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3. CHAPTER 3  

MATERNAL HEALTHCARE FACILITY PLANNING WITH  

PENALTY ON OVERBURDENING 

3.1 Introduction 

In the previous chapter (Chapter 2), the planning framework did not allow for over allocation 

of MTBs to the health facilities. The fact is, particularly in Indian context, that health facilities 

are overburdened. This overburdening on one hand is because of large demand coming from 

huge population and the lack of funds for creating sufficient number of facilities. Under such 

a scenario, overburdening is unavoidable but is definitely undesirable. To bring a right balance 

between the two contradictory emerging scenarios, overburdening should be allowed but only 

at a cost. This cost in further elaborations and discussions is termed as penalty cost. The 

problem thus considered in this chapter is the same except for possibility of overburdening at 

a penalty cost.     

As discussed in Chapter 2, the complexity of the HCFL model grows with the problem size, 

and the problem may become intractable. In fact, in countries such as India, such planning 

problems are large scale problems owing to many administrative regions consisting of more 

than a thousand villages. For example, as mentioned in earlier chapters, the Varanasi district 

of Uttar Pradesh state in India consists of 1333 villages. Seoni district of Madhya Pradesh state 

in India consists of 1593 villages, and the Kolar district of Karnataka state in India consists of 

1809 villages (India Village Directory, 2021). There are many districts in India having more 

than a thousand villages. In these districts/ regions, some of the villages have a very small 

population and are at a short distance from the nearby populated village. During the planning 

of the network, planners can merge such villages to constitute a single location. Even after 
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merging, the total number of locations comes out in thousands. To plan a maternal healthcare 

network in such a large region using MILP formulation is a challenge for healthcare planners, 

particularly when one looks for a high-quality solution in a reasonable amount of time for a 

large-scale real-world problem. To solve the large size MILP of HFLPs, metaheuristics such 

as iterative local search (Brito et al., 2010), neighbourhood search (Hansen et al., 2010), 

simulated annealing (Kirkpatrick et al., 1983), and Tabu search  (Glover and Laguna, 1998), 

etc., can be used population-based metaheuristics inspired by nature have also received a lot 

of attention in recent years. These metaheuristics are typically driven by evolution or swarm 

intelligence. Swarm intelligence-based algorithms, in particular, have drawn the attention of 

researchers due to their capability of exploration and exploitation. Following a thorough 

review of the literature, it appears that several swarm intelligence-based metaheuristics, such 

as particle swarm optimization (Li et al., 2021) and artificial bee colony (Akay et al., 2021), 

are extremely effective in solving diverse combinatorial optimization problems.  

Out of all these approaches, particle swarm optimization (PSO), artificial bee colony (ABC), 

and the JAYA algorithm (Rao et al., 2016) have been used in this chapter to solve the 

considered maternal healthcare facility location-allocation problem. Extensive computational 

experiments have also been performed to analyze the comparative efficiency and usefulness of 

these metaheuristics. Besides, the impact of consideration of penalty cost is also analyzed on 

the resulting solution. 

In this chapter, the issue of service quality due to stochastic demand is also addressed. The 

formulation considered in Chapter 2 assumes the service demand from MTBs to be 

deterministic. However, in reality, the volume handled by a healthcare facility from a location 

need not be constant but random. A heavy load on a day is bound to have a negative impact on 
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the quality of healthcare service. Thus, the Monte Carlo simulation approach is used to find 

how the service quality is going to be impacted by the amount of variability in demand 

originating from a location. 

This chapter is organized as follows. The problem is detailed in Section 3.2, and the 

corresponding mathematical model in Section 3.3. The metaheuristics as solution approaches 

are described in Section 3.4. The results of computational experiments, along with related 

findings, are given in Section 3.5. The impact of change in demand and penalty is discussed in 

Section 3.6. The optimization and simulation framework is discussed in Section 3.7. Finally, 

Section 3.8 concludes the chapter.  

3.2 The Problem 

In case the capacity restrictions are removed or relaxed, the mathematical model of Chapter 2 

will try to establish fewer number of facilities only to ensure that the required facilities are 

within the reach of MTBs. However, in this process, allocation of MTBs to a facility may be 

much more than the capacity. These extra allocations above the capacity are bound to cause 

serious concern to the quality of service. Therefore, if the overburdening of the facilities is not 

penalized, it is bound to cause serious deterioration in the quality of service. The problem 

considered in this chapter is the same as considered in Chapter 2 except that overburdening is 

allowed here but a penalty cost. This cost has been linearly related to the amount of 

overburdening. The penalty cost can be taken as the cost of overtime by doctors, nurses and 

other staffs for treating extra number of MTBs; or attributed to many similar concerns. By 

doing so, an attempt has to be made to handle the service issue. The maternal healthcare 

problem and information related to various facility types, service types and maximum coverage 

distance discussed in Chapter 2 are followed as it is here also. 
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3.3 The Mathematical Model 

Most of the notations used in the proposed mathematical model in this section are the ones that 

have also been defined and used in the Section 2.3. The same are repeated here to provide ease 

in understanding of the proposed model that follows it and represents the planning problem 

considered in this chapter.  

Sets and Indices 

:I  set of locations of MTBs,   1,2,...,I m , indexed by i  

:J set of locations of potential facilities,  J I , indexed by j , k and n  

:L  set of service types offered,   1,2,3L , indexed by l , 'l and ''l   

:F  set of types of facility,  , ,I II IIIF  , indexed by f  and u  

Parameters 

M : a big number  

:P  penalty cost per additional MTB allocated beyond the capacity of any service type 

available at a facility 

1 :d  a limit on the maximum distance to be covered by an MTB during a non-referral visit  

2 :d  a limit on the maximum distance to be covered by an MTB during the referral visit 

:ijd distance between locations i I  and j J  

:jkd distance between facility locations j J and k J  

:ijC  travel cost incurred by an MTB for visiting the facility at a location j J  from its current 

location i I  

:jkC travel cost incurred by an MTB for referral visit from current facility location j J to a 

referral facility at location k J  

:f

jF  fixed cost on establishing a facility of type f F at location j J   



87 
 

:lfQ  capacity of service type l L  available with facility type f F  

:l

iW  number of MTBs at a location i I  requiring service type l L  

' :ll  proportion of referrals for service type 'l L from service type l L , where 'l l  

1

if  is within the coverage distance of an MTB
1,  at a location  (i.e.,  ),

0, otherwise                                                    

a facility for non-referral visit at a location  




  ij

ij

j J
i I d d

                                                                                    






