x x j J l L l l L l l l
   

 
        

 
   (3.3)

88

'

'

, ,l ll l lf f

ij kj j j

i I k J l L f F

x x x Q y j J l L
   

        (3.4)

1,f

j

f F

y j J


   (3.5)

, , ,l f lf

ij ij j

f F

x y M i I j J l L


       (3.6)

' ' , , , , ' , 'll f l f

jk jk k

f F

x y M j J k J l L l L l l


          (3.7)

2 3 3 0I I IIQ Q Q   (3.8)

, , 0, , , ,l lm l

ij jk jx x x i I j J l L m L      (3.9)

{0,1}, ,f

jy j J f F    (3.10)

The flow of MTBs to various types of facilities is the same as provided in Figure 2.1 in Chapter

2. The four expressions in the objective function (3.1) indicate the fixed cost of creating the

healthcare facilities, the cost of travelling to the facilities, the referral cost, and the penalty cost,

respectively. Constraint (3.2) ensures that the demand is completely met; whereas constraint

(3.3) defines the referral of MTB from a lower-level facility to a higher one. Constraint (3.4)

is a capacity constraint and it also determines the excess number of MTBs beyond the capacity

at a facility for each service type. According to constraints (3.5), only one type of healthcare

facility can be established at a given location. Constraint (3.6) indicates that an MTB can only

be assigned to a facility type if it is located within the coverage distance, whereas constraint

(3.7) states the same for referral cases. The true features of the facility types are captured by

constraint (3.8), that shows service types 2 and 3 not being available with facility type I, and

89

service type 3 not being available with facility type II. The nature of the decision variables is

defined by constraints (3.9) and (3.10).

3.4 Metaheuristics Used as Solution Approaches

HCFLP model presented in Section 3.3 is NP-hard. The Indian maternal healthcare facility

planning problem may have to address a problem with an excess of 1000 locations. For such a

large MILP, finding an optimal solution in a reasonable amount of time may not be possible.

For this reason, three metaheuristics are employed in solving the location problem with the

binary integer variables only. This information is later used in arriving at allocation decisions

using the Gurobi solver. Because of the sequential approach, the size of the allocation problem

reduces drastically. It not only helps in reducing the computational time but also results in a

better quality solution. The problem associated with the usage of the metaheuristics has been

explained, taking the case of one of these metaheuristics in the next section. The metaheuristics

used for the proposed planning problem, with values used for their parameters, are presented

in the following sub-sections.

3.4.1 Particle swarm optimization

Kennedy and Eberhart (1995) were the first to present Particle Swarm Optimization (PSO),

which was inspired by the social behaviour of a flock of birds and their search for food and

shelter. PSO is a well-known evolving population-based metaheuristic and is commonly

employed for stochastic optimization. A swarm in PSO is made up of a variety of interactive

particles that fly in multi-dimensional search space. Each particle represents a potential

solution to the problem and has a randomly initialized position and velocity. A particle updates

its next position and velocity based on its own experience and that of the swarm. The location

of the particle corresponds to a solution, while its quality is by the fitness function (the

90

objective function). The quality of the solution is improved by following an iterative strategy

for updating all the particle's positions and velocities. PSO has been successfully applied for

various continuous optimization problems (Ding et al., 2014; Huang et al., 2012; Kayhan et

al., 2010; Li et al., 2021). Kennedy and Eberhart (1997) developed a binary version of PSO

(binary PSO) for discrete optimization problems. PSO has also been applied by many

researchers for combinatorial optimization problems such as lot-sizing problems (Taşgetiren

and Liang, 2004), scheduling problems (Chen et al., 2013), vehicle routing problems (Ai and

Kachitvichyanukul, 2009; Marinakis et al., 2010; Peng et al., 2019), closed-loop supply chain

network (Santander et al., 2020), facility layout planning (Elkady and Abdelsalam, 2016),

knapsack problem (Chih et al., 2014) and path optimization (Wang et al., 2021). After going

through the literature review by Basu et al. (2015), it is observed that the application of binary

PSO (BPSO) to discrete facility location problems is still limited. Sevkli and Guner (2006) and

Saha et al. (2011) worked on uncapacitated facility location problems by using a continuous

particle swarm optimization algorithm. In the past, many researchers (Ben et al., 2020; Guo et

al., 2014; Premalatha and Natarajan, 2008) have worked to improve the performance of PSO

using various search strategies such as local search and variable neighbourhood search for

discrete problems.

Taking a cue from these research works and the experience gained during experimentation, the

parameter values chosen and the steps followed are briefly presented below. The framework

of hybridized approach using binary PSO metaheuristic is shown in Figure 3.1.

Step 1: Parameter initialization

The values used for the various parameters are as follows.

Swarm size (i.e., number of particles) = 20, and

91

Maximum number of iterations = 100.

The parameters in Equation (3.11), presented later, are assigned values detailed below.

Inertia weight parameter (1c) = 0.1

Cognitive learning parameter (2c) = 0.1

Social learning parameter (3c) = 0.1

Step 2: Generation of initial location solution

A greedy heuristic is used to construct the initial solution. First, the overall demand for each

service type is determined. The minimal number of CHCs required is then determined

depending on the demand for service type 3. Considering the available capacity for service

type 2 with these CHCs, the balance demand for service type 2, is determined. Based on this

demand and the capacity for service type 2 with PHCs, the number of PHCs to be opened is

determined. After this, a similar process is used to work out the number of SCs required

considering the amount of availability of service type 1 with opened CHCs and PHCs. The

initial solution is worked out by taking 40% more of the required number of facilities of each

type to address the coverage distance constraint and to avoid significantly high penalty costs.

The facilities thus determined are distributed at random over the possible locations.

Step 3: Feasibility check

Now each particle is taken, and its prospect for leading to a feasible solution is checked from

the coverage point of view both for referral and non-referral cases. It may so happen that some

locations may not find the required facilities within the coverage distance limits. Out of all

these locations, a location is randomly chosen, and the required facility type is established

there. Once again, the process of feasibility check is carried out. On encountering infeasibility,

92

this process is repeated until a feasible solution emerges. This process is repeated for all the

particles.

Step 4: Determination of allocation decisions

Corresponding to the locations arrived in the previous step, values for f

jy variables are

determined. Corresponding to f

jy value as '0', each of the allocation variables l

ijx , 'll

jkx and l

jx

are also assigned values equal to zero. With this input, the HCFLP model is solved using the

Gurobi solver. The value of the objective function, given by expression (3.1), is the value of

the fitness function corresponding to a particle. This process is repeated for all the particles.