 

2

if  is within the coverage distance of a lower level facility
1,  at location  (i.e., ),

0, otherwise                                                    

a referral facility at a location  




  jk

jk

J
j J d d

k

                                                                             






 

Decision variables 

:l

ijx number of mothers-to-be at location i I  being allocated to a facility at a location j J  

to receive service type l L  

:lm

jkx  number of mothers-to-be receiving service type l L  at facility j J  who require 

referral visit to a facility k J  for a higher service type m L  

:l

jx  number of mothers-to-be allocated to a facility at a location j J  to receive service of 

type l L but beyond the available capacity of that service type 

1, if ,

0, otherwise                                                 

a facility of type   is located a

   

t 

 

 
 


f

j

F j Jf
y  

 

The mathematical model of the Hierarchical Capacitated Facility Location-Allocation problem 

with Penalty (HCFLP) is presented hereunder using the above notations. 

Minimize '

'

f f l ll l

j j ij ij jk jk j

j J f F i I j J l L k J j J f L l L j J l L

F y c x c x Px
          

            (3.1)  

Subject to 

, ,l l

ij i

j J

x W i I l L


                                                                 (3.2)  

' ' ''

''

, , , ', '' , where '' 'll ll l l l

jk ij nj

k J i I l L n J

x x x j J l L l l L l l l
   

 
        

 
        (3.3)  
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'

'

, ,l ll l lf f

ij kj j j

i I k J l L f F

x x x Q y j J l L
   

                                                              (3.4)                                        

1,f

j

f F

y j J


                (3.5) 

, , ,l f lf

ij ij j

f F

x y M i I j J l L


                                                                         (3.6) 

' ' , , , , ' , 'll f l f

jk jk k

f F

x y M j J k J l L l L l l


                                                   (3.7)                           

2 3 3  0I I IIQ Q Q                                                                                                         (3.8) 

, , 0, , , ,l lm l

ij jk jx x x i I j J l L m L                                           (3.9) 

{0,1}, ,f

jy j J f F                                                       (3.10)

         

The flow of MTBs to various types of facilities is the same as provided in Figure 2.1 in Chapter 

2. The four expressions in the objective function (3.1) indicate the fixed cost of creating the 

healthcare facilities, the cost of travelling to the facilities, the referral cost, and the penalty cost, 

respectively. Constraint (3.2) ensures that the demand is completely met; whereas constraint 

(3.3) defines the referral of MTB from a lower-level facility to a higher one. Constraint (3.4) 

is a capacity constraint and it also determines the excess number of MTBs beyond the capacity 

at a facility for each service type. According to constraints (3.5), only one type of healthcare 

facility can be established at a given location. Constraint (3.6) indicates that an MTB can only 

be assigned to a facility type if it is located within the coverage distance, whereas constraint 

(3.7) states the same for referral cases. The true features of the facility types are captured by 

constraint (3.8), that shows service types 2 and 3 not being available with facility type I, and 
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service type 3 not being available with facility type II. The nature of the decision variables is 

defined by constraints (3.9) and (3.10).  

3.4 Metaheuristics Used as Solution Approaches 

HCFLP model presented in Section 3.3 is NP-hard. The Indian maternal healthcare facility 

planning problem may have to address a problem with an excess of 1000 locations. For such a 

large MILP, finding an optimal solution in a reasonable amount of time may not be possible. 

For this reason, three metaheuristics are employed in solving the location problem with the 

binary integer variables only. This information is later used in arriving at allocation decisions 

using the Gurobi solver. Because of the sequential approach, the size of the allocation problem 

reduces drastically. It not only helps in reducing the computational time but also results in a 

better quality solution. The problem associated with the usage of the metaheuristics has been 

explained, taking the case of one of these metaheuristics in the next section. The metaheuristics 

used for the proposed planning problem, with values used for their parameters, are presented 

in the following sub-sections.  

3.4.1 Particle swarm optimization 

Kennedy and Eberhart (1995) were the first to present Particle Swarm Optimization (PSO), 

which was inspired by the social behaviour of a flock of birds and their search for food and 

shelter. PSO is a well-known evolving population-based metaheuristic and is commonly 

employed for stochastic optimization. A swarm in PSO is made up of a variety of interactive 

particles that fly in multi-dimensional search space.  Each particle represents a potential 

solution to the problem and has a randomly initialized position and velocity. A particle updates 

its next position and velocity based on its own experience and that of the swarm. The location 

of the particle corresponds to a solution, while its quality is by the fitness function (the 
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objective function). The quality of the solution is improved by following an iterative strategy 

for updating all the particle's positions and velocities. PSO has been successfully applied for 

various continuous optimization problems (Ding et al., 2014; Huang et al., 2012; Kayhan et 

al., 2010; Li et al., 2021). Kennedy and Eberhart (1997) developed a binary version of PSO 

(binary PSO) for discrete optimization problems. PSO has also been applied by many 

researchers for combinatorial optimization problems such as lot-sizing problems (Taşgetiren 

and Liang, 2004), scheduling problems (Chen et al., 2013), vehicle routing problems (Ai and 

Kachitvichyanukul, 2009; Marinakis et al., 2010; Peng et al., 2019), closed-loop supply chain 

network (Santander et al., 2020), facility layout planning (Elkady and Abdelsalam, 2016), 

knapsack problem (Chih et al., 2014) and path optimization (Wang et al., 2021). After going 

through the literature review by Basu et al. (2015), it is observed that the application of binary 

PSO (BPSO) to discrete facility location problems is still limited. Sevkli and Guner (2006) and 

Saha et al. (2011) worked on uncapacitated facility location problems by using a continuous 

particle swarm optimization algorithm. In the past, many researchers (Ben et al., 2020; Guo et 

al., 2014; Premalatha and Natarajan, 2008) have worked to improve the performance of PSO 

using various search strategies such as local search and variable neighbourhood search for 

discrete problems.  

Taking a cue from these research works and the experience gained during experimentation, the 

parameter values chosen and the steps followed are briefly presented below. The framework 

of hybridized approach using binary PSO metaheuristic is shown in Figure 3.1. 

Step 1:  Parameter initialization   

The values used for the various parameters are as follows. 

Swarm size (i.e., number of particles) = 20, and  
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Maximum number of iterations = 100. 

The parameters in Equation (3.11), presented later, are assigned values detailed below. 