Step 5: Updatation of particle best and global best solutions

The current fitness value of each particle is compared with the particle's best fitness value

registered so far (it is set equal to the current value in the first iteration). If the particle's current

position has a higher fitness function value than the prior best, the particle's best position is

updated with the current position and the particle's best fitness value, bestp , with the current

fitness value. Applying this process to all the particles, the current global best value, bestg , is

determined. After discovering a better current global best value, the previous global best value

and the corresponding position are updated.

Step 6: Updating particle velocity and position

The position and velocity of a particle 'p' are defined in |J|-dimensional space, where |J| is the

number of locations for possible assignment of facilities to them. The value of fk

jpy is the value

of a variable f

jy of a particle p in kth iteration. Similarly, fk

jpv is the movement to be imparted to

particle p in jth direction in kth iteration. The velocity of a particle p as , 1f k

jpv  in (k+1)th iteration

93

is determined using Equation (3.11) 1r and 2r are the uniformly distributed random numbers in

the range [0,1]. The next position (, 1f k

jpy ) of each particle is determined by adding the velocity

(, 1f k

jpv ) to the current position (fk

jpy) given by Equation (3.12). In the first iteration, the velocity

values for all the particles are kept at zero level.

, 1

1 2 1 , 3 2() ()f k fk fk fk

jp jp best p jp best jpv c v c r p y c r g y      (3.11)

, 1 , 1f k fk f k

jp jp jpy y v   (3.12)

After adding the velocity to the position of the particle using Equation (3.12), the binary

variables may take non-binary values causing infeasibility. To deal with this issue, first piece-

wise linear function (Equation (3.13)) and then sigmoid function (Equation (3.14)) is used to

update the position of the particle. Final position of each particle will be determined using

Equation (3.15).

1, if 1

,if 0< 1

0, if 0

fk

jp

fk fk fk

jp jp jp

fk

jp

y

y y y

y

 


 
 

 (3.13)

1
()

1
fk
jp

fk

jp y
sigmoid y

e





 (3.14)

1, (0,1) ()

0,

fk

jpfk

jp

if U sigmoid y
y

otherwise

 
 


 (3.15)

Step 7: Stopping criterion

The process is terminated only if either Steps 3 to 6 have been iterated for a specified number

or the total CPU time used has touched or crossed the limit set on it. Otherwise, the control is

transferred to Step 3.

94

Figure 3.1: Framework of proposed PSO

3.4.2 Artificial bee colony algorithm

Karaboga and Basturk (2007) first introduced the Artificial Bee Colony (ABC) algorithm

motivated by the intelligent foraging behaviour of the honey bee swarm. Bees are classified

into three categories: (i) employed bees, (ii) onlooker bees and (iii) scout bees. Each employed

bee exploits the nectar sources and memorizes the location of her discovered food source. They

unload the nectar to the hive and communicate with onlooker bees waiting in the hive. This

information about the good quality food source is shared in the form of a dance by the

95

employed bees. Onlooker bees choose a food source to exploit depending upon the frequency

of dance which is proportional to the quality of the food source. If the food source is exhausted,

then the source is abandoned, and its employed bee becomes a scout bee to explore a new food

source unvisited before. The local search and global search strategies of ABC help in the

exploration and exploitation of the search space. Comprehensive detail of the work related to

the ABC algorithm is available in the review paper by Akay et al. (2021).

The ABC algorithm has been applied for solving a wide variety of discrete optimization

problems, such as facility location (Farahani et al., 2014; Lin et al., 2018; Tuncbilek et al.,

2012), knapsack problem (Santana et al., 2019), closed-loop supply chain network problem

(Cui et al., 2017), waste collection problem (Wei et al., 2019), scheduling problem (Awadallah

et al., 2015; Wang et al., 2015; Xu and Wang, 2021), etc. To solve uncapacitated facility

location problems, the ABC metaheuristic was employed by many researchers incorporating

efficiency improving strategies, such as the two-phase heuristic (Kashan et al., 2012), XOR-

logic (Kiran and Gündüz, 2013), and floor and double mod process (Kiran, 2015) for

conversion of continuous values to binary ones. In this work, a piece-wise linear function and

sigmoid function (discussed in Section 3.4.1) are used to maintain the binary nature of the

variables.

As mentioned at the beginning of this section, the ABC algorithm will be used for solving the

location problem and will be hybridized with the Gurobi solver to solve the allocation

problems. The ABC algorithm for solving HCFLP is divided into multiple phases initialization,

employed bee, onlooker bee, scout bee, and termination phases. The employed and observer

bee phases intensify the situation, while the scout bees present a variety of options. Figure 3.2

depicts the ABC algorithm's framework with the other details provided below.

96

Initialization phase

The ABC algorithm begins with assigning values to its various parameters. Experimenting

with several problems, the ABC algorithm was found to perform better for solving HCFLP

with parameter values detailed below.

Number of food sources = 20

Maximum number of iterations = 100

Maximum number of exploitations = 10

Initial location solutions are generated following Steps 2 and 3 of the PSO (Section 3.4.1).

Based on the location solution, allocation decisions and the corresponding fitness value are

worked out following Step 4 of the proposed PSO (Section 3.4.1). A solution is equivalent to

a food source, and each food source is managed by a separate employed bee. Naturally, the

number of employed bees is equal to the number of food sources.

Employed bee phase

In this phase, each employed bee attempts to identify a source with better quality of food in

the vicinity of its current food source. This process is mathematically expressed by Equation

(3.16).

 , 1 ,()f k fk fk f random

j j j jy y y y    (3.16)

In the above equation, variables tk

jy represent location decisions arrived in
thk iteration,

variables ,f random

jy represent randomly identified neighbourhood locations with food, and

variables , 1f k

jy  to represent new food sources (locations for various facilities) in the

97

neighbourhood of fk

jy at (1)thk  iteration.  is the uniformly distributed random number in the

range of [-1, 1]. To ensure the binary nature of location variables f

jy , Equations (3.13), (3.14)

and (3.15) are used. After this, Step 3 of the proposed PSO approach is applied to ensure the

feasibility of the location solution. After having feasible location solutions, Step 4 of the PSO

algorithm is used to find allocation decisions and the corresponding fitness value. If the new

solution is better than the old one, the counter is reset to zero, and the new solution is

memorized. Otherwise, the food source's counter is incremented by one. This procedure is

carried out for each employed bee.

Onlooker bee phase

Initially, onlooker bees wait in the hive and choose to fly to a good quality food source,

according to the information shared by the employed bees. The probability of selecting
thk

food source is calculated as follows:

1

k
k N

n

n

Obj
P

Obj





 (3.17)

where kP is the chance of the
thk solution getting selected by an onlooker bee and Obj is the

fitness value of
thk solution. These probability values use the roulette wheel selection

technique that provides a better chance of selection of good quality food sources (solutions)

and low probability for low-quality solutions. After an employed bee chooses a food source,

the onlooker bee also looks for a better food quality source by adopting Equation (3.16). This

process is the same as what was adopted by the employed bees. If the solution identified by

the onlooker bee is better than the employed bee's solution, the employed bee memorizes the

98

new solution. Otherwise, the food source's counter is incremented by one. This procedure is

also carried out for each onlooker bee.