Inertia weight parameter ( 1c ) = 0.1 

Cognitive learning parameter ( 2c ) = 0.1 

Social learning parameter ( 3c ) = 0.1 

Step 2: Generation of initial location solution 

A greedy heuristic is used to construct the initial solution. First, the overall demand for each 

service type is determined. The minimal number of CHCs required is then determined 

depending on the demand for service type 3. Considering the available capacity for service 

type 2 with these CHCs, the balance demand for service type 2, is determined. Based on this 

demand and the capacity for service type 2 with PHCs, the number of PHCs to be opened is 

determined. After this, a similar process is used to work out the number of SCs required 

considering the amount of availability of service type 1 with opened CHCs and PHCs. The 

initial solution is worked out by taking 40% more of the required number of facilities of each 

type to address the coverage distance constraint and to avoid significantly high penalty costs. 

The facilities thus determined are distributed at random over the possible locations. 

Step 3: Feasibility check 

Now each particle is taken, and its prospect for leading to a feasible solution is checked from 

the coverage point of view both for referral and non-referral cases. It may so happen that some 

locations may not find the required facilities within the coverage distance limits. Out of all 

these locations, a location is randomly chosen, and the required facility type is established 

there. Once again, the process of feasibility check is carried out. On encountering infeasibility, 
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this process is repeated until a feasible solution emerges. This process is repeated for all the 

particles.  

Step 4: Determination of allocation decisions  

Corresponding to the locations arrived in the previous step, values for f

jy  variables are 

determined. Corresponding to f

jy  value as '0', each of the allocation variables l

ijx , 'll

jkx  and l

jx  

are also assigned values equal to zero. With this input, the HCFLP model is solved using the 

Gurobi solver. The value of the objective function, given by expression (3.1), is the value of 

the fitness function corresponding to a particle. This process is repeated for all the particles.  

Step 5: Updatation of particle best and global best solutions 

The current fitness value of each particle is compared with the particle's best fitness value 

registered so far (it is set equal to the current value in the first iteration). If the particle's current 

position has a higher fitness function value than the prior best, the particle's best position is 

updated with the current position and the particle's best fitness value, bestp , with the current 

fitness value. Applying this process to all the particles, the current global best value, bestg , is 

determined. After discovering a better current global best value, the previous global best value 

and the corresponding position are updated. 

Step 6: Updating particle velocity and position 

The position and velocity of a particle 'p' are defined in |J|-dimensional space, where |J| is the 

number of locations for possible assignment of facilities to them. The value of fk

jpy is the value 

of a variable f

jy of a particle p in kth iteration. Similarly, fk

jpv is the movement to be imparted to 

particle p in jth direction in kth iteration. The velocity of a particle p as , 1f k

jpv   in (k+1)th iteration 
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is determined using Equation (3.11) 1r  and 2r are the uniformly distributed random numbers in 

the range [0,1]. The next position ( , 1f k

jpy  ) of each particle is determined by adding the velocity 

( , 1f k

jpv  ) to the current position ( fk

jpy ) given by Equation (3.12). In the first iteration, the velocity 

values for all the particles are kept at zero level. 

, 1

1 2 1 , 3 2( ) ( )f k fk fk fk

jp jp best p jp best jpv c v c r p y c r g y         (3.11)       

, 1 , 1f k fk f k

jp jp jpy y v                                (3.12) 

After adding the velocity to the position of the particle using Equation (3.12), the binary 

variables may take non-binary values causing infeasibility. To deal with this issue, first piece-

wise linear function (Equation (3.13)) and then sigmoid function (Equation (3.14)) is used to 

update the position of the particle. Final position of each particle will be determined using 

Equation (3.15). 

1,  if 1

,if 0< 1

0,  if 0

fk

jp

fk fk fk

jp jp jp

fk

jp

y

y y y

y

 


 
 

                                                                           (3.13) 

        

1
( )

1
fk
jp

fk

jp y
sigmoid y

e





        (3.14) 

        

1,   (0,1) ( )

0,  

fk

jpfk

jp

if U sigmoid y
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otherwise

 
 


       (3.15)  

Step 7: Stopping criterion  

The process is terminated only if either Steps 3 to 6 have been iterated for a specified number 

or the total CPU time used has touched or crossed the limit set on it. Otherwise, the control is 

transferred to Step 3. 
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Figure 3.1: Framework of proposed PSO 

3.4.2 Artificial bee colony algorithm 

Karaboga and Basturk (2007) first introduced the Artificial Bee Colony (ABC) algorithm 

motivated by the intelligent foraging behaviour of the honey bee swarm. Bees are classified 

into three categories: (i) employed bees, (ii) onlooker bees and (iii) scout bees. Each employed 

bee exploits the nectar sources and memorizes the location of her discovered food source. They 

unload the nectar to the hive and communicate with onlooker bees waiting in the hive. This 

information about the good quality food source is shared in the form of a dance by the 
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employed bees. Onlooker bees choose a food source to exploit depending upon the frequency 

of dance which is proportional to the quality of the food source. If the food source is exhausted, 

then the source is abandoned, and its employed bee becomes a scout bee to explore a new food 

source unvisited before. The local search and global search strategies of ABC help in the 

exploration and exploitation of the search space. Comprehensive detail of the work related to 

the ABC algorithm is available in the review paper by Akay et al. (2021).  

The ABC algorithm has been applied for solving a wide variety of discrete optimization 

problems, such as facility location (Farahani et al., 2014; Lin et al., 2018; Tuncbilek et al., 

2012), knapsack problem (Santana et al., 2019), closed-loop supply chain network problem 

(Cui et al., 2017), waste collection problem (Wei et al., 2019), scheduling problem (Awadallah 

et al., 2015; Wang et al., 2015; Xu and Wang, 2021), etc. To solve uncapacitated facility 

location problems, the ABC metaheuristic was employed by many researchers incorporating 

efficiency improving strategies, such as the two-phase heuristic (Kashan et al., 2012), XOR-

logic (Kiran and Gündüz, 2013), and floor and double mod process (Kiran, 2015) for 

conversion of continuous values to binary ones. In this work, a piece-wise linear function and 

sigmoid function (discussed in Section 3.4.1) are used to maintain the binary nature of the 

variables.  

As mentioned at the beginning of this section, the ABC algorithm will be used for solving the 

location problem and will be hybridized with the Gurobi solver to solve the allocation 

problems. The ABC algorithm for solving HCFLP is divided into multiple phases initialization, 

employed bee, onlooker bee, scout bee, and termination phases. The employed and observer 

bee phases intensify the situation, while the scout bees present a variety of options. Figure 3.2 

depicts the ABC algorithm's framework with the other details provided below. 
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Initialization phase 

The ABC algorithm begins with assigning values to its various parameters. Experimenting 

with several problems, the ABC algorithm was found to perform better for solving HCFLP 

with parameter values detailed below.  

Number of food sources = 20 

Maximum number of iterations = 100 

Maximum number of exploitations = 10 

Initial location solutions are generated following Steps 2 and 3 of the PSO (Section 3.4.1). 

Based on the location solution, allocation decisions and the corresponding fitness value are 

worked out following Step 4 of the proposed PSO (Section 3.4.1). A solution is equivalent to 

a food source, and each food source is managed by a separate employed bee. Naturally, the 

number of employed bees is equal to the number of food sources.  

Employed bee phase 

In this phase, each employed bee attempts to identify a source with better quality of food in 

the vicinity of its current food source. This process is mathematically expressed by Equation 

(3.16). 

 , 1 ,( )f k fk fk f random

j j j jy y y y           (3.16) 

In the above equation, variables tk

jy represent location decisions arrived in
thk iteration, 

variables ,f random

jy  represent randomly identified neighbourhood locations with food, and 

variables , 1f k

jy   to represent new food sources (locations for various facilities) in the 
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neighbourhood of fk

jy at ( 1)thk  iteration.   is the uniformly distributed random number in the 

range of [-1, 1]. To ensure the binary nature of location variables f

jy , Equations (3.13), (3.14) 

and (3.15) are used. After this, Step 3 of the proposed PSO approach is applied to ensure the 

feasibility of the location solution. After having feasible location solutions, Step 4 of the PSO 

algorithm is used to find allocation decisions and the corresponding fitness value. If the new 

solution is better than the old one, the counter is reset to zero, and the new solution is 

memorized. Otherwise, the food source's counter is incremented by one. This procedure is 

carried out for each employed bee.  

Onlooker bee phase 

Initially, onlooker bees wait in the hive and choose to fly to a good quality food source, 

according to the information shared by the employed bees. The probability of selecting 
thk

food source is calculated as follows:  

1

k
k N

n

n

Obj
P

Obj





           (3.17) 

where kP  is the chance of the
thk solution getting selected by an onlooker bee and Obj   is the 

fitness value of 
thk  solution. These probability values use the roulette wheel selection 

technique that provides a better chance of selection of good quality food sources (solutions) 

and low probability for low-quality solutions. After an employed bee chooses a food source, 

the onlooker bee also looks for a better food quality source by adopting Equation (3.16). This 

process is the same as what was adopted by the employed bees. If the solution identified by 

the onlooker bee is better than the employed bee's solution, the employed bee memorizes the 
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new solution. Otherwise, the food source's counter is incremented by one. This procedure is 

also carried out for each onlooker bee. 

Scout bee phase 

During this phase, each food source's counter is put to the test. The counters with the highest 

content for food sources are found. The employed bee of this food source becomes a scout bee 

if the counter is higher than the limit. For this scout bee, a new feasible solution is generated 

at random (using Steps 2 and 3 of the proposed PSO). The food source's counter is reset, and 

the scout bee is reclassified as an employed bee. 

Termination criterion 

The phases discussed above are iterated until the specified number of iterations have been 

performed or the CPU time used is greater than or equal to the limit put on it. The best solution 

obtained so far is finally reported. 
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Figure 3.2: Framework for implementation of ABC algorithm 
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3.4.3 JAYA algorithm 

The majority of metaheuristics require numerous controlling parameters, such as mutation 

probability, crossover probability, and selection operation in the Genetic algorithm, cognitive 

and social parameters in the PSO, and the number of scout bees, onlooker bees, and employed 

bees in the ABC algorithm. Tuning these parameters is a time-consuming and tedious task, and 

sometimes the range of the parameters may vary depending on the complexity and nature of 

the problem. Rao et al. (2016) introduced the Jaya algorithm, which requires no algorithm-

specific parameters and is simple in implementation. JAYA is a population-based algorithm 

and is similar to other metaheuristics. It aims to move towards the best solution and away from 

the worst one after each iteration. In recent years, JAYA has witnessed a growth in its 

popularity due to its ability to identify quality solutions in lesser time. Abundant applications 

of it can be found in the literature for a variety of problems, such as surface grinding process 

parameter identification (Rao et al., 2016), facial emotion recognition (Wang et al., 2018), 

fracture mechanics (Khatir and Wahab, 2019), crack identification (Khatir et al., 2020), job 

shop scheduling (Caldeira and Gnanavelbabu, 2019; Gunduz and Aslan, 2021; He et al., 2021). 

Prakash et al. (2017) developed the first binary version of the JAYA algorithm to solve the 

problem of phasor measurement units related to the power system. Chaudhuri and Sahu (2021) 

employed a binary JAYA algorithm for the feature selection approach for data classification. 

Aslan et al. (2019) compared the binary JAYA algorithm with particle swarm optimization, 

artificial bee colony algorithm, binary tree-seed algorithm and genetic algorithm for 

uncapacitated facility location-allocation model. They found that the binary JAYA algorithm 

performs much better compared to other ones in terms of solution quality and robustness. 
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Houssein et al. (2021) and Zitar et al. (2022) have come out with a review on the JAYA 

algorithm.  

Similar to binary PSO and ABC, the binary JAYA algorithm has also been used to determine 

the best possible locations for facilities. The framework of the proposed binary JAYA 

algorithm is shown in Figure 3.3, and various steps are as follows:  

Step 1: Initialize the algorithm with a population size of 10 and a maximum number of 

iterations equal to 100.  

Step 2: Generate random initial solutions whose number would be equal to the population size. 

The initial solutions (locations of facilities) are obtained using the greedy approach detailed in 

Step 2 of the proposed PSO.  

Step 3: A feasibility check is carried out for the solution of each candidate. If the solution found 

is not feasible, then the candidate solution is repaired using Step 3 of the proposed PSO. These 

feasible locations of facilities determine the value of f

jcy . 

Step 4: Based on the values of variables f

jcy , allocation decisions are made by solving the 

HCFLP model using the Gurobi solver. The fitness value for each candidate is determined 

using expression (3.1).   

Step 5: If the obtained fitness value is found to improve (initially set to very high), then update 

the corresponding candidate solution; Otherwise, the solution is retained as such.  