Scout bee phase

During this phase, each food source's counter is put to the test. The counters with the highest

content for food sources are found. The employed bee of this food source becomes a scout bee

if the counter is higher than the limit. For this scout bee, a new feasible solution is generated

at random (using Steps 2 and 3 of the proposed PSO). The food source's counter is reset, and

the scout bee is reclassified as an employed bee.

Termination criterion

The phases discussed above are iterated until the specified number of iterations have been

performed or the CPU time used is greater than or equal to the limit put on it. The best solution

obtained so far is finally reported.

99

Figure 3.2: Framework for implementation of ABC algorithm

100

3.4.3 JAYA algorithm

The majority of metaheuristics require numerous controlling parameters, such as mutation

probability, crossover probability, and selection operation in the Genetic algorithm, cognitive

and social parameters in the PSO, and the number of scout bees, onlooker bees, and employed

bees in the ABC algorithm. Tuning these parameters is a time-consuming and tedious task, and

sometimes the range of the parameters may vary depending on the complexity and nature of

the problem. Rao et al. (2016) introduced the Jaya algorithm, which requires no algorithm-

specific parameters and is simple in implementation. JAYA is a population-based algorithm

and is similar to other metaheuristics. It aims to move towards the best solution and away from

the worst one after each iteration. In recent years, JAYA has witnessed a growth in its

popularity due to its ability to identify quality solutions in lesser time. Abundant applications

of it can be found in the literature for a variety of problems, such as surface grinding process

parameter identification (Rao et al., 2016), facial emotion recognition (Wang et al., 2018),

fracture mechanics (Khatir and Wahab, 2019), crack identification (Khatir et al., 2020), job

shop scheduling (Caldeira and Gnanavelbabu, 2019; Gunduz and Aslan, 2021; He et al., 2021).

Prakash et al. (2017) developed the first binary version of the JAYA algorithm to solve the

problem of phasor measurement units related to the power system. Chaudhuri and Sahu (2021)

employed a binary JAYA algorithm for the feature selection approach for data classification.

Aslan et al. (2019) compared the binary JAYA algorithm with particle swarm optimization,

artificial bee colony algorithm, binary tree-seed algorithm and genetic algorithm for

uncapacitated facility location-allocation model. They found that the binary JAYA algorithm

performs much better compared to other ones in terms of solution quality and robustness.

101

Houssein et al. (2021) and Zitar et al. (2022) have come out with a review on the JAYA

algorithm.

Similar to binary PSO and ABC, the binary JAYA algorithm has also been used to determine

the best possible locations for facilities. The framework of the proposed binary JAYA

algorithm is shown in Figure 3.3, and various steps are as follows:

Step 1: Initialize the algorithm with a population size of 10 and a maximum number of

iterations equal to 100.

Step 2: Generate random initial solutions whose number would be equal to the population size.

The initial solutions (locations of facilities) are obtained using the greedy approach detailed in

Step 2 of the proposed PSO.

Step 3: A feasibility check is carried out for the solution of each candidate. If the solution found

is not feasible, then the candidate solution is repaired using Step 3 of the proposed PSO. These

feasible locations of facilities determine the value of f

jcy .

Step 4: Based on the values of variables f

jcy , allocation decisions are made by solving the

HCFLP model using the Gurobi solver. The fitness value for each candidate is determined

using expression (3.1).

Step 5: If the obtained fitness value is found to improve (initially set to very high), then update

the corresponding candidate solution; Otherwise, the solution is retained as such.

Step 6: Identify the bestJ and worstJ in the population and update the candidates' solution using

Equation (3.18).

, 1

1 2(| |) (| |)f k fk fk fk fk fk

jc jc jbest jc jworst jcy y r y y r y y      (3.18)

102

Where 1r and 2r are uniformly distributed random numbers generated in the range of [0,1], and

fk

jbesty and fk

jworsty are the best and worst values of the variables from best fitness value and worst

fitness value. The updated solution may take non-binary values, leading to an infeasible

solution. Equations (3.13), (3.14) and (3.15) are to be used to deal with this issue, as in the case

of the proposed PSO.

Step 7: Steps 3 to 6 are repeated until the specified number of iterations have been performed

or the total CPU time used is greater than or equal to the limit put on it.

103

Figure 3.3: Framework for the proposed JAYA algorithm

104

3.5 Performance Study of the Proposed Metaheuristics

The findings of the proposed metaheuristics' and comparative performance are reported in this

section. For solving the HCFLP mathematical model, Gurobi optimization solver with Python

3.8 is used. Besides, the metaheuristics were also coded in Python 3.8. Extensive

computational experiments were carried out on the supercomputer "PARAM-SHIVAY" with

a configuration of 2* Intel Xeon SKL G-6148, 4 core, 2.4GHz, 192 GB DDR4 2666 MHz

memory. In the following subsections, the scheme for generating test instances and, thereafter,

computational results are presented.

3.6.1 Generation of test instances

For a fair performance comparison of the considered metaheuristics, the maternal healthcare

network planning problems were taken with varying numbers of locations ranging from 100 to

1000 with step size of 100. Five instances of each of these 10 different sizes of the problem (a

total of 50 problems) were generated. Based on the total number of binary and continuous

variables in HCFLP formulation, the problems were grouped into three categories (i.e., small,

medium, and large), as shown in Figure 3.4. From this figure and also from the HCFLP

formulation, it can be seen that the number of binary variables increases with an increase in

problem size; binary variables increase linearly, and continuous variables exponentially. The

demand nodes (or MTB locations), referral proportion, various types of costs and other

parameters are similar as discussed in Section 2.5.1 of Chapter 2.

105

Figure 3.4: Various problem classes

3.6.2 Experimental results and discussion

Table 3.1 shows the experimental results from the use of the three metaheuristics discussed in

Section 4. The 'Gap' column reflects the difference between the objective function's upper

bound and lower bound values. Columns labelled as 'DPSO', 'DABC' and 'DJAYA' respectively

represent the percentage deviations by which the UB values are less than the corresponding

objective function values obtained from PSO, ABC and JAYA algorithms. The comparison

was made based on the UB as it corresponds to a feasible solution for the cost minimization

problem. The negative values of 'DPSO', 'DABC' and 'DJAYA' represent the cases where the

proposed metaheuristics perform better in comparison to the direct use of HCLFP formulation

for problem-solving.

106

Table 3.1: Experimental results of proposed solution approaches

Problem

Size

Problem

class

Problem

Number

Instance

number

Gurobi PSO ABC JAYA

LB UB
Gap

(%)

Time

(in sec)

 Objective

value

DPSO

(%)

Time

(in sec)

 Objective

value

DABC

(%)

Time

(in sec)

 Objective

value

DJAYA

(%)

Time

(in sec)

Small 100

1 1 10843322 11043534 1.81 86400 11186966 1.30 3963 12135246 9.89 285 12021657 8.86 4117

2 2 10775075 10908626 1.22 86400 11090778 1.67 17665 11979378 9.82 1908 11842759 8.56 4927

3 3 11121055 11224319 0.92 86400 11762999 4.80 61022 12096729 7.77 1898 12221136 8.88 4791

4 4 10724508 10858138 1.23 86400 11010658 1.40 15191 11942642 9.99 2590 11902609 9.62 2860

5 5 12297042 12521579 1.79 86400 12780545 2.07 6740 13684676 9.29 1881 13856738 10.66 4866

Small 200

6 1 20921405 21220988 1.41 86400 22837798 7.62 84173 22958203 8.19 8444 22988992 8.33 18729

7 2 21498404 21779771 1.29 86400 23400781 7.44 56756 23923684 9.84 8301 23422340 7.54 17975

8 3 21516587 21856960 1.56 86400 23340975 6.79 35324 23614708 8.04 8334 24046036 10.02 13573

9 4 20625501 20935964 1.48 86400 22453940 7.25 83609 22653419 8.20 8378 22571620 7.81 31644

10 5 21062565 21270401 0.98 86400 22818327 7.28 59560 22974466 8.01 8366 23503271 10.50 34442

Small 300

11 1 32141797 32707430 1.73 86400 34736001 6.20 61543 35106868 7.34 5024 36478766 11.53 29964

12 2 31058579 31499761 1.40 86400 33524994 6.43 83235 33903206 7.63 12980 36581694 16.13 32221

13 3 31348148 35630209 12.02 86400 33992991 -4.60 80032 34398151 -3.46 12963 35774523 0.41 33737

14 4 31663513 40866909 22.52 86400 34406498 -15.81 34123 35006280 -14.34 13111 37161855 -9.07 25777

15 5 32343927 32807675 1.41 86400 35084009 6.94 63175 35588164 8.48 12969 36645190 11.70 26018

Medium 400

16 1 42182034 54027924 21.93 86400 45865206 -15.11 15835 47001734 -13.00 7930 47923295 -11.30 27560

17 2 42455783 66495495 36.15 86400 46659708 -29.83 1850 46386089 -30.24 8241 48968111 -26.36 31296

18 3 42587304 72037318 40.88 86400 46285813 -35.75 30250 46762302 -35.09 8209 47370356 -34.24 22381

19 4 41534464 67201336 38.19 86400 45303842 -32.58 58180 45796347 -31.85 8142 48634319 -27.63 25161

20 5 42443462 75307331 43.64 86400 46331898 -38.48 59064 47380585 -37.08 8151 48198355 -36.00 28908

Medium 500

21 1 99429394 117434395 15.33 86400 107514373 -8.45 3881 107405934 -8.54 17320 123263678 4.96 50633

22 2 94868752 123272403 23.04 86400 102954993 -16.48 3967 103068198 -16.39 18392 117643614 -4.57 39071

23 3 95028497 125492523 24.28 86400 102872347 -18.03 3934 103050991 -17.88 18111 113507038 -9.55 49851

24 4 101447173 130734355 22.40 86400 109493362 -16.25 3964 109879449 -15.95 17275 122540493 -6.27 58595

25 5 95642758 125733166 23.93 86400 103459154 -17.72 4128 103535577 -17.65 17184 116862502 -7.06 26221

Medium 600 26 1 117288370 145041056 19.13 86400 126841069 -12.55 7577 127017005 -12.43 34275 138618214 -4.43 3549

107

27 2 120200797 157385126 23.63 86400 130130341 -17.32 7213 130079885 -17.35 33491 143725719 -8.68 53155

28 3 116465441 152977610 23.87 86400 126165371 -17.53 7153 126195925 -17.51 32965 141607351 -7.43 3847

29 4 114179919 144291303 20.87 86400 123722398 -14.26 9332 124145531 -13.96 34907 138718357 -3.86 3750

30 5 116645215 149457896 21.95 86400 126290271 -15.50 7346 126330094 -15.47 35297 141159922 -5.55 3770

Medium 700

31 1 131926186 172612885 23.57 86400 142618599 -17.38 11526 142912890 -17.21 52600 157143483 -8.96 5168

32 2 140434881 172965066 18.81 86400 152068801 -12.08 11758 152213200 -12.00 50520 158762563 -8.21 5158

33 3 - - - 86400 145314567 - 12009 145471781 - 53454 159441088 - 5323

34 4 - - - 86400 141888496 - 11756 142360817 - 53639 157155157 - 5485

35 5 132566398 171012083 22.48 86400 143582206 -16.04 12581 143513930 -16.08 54215 161242107 -5.71 5686

Large 800

36 1 - - - 86400 173014327 - 5728 173094464 - 86400 176045179 - 8819

37 2 - - - 86400 167406007 - 22362 167414155 - 86400 182169480 - 9629

38 3 - - - 86400 162770805 - 5738 162584467 - 86400 179742436 - 9062

39 4 - - - 86400 168226932 - 22190 169361398 - 86400 181863643 - 10324

40 5 - - - 86400 164256117 - 20942 164305481 - 86400 177631335 - 9373

Large 900

41 1 - - - 86400 189418697 - 34211 189959482 - 86400 203014746 - 13425

42 2 - - - 86400 188886887 - 36449 190841199 - 86400 204066943 - 13605

43 3 - - - 86400 192310717 - 33929 192913614 - 86400 207678891 - 13351

44 4 - - - 86400 190715421 - 34480 191274870 - 86400 205106538 - 14492

45 5 - - - 86400 188464376 - 34635 189204413 - 86400 202956487 - 14958

Large 1000

46 1 - - - 86400 207517807 - 13191 207803503 - 86400 221347849 - 18591

47 2 - - - 86400 211216259 - 13488 211984385 - 86400 226436741 - 18111

48 3 - - - 86400 208749072 - 14839 209573809 - 86400 222120204 - 19450

49 4 - - - 86400 205800806 - 14219 205991666 - 86400 221505756 - 20430

50 5 - - - 86400 215114994 - 13405 214516128 - 86400 227484427 - 18578

108

For each problem instance and each solution approach, a maximum CPU time limit of 24 hours

was imposed for experimentation purposes. In the straight use of the HCFLP formulation

(using the Gurobi solver), no feasible solution was found for the 17 problem instances (33, 34

and 36 to 50) within the specified CPU time limit. For the remaining 33 problem instances

(problem number 1 to 32, and 35), feasible but not optimal solutions were obtained., The

inability of the Gurobi solver in yielding even feasible solutions for most of the medium-size

and all large-size problem instances indicates the ineffectiveness of the solver in handling real

large-size problems in the Indian context.