Step 6: Identify the bestJ  and worstJ in the population and update the candidates' solution using 

Equation (3.18). 

, 1

1 2( | |) ( | |)f k fk fk fk fk fk

jc jc jbest jc jworst jcy y r y y r y y                      (3.18)
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Where 1r  and 2r are uniformly distributed random numbers generated in the range of [0,1], and  

fk

jbesty and fk

jworsty are the best and worst values of the variables from best fitness value and worst 

fitness value. The updated solution may take non-binary values, leading to an infeasible 

solution. Equations (3.13), (3.14) and (3.15) are to be used to deal with this issue, as in the case 

of the proposed PSO.    

Step 7: Steps 3 to 6 are repeated until the specified number of iterations have been performed 

or the total CPU time used is greater than or equal to the limit put on it.  
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Figure 3.3: Framework for the proposed JAYA algorithm 
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3.5 Performance Study of the Proposed Metaheuristics 

The findings of the proposed metaheuristics' and comparative performance are reported in this 

section. For solving the HCFLP mathematical model, Gurobi optimization solver with Python 

3.8 is used. Besides, the metaheuristics were also coded in Python 3.8. Extensive 

computational experiments were carried out on the supercomputer "PARAM-SHIVAY" with 

a configuration of 2* Intel Xeon SKL G-6148, 4 core, 2.4GHz, 192 GB DDR4 2666 MHz 

memory. In the following subsections, the scheme for generating test instances and, thereafter, 

computational results are presented.  

3.6.1 Generation of test instances 

For a fair performance comparison of the considered metaheuristics, the maternal healthcare 

network planning problems were taken with varying numbers of locations ranging from 100 to 

1000 with step size of 100. Five instances of each of these 10 different sizes of the problem (a 

total of 50 problems) were generated. Based on the total number of binary and continuous 

variables in HCFLP formulation, the problems were grouped into three categories (i.e., small, 

medium, and large), as shown in Figure 3.4. From this figure and also from the HCFLP 

formulation, it can be seen that the number of binary variables increases with an increase in 

problem size; binary variables increase linearly, and continuous variables exponentially. The 

demand nodes (or MTB locations), referral proportion, various types of costs and other 

parameters are similar as discussed in Section 2.5.1 of Chapter 2.  
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Figure 3.4: Various problem classes 

3.6.2 Experimental results and discussion  

Table 3.1 shows the experimental results from the use of the three metaheuristics discussed in 

Section 4. The 'Gap' column reflects the difference between the objective function's upper 

bound and lower bound values. Columns labelled as 'DPSO', 'DABC' and 'DJAYA' respectively 

represent the percentage deviations by which the UB values are less than the corresponding 

objective function values obtained from PSO, ABC and JAYA algorithms. The comparison 

was made based on the UB as it corresponds to a feasible solution for the cost minimization 

problem. The negative values of  'DPSO', 'DABC' and 'DJAYA' represent the cases where the 

proposed metaheuristics perform better in comparison to the direct use of HCLFP formulation 

for problem-solving.  
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Table 3.1: Experimental results of proposed solution approaches 

Problem  

Size 

Problem 

class 

Problem 

Number 

Instance 

number 

Gurobi  PSO  ABC  JAYA 

LB UB 
Gap 

(% ) 

Time 

(in sec) 

 Objective 

value 

DPSO 

(% ) 

Time 

(in sec) 

 Objective 

value 

DABC 

(% ) 

Time 

(in sec) 

 Objective 

value 

DJAYA 

(% ) 

Time 

(in sec) 

Small 100 

1 1 10843322 11043534 1.81 86400  11186966 1.30 3963  12135246 9.89 285  12021657 8.86 4117 

2 2 10775075 10908626 1.22 86400  11090778 1.67 17665  11979378 9.82 1908  11842759 8.56 4927 

3 3 11121055 11224319 0.92 86400  11762999 4.80 61022  12096729 7.77 1898  12221136 8.88 4791 

4 4 10724508 10858138 1.23 86400  11010658 1.40 15191  11942642 9.99 2590  11902609 9.62 2860 

5 5 12297042 12521579 1.79 86400  12780545 2.07 6740  13684676 9.29 1881  13856738 10.66 4866 

Small 200 

6 1 20921405 21220988 1.41 86400  22837798 7.62 84173  22958203 8.19 8444  22988992 8.33 18729 

7 2 21498404 21779771 1.29 86400  23400781 7.44 56756  23923684 9.84 8301  23422340 7.54 17975 

8 3 21516587 21856960 1.56 86400  23340975 6.79 35324  23614708 8.04 8334  24046036 10.02 13573 

9 4 20625501 20935964 1.48 86400  22453940 7.25 83609  22653419 8.20 8378  22571620 7.81 31644 

10 5 21062565 21270401 0.98 86400  22818327 7.28 59560  22974466 8.01 8366  23503271 10.50 34442 

Small 300 

11 1 32141797 32707430 1.73 86400  34736001 6.20 61543  35106868 7.34 5024  36478766 11.53 29964 

12 2 31058579 31499761 1.40 86400  33524994 6.43 83235  33903206 7.63 12980  36581694 16.13 32221 

13 3 31348148 35630209 12.02 86400  33992991 -4.60 80032  34398151 -3.46 12963  35774523 0.41 33737 

14 4 31663513 40866909 22.52 86400  34406498 -15.81 34123  35006280 -14.34 13111  37161855 -9.07 25777 

15 5 32343927 32807675 1.41 86400  35084009 6.94 63175  35588164 8.48 12969  36645190 11.70 26018 

Medium 400 

16 1 42182034 54027924 21.93 86400  45865206 -15.11 15835  47001734 -13.00 7930  47923295 -11.30 27560 

17 2 42455783 66495495 36.15 86400  46659708 -29.83 1850  46386089 -30.24 8241  48968111 -26.36 31296 

18 3 42587304 72037318 40.88 86400  46285813 -35.75 30250  46762302 -35.09 8209  47370356 -34.24 22381 

19 4 41534464 67201336 38.19 86400  45303842 -32.58 58180  45796347 -31.85 8142  48634319 -27.63 25161 

20 5 42443462 75307331 43.64 86400  46331898 -38.48 59064  47380585 -37.08 8151  48198355 -36.00 28908 

Medium 500 

21 1 99429394 117434395 15.33 86400  107514373 -8.45 3881  107405934 -8.54 17320  123263678 4.96 50633 

22 2 94868752 123272403 23.04 86400  102954993 -16.48 3967  103068198 -16.39 18392  117643614 -4.57 39071 

23 3 95028497 125492523 24.28 86400  102872347 -18.03 3934  103050991 -17.88 18111  113507038 -9.55 49851 

24 4 101447173 130734355 22.40 86400  109493362 -16.25 3964  109879449 -15.95 17275  122540493 -6.27 58595 

25 5 95642758 125733166 23.93 86400  103459154 -17.72 4128  103535577 -17.65 17184  116862502 -7.06 26221 

Medium 600 26 1 117288370 145041056 19.13 86400  126841069 -12.55 7577  127017005 -12.43 34275  138618214 -4.43 3549 
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27 2 120200797 157385126 23.63 86400  130130341 -17.32 7213  130079885 -17.35 33491  143725719 -8.68 53155 

28 3 116465441 152977610 23.87 86400  126165371 -17.53 7153  126195925 -17.51 32965  141607351 -7.43 3847 

29 4 114179919 144291303 20.87 86400  123722398 -14.26 9332  124145531 -13.96 34907  138718357 -3.86 3750 

30 5 116645215 149457896 21.95 86400  126290271 -15.50 7346  126330094 -15.47 35297  141159922 -5.55 3770 

Medium 700 

31 1 131926186 172612885 23.57 86400  142618599 -17.38 11526  142912890 -17.21 52600  157143483 -8.96 5168 

32 2 140434881 172965066 18.81 86400  152068801 -12.08 11758  152213200 -12.00 50520  158762563 -8.21 5158 

33 3 - - - 86400  145314567 - 12009  145471781 - 53454  159441088 - 5323 

34 4 - - - 86400  141888496 - 11756  142360817 - 53639  157155157 - 5485 

35 5 132566398 171012083 22.48 86400  143582206 -16.04 12581  143513930 -16.08 54215  161242107 -5.71 5686 

Large 800 

36 1 - - - 86400  173014327 - 5728  173094464 - 86400  176045179 - 8819 

37 2 - - - 86400  167406007 - 22362  167414155 - 86400  182169480 - 9629 

38 3 - - - 86400  162770805 - 5738  162584467 - 86400  179742436 - 9062 

39 4 - - - 86400  168226932 - 22190  169361398 - 86400  181863643 - 10324 

40 5 - - - 86400  164256117 - 20942  164305481 - 86400  177631335 - 9373 

Large 900 

41 1 - - - 86400  189418697 - 34211  189959482 - 86400  203014746 - 13425 

42 2 - - - 86400  188886887 - 36449  190841199 - 86400  204066943 - 13605 

43 3 - - - 86400  192310717 - 33929  192913614 - 86400  207678891 - 13351 

44 4 - - - 86400  190715421 - 34480  191274870 - 86400  205106538 - 14492 

45 5 - - - 86400  188464376 - 34635  189204413 - 86400  202956487 - 14958 

Large 1000 

46 1 - - - 86400  207517807 - 13191  207803503 - 86400  221347849 - 18591 

47 2 - - - 86400  211216259 - 13488  211984385 - 86400  226436741 - 18111 

48 3 - - - 86400  208749072 - 14839  209573809 - 86400  222120204 - 19450 

49 4 - - - 86400  205800806 - 14219  205991666 - 86400  221505756 - 20430 

50 5 - - - 86400  215114994 - 13405  214516128 - 86400  227484427 - 18578 
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For each problem instance and each solution approach, a maximum CPU time limit of 24 hours 

was imposed for experimentation purposes. In the straight use of the HCFLP formulation 

(using the Gurobi solver), no feasible solution was found for the 17 problem instances (33, 34 

and 36 to 50) within the specified CPU time limit. For the remaining 33 problem instances 

(problem number 1 to 32, and 35), feasible but not optimal solutions were obtained., The 

inability of the Gurobi solver in yielding even feasible solutions for most of the medium-size 

and all large-size problem instances indicates the ineffectiveness of the solver in handling real 

large-size problems in the Indian context.  

In contrast to the direct use of HCFLP formulation, the proposed metaheuristic approaches 

(PSO, ABC and JAYA) performed much better and provided good quality feasible solutions, 

and that too much earlier than the permitted maximum limit of 24 hours on CPU time. The 

comparison of various solution approaches is presented in subsequent sub-sections.  

General observations 

The direct use of the HCFLP formulation was found to be advantageous for solving the small 

size problem instances. For location problems up to 200 nodes, the solver provided a much 

better solution in much less time. The solutions from metaheuristics were costlier but by less 

than or equal to 10.66%. For 300 location problems, mixed results were obtained in terms of 

solution quality. However, the CPU time requirement was lesser than that for the solver. For 

all the medium-sized problems, the proposed approaches yielded a much better solution than 

the solver and outperformed the solver in terms of used CPU time. As indicated earlier, for the 

large-size problem, the solver failed to yield a solution in a specified time limit of 24 hours. In 

contrast, the proposed metaheuristics could do so in much lesser time. 
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3.6.3 Comparative performance analysis of proposed metaheuristics 

Table 3.1 did not help to provide a perfect and clear superiority of one approach over the other, 

either based on solution quality or CPU time requirement. For this reason, Wilcoxon signed-

rank statistical tests were performed for both CPU time and solution quality for all four 

approaches. Each of the approaches (approach 1) is compared with the other three approaches 

(approach 2). The null hypothesis claims that approach 1 has a performance equal to that of 

approach 2. Hence the alternate hypothesis states that the performances of the two approaches 

are at variance and thus significantly different. Rejection of the null hypothesis will mean non-

rejection of the alternate hypothesis. Non-rejection of the alternate hypothesis will lead to the 

conclusion of going in favour of that approach, in whose case better results were obtained a 

greater number of times. The tests were conducted for a significance level (p) of 0.05. 

The results shown in Table 3.1 indicate that the quality of solution yielded by the ABC 

algorithm is quite close to that of the PSO algorithm for most of the problem instances. For the 

large size problem instances, the PSO approach outperforms the ABC approach in terms of 

solution quality. The quality of solutions yielded by the JAYA algorithm is the worst in many 

of the cases. For a confirmatory finding, Wilcoxon signed-rank tests were conducted. The 

results of the same are presented in Table 3.2.   