In contrast to the direct use of HCFLP formulation, the proposed metaheuristic approaches

(PSO, ABC and JAYA) performed much better and provided good quality feasible solutions,

and that too much earlier than the permitted maximum limit of 24 hours on CPU time. The

comparison of various solution approaches is presented in subsequent sub-sections.

General observations

The direct use of the HCFLP formulation was found to be advantageous for solving the small

size problem instances. For location problems up to 200 nodes, the solver provided a much

better solution in much less time. The solutions from metaheuristics were costlier but by less

than or equal to 10.66%. For 300 location problems, mixed results were obtained in terms of

solution quality. However, the CPU time requirement was lesser than that for the solver. For

all the medium-sized problems, the proposed approaches yielded a much better solution than

the solver and outperformed the solver in terms of used CPU time. As indicated earlier, for the

large-size problem, the solver failed to yield a solution in a specified time limit of 24 hours. In

contrast, the proposed metaheuristics could do so in much lesser time.

109

3.6.3 Comparative performance analysis of proposed metaheuristics

Table 3.1 did not help to provide a perfect and clear superiority of one approach over the other,

either based on solution quality or CPU time requirement. For this reason, Wilcoxon signed-

rank statistical tests were performed for both CPU time and solution quality for all four

approaches. Each of the approaches (approach 1) is compared with the other three approaches

(approach 2). The null hypothesis claims that approach 1 has a performance equal to that of

approach 2. Hence the alternate hypothesis states that the performances of the two approaches

are at variance and thus significantly different. Rejection of the null hypothesis will mean non-

rejection of the alternate hypothesis. Non-rejection of the alternate hypothesis will lead to the

conclusion of going in favour of that approach, in whose case better results were obtained a

greater number of times. The tests were conducted for a significance level (p) of 0.05.

The results shown in Table 3.1 indicate that the quality of solution yielded by the ABC

algorithm is quite close to that of the PSO algorithm for most of the problem instances. For the

large size problem instances, the PSO approach outperforms the ABC approach in terms of

solution quality. The quality of solutions yielded by the JAYA algorithm is the worst in many

of the cases. For a confirmatory finding, Wilcoxon signed-rank tests were conducted. The

results of the same are presented in Table 3.2.

Table 3.2 clearly shows the metaheuristics to outperform the Gurobi solver in terms of the

solution quality. Among the metaheuristics, the domination of the PSO approach over the ABC

and JAYA approaches can also be noticed in terms of solution quality. In a comparison of the

ABC approach with the JAYA approach, the ABC approach is found to be better than the

JAYA approach. The results of the computational experiments and statistical analyses indicate

110

that, in terms of solution quality, the PSO algorithm generally outperforms the ABC and JAYA

algorithms, and the ABC algorithm is better than the JAYA algorithm.

Table 3.2: Wilcoxon-signed rank test for solution quality

Approach 1 Approach 2

Number of instances in which

the approach below is better

p-value

 Remark

 Approach 1 Approach 2

Gurobi Solver PSO 13 20 0.00086 Significant*

Gurobi Solver ABC 13 20 0.0012 Significant*

Gurobi Solver JAYA 15 18 0.0057 Significant*

PSO ABC 44 6 0.00001 Significant

PSO JAYA 50 0 0.00001 Significant

ABC JAYA 45 5 0.00001 Significant

* Only those problem instances are taken in the analysis for which Gurobi Solver resulted in a feasible solution

within the specified limit on the CPU time.

Table 3.3 summarizes the findings of the statistical analyses on CPU time. This table indicates

that the CPU time requirements of the proposed metaheuristics are significantly statistically

different (p < 0.05) and is lesser than that for the Gurobi solver in all the cases. Because of

the statistically significant difference between approaches 1 and 2, the null hypotheses are to

be rejected. Further, due to the lesser CPU time requirement, it can be concluded that the

proposed metaheuristics surpass the Gurobi solver in terms of CPU time.

Table 3.3: Wilcoxon-signed rank test for CPU time

Approach 1 Approach 2

Number of instances in which the

approach below is better

p-value

Remark

Approach 1 Approach 2

Gurobi Solver PSO 0 50 0.00001 Significant

Gurobi Solver ABC 0 50 0.00001 Significant

Gurobi Solver JAYA 0 50 0.00001 Significant

PSO ABC 31 19 0.07346 not significant

PSO JAYA 34 16 0.00880 Significant

ABC JAYA 24 26 0.00804 Significant

111

The CPU time requirement of metaheuristics was also compared to one another. There is no

significant difference in CPU time requirements of PSO and ABC approaches at p = 0.05.

However, the resulted p-value of 0.07346 is not very high either. Even for a low p-value of

0.074, The PSO algorithm can be taken to perform better than the ABC algorithm. CPU time

requirement by the PSO approach can be observed to be generally lower than that for the JAYA

algorithm, and the difference to be statistically significant. Thus, the PSO approach can be

taken to be better than the JAYA approach. Similarly, the JAYA approach can be observed to

perform better than the ABC approach in the case of a greater number of problem instances.

The difference in the CPU time requirements for JAYA and ABC both are found to be

statistically significant. In terms of CPU time, this demonstrates the superiority of the JAYA

algorithm over the ABC algorithm.

From the foregoing discussions, it is clear that the PSO outperforms all the other three

approaches in terms of both solution quality and CPU time.

3.5 Impact of change in demand and penalty

It is expected that an increase or decrease in total demand may require an increase or decrease

in the number of facilities to be established. However, due to the consideration of penalty cost

on overburdening, the model may seek the balance between the cost of establishing the new

facility and the total penalty cost. This section analyses the effect of variation in demand and

penalty cost on the number of facilities to be established and on the total cost. For this purpose,

demand is varied from -50% to +50% of the demand in the step of 10% resulting in 11 demand

levels. For each demand level, 4 different penalty costs taken are 100, 1000, 10000 and 100000,

resulting in a total of 44 scenarios. For the purpose of analysis, problem number 14 (D50_4)

112

from Chapter 2 is taken. The impact of change in the demand and penalty is summarised in

Table 3.4.

From Table 3.4, it is observed that when the penalty cost is low, the number of facilities to be

established is less, and facilities are overburdened. With the penalty remaining constant, the

increase in the demand may not ask for the opening of additional facilities unless the facility

establishment cost becomes more economical than the resulting penalty cost. From the above,

it can be concluded that the proposed model will always try to seek an optimal balance between

the cost of overburdening and establishing new facilities in determining the optimal solution.

The above experimentation also shows that the demand has a lot of impact both on facility

establishment cost and penalty cost. The proposed model assumes the demand to be

deterministic. But it varies around its mean value in real life, sometimes being too small and

some other time being too high, and all randomly. Under such circumstances, the optimal

solution from the model may not be truly optimal. For proper decision-making under stochastic

environment, the Monte Carlo simulation will be the most appropriate tool. This tool could be

used to determine the optimal network of healthcare facilities since maternal healthcare is a

sensitive issue and cannot be viewed only an economic perspective. Here the quality of service

being provided to MTBs becomes very important for maternal healthcare planning. The

simulation approach and the related findings are presented in the next sub-section.

Table 3.4: Impact of change in demand and penalty

Variation

in

demand

Penalty

Number of established Total overburdening on
Objective

value SC PHC CHC
Service

type 1

Service

type 2

Service

type 3

0.5 100 2 0 3 248 0 0 3417874

0.5 1000 3 0 3 0 0 0 3476116

0.5 10000 3 0 3 0 0 0 3476116

0.5 100000 3 0 3 0 0 0 3476116

113

0.6 100 3 0 3 598 462 0 3619954

0.6 1000 3 1 3 0 0 0 3982202

0.6 10000 3 1 3 0 0 0 3982202

0.6 100000 3 1 3 0 0 0 3982202

0.7 100 4 0 3 948 1139 0 3838268

0.7 1000 4 1 3 0 139 0 4245413

0.7 10000 3 2 3 0 0 0 4487591

0.7 100000 3 2 3 0 0 0 4487591

0.8 100 6 0 3 298 1817 0 4053797

0.8 1000 4 2 3 0 0 0 4611816

0.8 10000 4 2 3 0 0 0 4611816

0.8 100000 4 2 3 0 0 0 4611816

0.9 100 7 0 3 647 2494 31 4274412

0.9 1000 4 3 3 47 0 31 5187210

0.9 10000 5 3 3 0 0 31 5501937

0.9 100000 4 2 4 0 0 0 5592217

1 100 8 0 3 997 3171 134 4503366

1 1000 6 3 3 0 171 134 5620288

1 10000 6 2 4 0 0 0 5799918

1 100000 6 2 4 0 0 0 5797499

1.1 100 9 0 3 1347 3848 238 4732114

1.1 1000 6 4 3 0 0 238 6054858

1.1 10000 6 3 4 0 0 0 6310906

1.1 100000 6 3 4 0 0 0 6305515

1.2 100 11 0 3 696 4525 341 4960937

1.2 1000 6 5 3 0 0 341 6654118

1.2 10000 6 4 4 0 0 41 7211371

1.2 100000 6 3 5 0 0 0 7289378

1.3 100 12 0 3 1046 5202 445 5190368

1.3 1000 7 4 4 0 2 145 7078844

1.3 10000 7 3 5 0 0 0 7413272

1.3 100000 7 3 5 0 0 0 7415501

1.4 100 13 0 3 1396 5879 548 5422352

1.4 1000 8 6 3 0 0 548 7572922

1.4 10000 7 4 5 0 0 0 7901832

1.4 100000 7 4 5 0 0 0 7901991

1.5 100 14 0 3 1746 6556 652 5654806

1.5 1000 8 7 3 0 0 652 8171941

1.5 10000 8 3 6 0 0 0 8520099

1.5 100000 8 3 6 0 0 0 8515690

114

3.6 Hybrid Optimization-Simulation Framework with Normally Varying

Demand

The formulation proposed in Section 3.3 assumes the demand to be stationery. In the real

world, the daily demand cannot be so. Under this situation, the HCFLP model will have use

mean demand values. However, working with the mean demand will not give the right picture

of the actual service quality. The demand in excess of the capacity on a day can be much more

than what will be resulted from the application of the proposed model. The quality is expected

to be poorer with the increasing level of variability in demand. To have a fair idea about the

service quality, a hybrid optimization-simulation framework is proposed. The generation of

the initial solution and further optimization process are discussed in the optimization phase,

and the Monte-Carlo method used for the simulation purpose is discussed in the simulation

phase.

3.6.1 Optimization phase

The HCFLP model can be solved optimally with a state of the art solver like Gurobi for small

size problem instances. However, as the problem size increases, the time required to solve the

problem increases exponentially due to its combinatorial nature resulting from the binary

variable f
jy , which denotes the opening of a facility type f F at a location j J .

Therefore, obtaining even a good quality solution for medium and large size problems is a

challenge. Therefore, we propose an equivalent set covering model to obtain an initial solution

by relaxing the travelling cost, referral cost, and penalty from the objective function. Further,

a set covering constraint (3.20) is added to the model, which ensures that at least one facility

should be opened within the coverage distance. The constraint (3.20) is redundant, but it

115

provides a good quality initial solution for the considered problem. The set covering model for

the considered problem is as given below.

Minimize
f f

j j
j J f F

F y
 
 (3.19)

1, ,f
ij j

j J

y i I f F


    (3.20)

and (3.2), (3.3), …, (3.10).

The initial solution provided by the set covering model is fed as a starting solution to the black

box solver Gurobi. The black box solver gives the optimal solution for allocation decisions

within a reasonable time limit. Further, this solution is used for the Monte-Carlo simulation.

3.6.2 Simulation phase

A Monte-Carlo simulation framework is discussed here in conjunction with the proposed

HCFLP model. The solution of the HCFLP model from the optimization phase (location of

opened facilities and allocation details, including referrals) will be fed into the simulation

model to study the effect of randomness in demand. Thus, the locations of the opened facilities,

allocation of MTBs to the facilities, and referrals proportions will be kept fixed while allowing

the number of MTBs at each location to follow the Normal distribution with the mean as the

demand value used in the proposed formulation for the given problem. The steps involved in

the Monte-Carlo simulation are as follows:

Step (1): For a specified coefficient of variation (COV)value, the standard deviation value is

determined as COV times the mean value. With the mean and standard deviation

known, the Normally distributed demand from various locations for various service

116

types can be generated. Assuming that the variability is not going to be location

specific and its extent would be the same, COV for the demand is to be the same for

each location and service type.

Step (2): After generating the number of MTBs at a location, its allocations to various facilities

will be carried out separately for each service type in proportion to what was yielded

by HCFLP. For the example of Chapter 2, the HCFLP model distributed the demand

of 368 MTBs for service type 1 from location 9 in the proportion of 10:358 between

SCs at locations 2 and10, respectively. If the randomly generated demand is 1.5

times of 368, then 15 (1.5 times of 10) MTBs will be sent to SC at location 2 and

537 (1.5 times of 358) to SC at location 10. A similar approach will be followed in

distributing the referrals.