Table 3.2 clearly shows the metaheuristics to outperform the Gurobi solver in terms of the 

solution quality. Among the metaheuristics, the domination of the PSO approach over the ABC 

and JAYA approaches can also be noticed in terms of solution quality. In a comparison of the 

ABC approach with the JAYA approach, the ABC approach is found to be better than the 

JAYA approach. The results of the computational experiments and statistical analyses indicate 
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that, in terms of solution quality, the PSO algorithm generally outperforms the ABC and JAYA 

algorithms, and the ABC algorithm is better than the JAYA algorithm. 

Table 3.2: Wilcoxon-signed rank test for solution quality 

Approach 1  Approach 2 
 

Number of instances in which 

the approach below is better 

 

 
p-value 

 

 Remark 

 Approach 1 Approach 2    

Gurobi Solver  PSO  13 20  0.00086  Significant* 

Gurobi Solver  ABC  13 20  0.0012  Significant* 

Gurobi Solver  JAYA  15 18  0.0057  Significant* 

PSO  ABC  44 6  0.00001  Significant 

PSO  JAYA  50 0  0.00001  Significant 

ABC  JAYA  45 5  0.00001  Significant 

* Only those problem instances are taken in the analysis for which Gurobi Solver resulted in a feasible solution 

within the specified limit on the CPU time. 

Table 3.3 summarizes the findings of the statistical analyses on CPU time. This table indicates 

that the CPU time requirements of the proposed metaheuristics are significantly statistically 

different (p < 0.05) and is lesser than that for the Gurobi solver in all the cases.   Because of 

the statistically significant difference between approaches 1 and 2, the null hypotheses are to 

be rejected.   Further, due to the lesser CPU time requirement, it can be concluded that the 

proposed metaheuristics surpass the Gurobi solver in terms of CPU time. 

Table 3.3: Wilcoxon-signed rank test for CPU time 

Approach 1  Approach 2  

Number of instances in which the 

approach below is better 
 

p-value 
 

Remark 

Approach 1 Approach 2   

Gurobi Solver  PSO  0 50  0.00001  Significant 

Gurobi Solver  ABC  0 50  0.00001  Significant 

Gurobi Solver  JAYA  0 50  0.00001  Significant 

PSO  ABC  31 19  0.07346  not significant 

PSO  JAYA  34 16  0.00880  Significant 

ABC  JAYA  24 26  0.00804  Significant 
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The CPU time requirement of metaheuristics was also compared to one another. There is no 

significant difference in CPU time requirements of PSO and ABC approaches at p = 0.05. 

However, the resulted p-value of 0.07346 is not very high either. Even for a low p-value of 

0.074, The PSO algorithm can be taken to perform better than the ABC algorithm. CPU time 

requirement by the PSO approach can be observed to be generally lower than that for the JAYA 

algorithm, and the difference to be statistically significant. Thus, the PSO approach can be 

taken to be better than the JAYA approach. Similarly, the JAYA approach can be observed to 

perform better than the ABC approach in the case of a greater number of problem instances. 

The difference in the CPU time requirements for JAYA and ABC both are found to be 

statistically significant. In terms of CPU time, this demonstrates the superiority of the JAYA 

algorithm over the ABC algorithm. 

From the foregoing discussions, it is clear that the PSO outperforms all the other three 

approaches in terms of both solution quality and CPU time.  

3.5 Impact of change in demand and penalty 

It is expected that an increase or decrease in total demand may require an increase or decrease 

in the number of facilities to be established. However, due to the consideration of penalty cost 

on overburdening, the model may seek the balance between the cost of establishing the new 

facility and the total penalty cost. This section analyses the effect of variation in demand and 

penalty cost on the number of facilities to be established and on the total cost. For this purpose, 

demand is varied from -50% to +50% of the demand in the step of 10% resulting in 11 demand 

levels. For each demand level, 4 different penalty costs taken are 100, 1000, 10000 and 100000, 

resulting in a total of 44 scenarios. For the purpose of analysis, problem number 14 (D50_4) 
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from Chapter 2 is taken. The impact of change in the demand and penalty is summarised in 

Table 3.4.  

From Table 3.4, it is observed that when the penalty cost is low, the number of facilities to be 

established is less, and facilities are overburdened. With the penalty remaining constant, the 

increase in the demand may not ask for the opening of additional facilities unless the facility 

establishment cost becomes more economical than the resulting penalty cost. From the above, 

it can be concluded that the proposed model will always try to seek an optimal balance between 

the cost of overburdening and establishing new facilities in determining the optimal solution.   

The above experimentation also shows that the demand has a lot of impact both on facility 

establishment cost and penalty cost. The proposed model assumes the demand to be 

deterministic. But it varies around its mean value in real life, sometimes being too small and 

some other time being too high, and all randomly. Under such circumstances, the optimal 

solution from the model may not be truly optimal. For proper decision-making under stochastic 

environment, the Monte Carlo simulation will be the most appropriate tool. This tool could be 

used to determine the optimal network of healthcare facilities since maternal healthcare is a 

sensitive issue and cannot be viewed only an economic perspective. Here the quality of service 

being provided to MTBs becomes very important for maternal healthcare planning. The 

simulation approach and the related findings are presented in the next sub-section.   

Table 3.4: Impact of change in demand and penalty 

Variation 

in 

demand 

Penalty 

Number of established Total overburdening on 
Objective 

value SC PHC CHC 
Service 

type 1 

Service 

type 2 

Service 

type 3 

0.5 100 2 0 3 248 0 0 3417874 

0.5 1000 3 0 3 0 0 0 3476116 

0.5 10000 3 0 3 0 0 0 3476116 

0.5 100000 3 0 3 0 0 0 3476116 
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0.6 100 3 0 3 598 462 0 3619954 