Step (3): Once the allocations have been worked out, the allocations beyond the capacity can

be worked out. Having determined the excess number of MTBs for each level at

each facility, the service level for all the three types of services is determined using

the following relationship.

 l l
l

l

D E
S

D




 (3.21)

where,

 lS : Service quality of a service type l

lD : Total of the demand for the service type, including referrals, and

lE : Total of the excess allocations made to units of service type l.

117

Step (4): Step 2 and 3 are repeated for initial independent replications (R0) and the total number

of independent replication (R) required are determined using Equation (3.22) (Banks

et al., 1998).

2

0/2z s
R 



 
 
 

 (3.22)

where /2Z is the 100(1 / 2) percentage point of the standard normal distribution.

is the pre-specified error criterion and 0S is the standard deviation of initial

replication (R0).

Step (5): Steps 2 and 3 are followed for an additional number of independent replication (R -

R0) and calculate the mean service level for a 95% confidence interval. The half-length

(h.l.) for the 95% confidence interval is computed using Equation (3.23).

/2, 1h.l.=t ()R   (3.23)

where () = S/ R  , S is the standard deviation, and R is the total number of

replications.

The optimization and simulation framework is shown in Figure 3.5. The right side block shows

the optimization framework, and the left side block shows the simulation framework. For the

optimization, various problem instances with a known number of MTB (Wi
l) at a location are

solved. First, the initial solution is determined using a set covering model and then that solution

is further optimized using Gurobi solver. This solution is now used for simulation. In the

simulation, normally distributed number of MTBs at each location are determined using the

coefficient of variation (COV) and then the same are allocated according to the allocation

118

solution determined in optimization phase. This process is repeated or replicated until a pre

specified amount of precision on service quality is achieved.

Figure 3.5: Optimization and simulation framework

The simulation model was validated using face validity and validation based on Input-Output

Transformations (Banks et al., 1998). For face validity, experts were involved. Validation of

input-output transformations was carried out by visualizing the impact on the service quality,

which was found to decrease with the increase in the demand level or its variability or with the

119

reduction in the capacity of various facilities for various service types. The results of such

transformation, for the example problem of Chapter 2 (Section 2.4), are presented below.

3.6.3 Simulation for example problem

For the experimentation, the capacity of the service type 1 in SC as 500 is reduced in the step

of 20. It was found that the optimal location solution did not change, but the optimal allocation

result until the capacity was reduced to 420. Since the optimal location decision did not change,

the associated cost remained constant. Because of the change in the allocation decision, the

travel cost was found to change. The trend in the change is shown in Figure 3.6. A further

reduction in the capacity changed the optimal location decisions as well. A reduction in the

capacity is expected to increase the penalty cost. To avoid the severe increase in the penalty

cost, the model tried to redistribute MTBs to other locations that were relatively far and had

the capacity to absorb them. It has resulted in an increase in the travel cost. To visualize the

effect of the capacity on the service level, the illustrative example problem was simulated with

service type 1 in SC’s capacity as 500 and 420, taking COV as 0.1, 0.2, 0.3, 0.4, and 0.5. The

results are presented in Figure 3.7.

120

Figure 3.6: Effect of the capacity on overall traveling cost for the example problem

Figure 3.7:Effect of COV on the service level of BU’s for the example problem

During the experimentation, the service level was found to decrease with the increase in the

COV value. This validates the proposed model from the perspective of input-output

121

transformation. The decrease in the service level was found to be linear with the increase in

the value of COV. In the example considered, the demand had no pattern across all the 18

locations. The existence of such relationship was further investigated for different demand

patterns. Two different cases were taken. In the first case, the number of MTBs at each location

was taken to be the same. In the other case, the number of MTBs at various locations was

randomly fixed and was taken to follow a uniform distribution. In both the cases, however, the

total number of MTBs for each service type was kept to be the same as for the example

problem. It was done so for a meaningful comparison. The simulation results are shown in

Figure 3.7 for all these cases. In this figure, cap500_R and cap420_R stand for the cases when

the simulation was carried out with the demand data as for the example problem of Section 2.4

but with the respective capacity of service type 1 at SC as 500 and 420. cap420_U and

cap420_E are for the cases when each SC capacity is 420, but the demand is respectively

uniformly distributed or the same. The simulation results show that the service level decreases

almost linearly with the increase in the value of COV irrespective of the capacity constraint or

the nature of the demand in terms of its mean value. Similar results and observations were

found in the cases of service type 2 and 3 in respective facility types. The simulation results

tend to indicate that the service quality is highly dependent upon COV. To have more

confidence in this finding, further investigations were carried out for many problem instances.

3.6.4 Simulation on randomly generated problems

For the purpose of computational experimentation, the problem instances generated in Chapter

2 are used here. Each problem instance was simulated for five values of COV as 0.1, 0.2, 0.3,

0.4, and 0.5 until the steady-state condition was reached. A total of 200 test instances were

generated for the simulation purpose. The problem instances are solved by generating an initial

122

solution by the set covering model. The initial solution is then fed as a starting solution to the

solver Gurobi 8.0.1. The optimization and simulation model is developed using Python

interface on a personal computer equipped with Intel Core i7 3.40 GHz processor, 8GB RAM,

and Microsoft Windows 10 Pro 64-bit operating system.

Figure 3.8: Variation in service level with the length of simulation run for COV as 0.5 for the

problem class D10, D20, D50 and D100

The solutions obtained are fed into the simulation framework. Initially, simulation is carried

out for ten independent replications and the same is further carried out for more number of

replications to achieve error level of 0.1 in steady state condition. For COV value of 0.5, the

123

fluctuation in the service level with the length of the simulation run is shown in Figure 3.8 to

illustrate the steady-state condition for a problem instance of each problem class. The detailed

results are presented in Appendix A-1, and the summary of the simulation is presented here in

Table 3.5.

In Table 3.5, a mean service level for an average of five problem instance of each problem

class for each service type for varying COV is presented. Column 3 represents the total number

of replications in the simulation. Columns 5, 8 and 11 show the mean service level of service

types 1, 2, and 3, respectively. Columns 4, 7, and 10 show the lower limit of the confidence

interval for service types 1, 2, and 3, respectively. Columns 6, 9, and 12 show the upper limit

of the confidence interval for service types 1, 2, and 3, respectively.

From Table 3.5, it is observed that for all problem classes, the developed model is able to

provide a service level of more than 95% for COV as 0.1 and 0.2 for service type 1. In other

words, the number of facilities opened, to provide service type 1 have sufficient capacity to

handle the demand variation expressed as 0.1 and 0.2 of COV for the 95% service level. For

0.3 and 0.4 values of COV, the service level for service type 1 is reported at around 93% and

90%, respectively, for all the problem classes. For the worst case, that is for 0.5 COV, the

service level of service type 1 is around 88% for all problem classes. Service type 2 has a high

service level because the capacity of service type 2 at a facility is more and is able to cater to

the demand variation of 0.1 to 0.4 COV. The service level of service type 2 is more than 95%

for 0.1, 0.2, 0.3, and 0.4 COV for all the problem classes; whereas around 93% service level

is reported for service type 3 for all the problem classes. The service level of service type 3 is

more than 95% in all the problem classes for each COV. The facilities opened have an

underutilized capacity of service type 3. Due to that, enough capacity is available and thus the

124

model can provide a service level of more than 95% for each COV in each problem class. The

reason behind the opening of a high number of facilities of type 3 and 2 is the considered

coverage distance, which helps to handle the demand variation.

Table 3.5: Summary of Computational Experiments

Problem

Class
COV R SQ1

ll SQ1 SQ1
Ul SQ2

ll SQ2 SQ2
ul SQ3

ll SQ3 SQ3
ul

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

D10

0.1 1369 97.51 97.62 97.74 98.98 99.05 99.11 98.98 99.00 99.06

0.2 8434 95.36 95.44 95.52 97.41 97.47 97.53 97.41 98.33 98.39

0.3 11481 93.18 93.28 93.39 95.75 95.83 95.91 95.75 97.43 97.51

0.4 10161 90.96 91.09 91.23 94.02 94.13 94.24 94.02 96.50 96.61

0.5 32381 88.83 88.92 89.01 92.39 92.47 92.54 92.39 95.46 95.54

D20

0.1 851 97.89 97.98 98.08 99.06 99.13 99.20 99.06 100.00 100.00

0.2 2366 95.47 95.58 95.70 97.89 97.98 98.07 97.89 100.00 100.00

0.3 4079 92.86 92.99 93.12 96.58 96.68 96.78 96.58 99.94 100.00

0.4 8057 90.38 90.50 90.62 95.20 95.30 95.40 95.20 99.80 99.90

0.5 16407 87.77 87.87 87.98 93.69 93.77 93.86 93.69 99.58 99.67

D50

0.1 279 97.66 97.78 97.89 98.61 98.70 98.80 98.61 98.21 98.30

0.2 1245 95.49 95.59 95.70 97.50 97.59 97.67 97.50 97.77 97.85

0.3 2442 93.30 93.41 93.52 96.32 96.41 96.50 96.32 97.22 97.31

0.4 4369 91.15 91.25 91.36 95.11 95.19 95.28 95.11 96.62 96.71

0.5 6579 88.91 89.02 89.12 93.79 93.88 93.97 93.79 95.85 95.94

D100

0.1 196 97.46 97.57 97.67 98.35 98.42 98.50 98.35 98.37 98.44

0.2 587 95.36 95.47 95.59 97.36 97.44 97.53 97.36 98.02 98.11

0.3 1370 93.11 93.21 93.32 96.23 96.31 96.40 96.23 97.54 97.62

0.4 2040 90.85 90.96 91.07 94.99 95.08 95.17 94.99 96.99 97.08

0.5 3866 88.64 88.73 88.83 93.68 93.76 93.84 93.68 96.35 96.43

COV = Coefficient of variation

R = Total number of replications

SQ1, SQ2, SQ3= Service level for service types 1, 2 and 3, respectively.

SQ1
ll, SQ2

ll, SQ3
ll = Lower limit of confidence interval of service level for service types 1, 2 and 3, respectively.

SQ1
ul, SQ2

ul, SQ3
ul = Upper limit of confidence interval of service level for service types 1, 2 and 3, respectively.

125

(a) (b)

(c) (d)

Figure 3.9: Service level vs COV for the problem instances (a) D10 (b) D20 (c) D50 (d) D100

3.4.5 Observations

The results from the simulation in terms of variation in the service level with COV value are

shown in Figure 3.9. Figure 3.9 also shows that the service level decreases almost linearly with

the increase in COV value. This figure also shows that the fall in the service level of service

type 1 is more than that for the other service types. Similarly, the fall in service type 2 is more

126

in comparison to that for service type 3. It is because of the high level of the mean demand

causing more spread or variation even for the same level of COV. It can be concluded that with

the increase in the coefficient of variation, the service level deteriorates irrespective of problem

class. The model is able to provide a service level of more than 95% for service types 1 till 0.2

COV. The developed model can handle the variation in demand up to 0.5 COV for service

types 2 and 3 for a 95% service level. This simulation results show that the service level will

be strongly governed by the mean level of the demand and the corresponding COV. These

results also indicate that one should not restrict oneself to the location decisions obtained from

the application of the HCFLP model but go with more facilities of each type. These

observations are drawn from the 100 location problem.

3.7 Conclusions

This chapter is devoted to the service quality issue and proposes some metaheuristic

approaches for solving large scale maternal healthcare facilities' location-allocation problems.

The developed mathematical model ensures quality in service by considering a penalty on

allocations of MTBs beyond the facility's limited capacity along with the availability and

accessibility issues. The objective considered is the minimization of the total cost, which

includes the cost of establishing a new facility, transportation costs and the penalty cost due to

overburdening.

This chapter also proposed three metaheuristics, namely PSO, ABC and JAYA, to solve the

large scale real-world problems. A major effort has gone into identifying the most effective

and efficient metaheuristics out of the three in solving the model vis-à-vis the usual

mathematical programming approach (use of Gurobi Solver). For this purpose, extensive

computational experiments were carried out by solving 50 problem instances of varying sizes

127

generated randomly. Based on the statistical analyses, the PSO approach was found to be the

most effective and efficient, even over the Gurobi Solver. The ABC approach was found to

perform generally better than the JAYA approach in terms of solution quality and vice-versa

in terms of CPU time used. The performance of the proposed metaheuristics has been found to

be better than the usual optimizing approach adopted by Gurobi Solver. One may try to further

improve the performance of these metaheuristics. It may be desirable to incorporate various

search techniques such as local search, neighbourhood search and Tabu search.

The effect of randomly varying demand on the service quality was also examined using Monte-

Carlo simulation method. The results of the simulation show that the service level decreases

almost linearly with the increase in the coefficient of variation. This fall is more severe if the

mean demand of a service type is large. The results of the simulation can be useful in deciding

on additions to the capacity of various service types available at various locations in order to

maintain the desired service level. In this way, the hybrid approach of combining simulation

with the optimizing framework is expected to yield a much better practical solution. In India,

the childbirth rate is almost constant. In case the same is not stationary in a country, the right

planning framework would require the growth factor to be considered in the proposed

formulation for effective planning.

128