0.6 1000 3 1 3 0 0 0 3982202 

0.6 10000 3 1 3 0 0 0 3982202 

0.6 100000 3 1 3 0 0 0 3982202 

0.7 100 4 0 3 948 1139 0 3838268 

0.7 1000 4 1 3 0 139 0 4245413 

0.7 10000 3 2 3 0 0 0 4487591 

0.7 100000 3 2 3 0 0 0 4487591 

0.8 100 6 0 3 298 1817 0 4053797 

0.8 1000 4 2 3 0 0 0 4611816 

0.8 10000 4 2 3 0 0 0 4611816 

0.8 100000 4 2 3 0 0 0 4611816 

0.9 100 7 0 3 647 2494 31 4274412 

0.9 1000 4 3 3 47 0 31 5187210 

0.9 10000 5 3 3 0 0 31 5501937 

0.9 100000 4 2 4 0 0 0 5592217 

1 100 8 0 3 997 3171 134 4503366 

1 1000 6 3 3 0 171 134 5620288 

1 10000 6 2 4 0 0 0 5799918 

1 100000 6 2 4 0 0 0 5797499 

1.1 100 9 0 3 1347 3848 238 4732114 

1.1 1000 6 4 3 0 0 238 6054858 

1.1 10000 6 3 4 0 0 0 6310906 

1.1 100000 6 3 4 0 0 0 6305515 

1.2 100 11 0 3 696 4525 341 4960937 

1.2 1000 6 5 3 0 0 341 6654118 

1.2 10000 6 4 4 0 0 41 7211371 

1.2 100000 6 3 5 0 0 0 7289378 

1.3 100 12 0 3 1046 5202 445 5190368 

1.3 1000 7 4 4 0 2 145 7078844 

1.3 10000 7 3 5 0 0 0 7413272 

1.3 100000 7 3 5 0 0 0 7415501 

1.4 100 13 0 3 1396 5879 548 5422352 

1.4 1000 8 6 3 0 0 548 7572922 

1.4 10000 7 4 5 0 0 0 7901832 

1.4 100000 7 4 5 0 0 0 7901991 

1.5 100 14 0 3 1746 6556 652 5654806 

1.5 1000 8 7 3 0 0 652 8171941 

1.5 10000 8 3 6 0 0 0 8520099 

1.5 100000 8 3 6 0 0 0 8515690 
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3.6 Hybrid Optimization-Simulation Framework with Normally Varying 

Demand 

The formulation proposed in Section 3.3 assumes the demand to be stationery. In the real 

world, the daily demand cannot be so. Under this situation, the HCFLP model will have use 

mean demand values. However, working with the mean demand will not give the right picture 

of the actual service quality. The demand in excess of the capacity on a day can be much more 

than what will be resulted from the application of the proposed model. The quality is expected 

to be poorer with the increasing level of variability in demand. To have a fair idea about the 

service quality, a hybrid optimization-simulation framework is proposed. The generation of 

the initial solution and further optimization process are discussed in the optimization phase, 

and the Monte-Carlo method used for the simulation purpose is discussed in the simulation 

phase. 

3.6.1 Optimization phase  

The HCFLP model can be solved optimally with a state of the art solver like Gurobi for small 

size problem instances. However, as the problem size increases, the time required to solve the 

problem increases exponentially due to its combinatorial nature resulting from the binary 

variable f
jy , which denotes the opening of a facility type f F at a location j J . 

Therefore, obtaining even a good quality solution for medium and large size problems is a 

challenge. Therefore, we propose an equivalent set covering model to obtain an initial solution 

by relaxing the travelling cost, referral cost, and penalty from the objective function. Further, 

a set covering constraint (3.20) is added to the model, which ensures that at least one facility 

should be opened within the coverage distance. The constraint (3.20) is redundant, but it 
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provides a good quality initial solution for the considered problem. The set covering model for 

the considered problem is as given below.  

Minimize
f f

j j
j J f F

F y
 
         (3.19) 

  

1, ,f
ij j

j J

y i I f F


           (3.20) 

 

and (3.2), (3.3), …, (3.10).  

 

The initial solution provided by the set covering model is fed as a starting solution to the black 

box solver Gurobi. The black box solver gives the optimal solution for allocation decisions 

within a reasonable time limit. Further, this solution is used for the Monte-Carlo simulation. 

3.6.2 Simulation phase  

A Monte-Carlo simulation framework is discussed here in conjunction with the proposed 

HCFLP model. The solution of the HCFLP model from the optimization phase (location of 

opened facilities and allocation details, including referrals) will be fed into the simulation 

model to study the effect of randomness in demand. Thus, the locations of the opened facilities, 

allocation of MTBs to the facilities, and referrals proportions will be kept fixed while allowing 

the number of MTBs at each location to follow the Normal distribution with the mean as the 

demand value used in the proposed formulation for the given problem. The steps involved in 

the Monte-Carlo simulation are as follows: 

Step (1): For a specified coefficient of variation (COV)value, the standard deviation value is 

determined as COV times the mean value. With the mean and standard deviation 

known, the Normally distributed demand from various locations for various service 
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types can be generated. Assuming that the variability is not going to be location 

specific and its extent would be the same, COV for the demand is to be the same for 

each location and service type. 

Step (2): After generating the number of MTBs at a location, its allocations to various facilities 

will be carried out separately for each service type in proportion to what was yielded 

by HCFLP. For the example of Chapter 2, the HCFLP model distributed the demand 

of 368 MTBs for service type 1 from location 9 in the proportion of 10:358 between 

SCs at locations 2 and10, respectively. If the randomly generated demand is 1.5 

times of 368, then 15 (1.5 times of 10) MTBs will be sent to SC at location 2 and 

537 (1.5 times of 358) to SC at location 10. A similar approach will be followed in 

distributing the referrals.   

Step (3): Once the allocations have been worked out, the allocations beyond the capacity can 

be worked out. Having determined the excess number of MTBs for each level at 

each facility, the service level for all the three types of services is determined using 

the following relationship. 

 

 l l
l

l

D E
S

D


         

 (3.21) 

where, 

 lS : Service quality of a service type l 

lD : Total of the demand for the service type, including referrals, and 

lE : Total of the excess allocations made to units of service type l. 
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Step (4): Step 2 and 3 are repeated for initial independent replications (R0) and the total number 

of independent replication (R) required are determined using Equation (3.22) (Banks 

et al., 1998). 

2

0/2z s
R 



 
 
 

         (3.22) 

 

where /2Z  is the 100(1 / 2)  percentage point of the standard normal distribution. 

is the pre-specified error criterion and 0S is the standard deviation of initial 

replication (R0).  

 

Step (5): Steps 2 and 3 are followed for an additional number of independent replication (R - 

R0) and calculate the mean service level for a 95% confidence interval. The half-length 

(h.l.) for the 95% confidence interval is computed using Equation (3.23). 

/2, 1h.l.=t ( )R            (3.23) 

where ( ) = S/ R  , S is the standard deviation, and R is the total number of 

replications. 

The optimization and simulation framework is shown in Figure 3.5. The right side block shows 

the optimization framework, and the left side block shows the simulation framework. For the 

optimization, various problem instances with a known number of MTB (Wi
l) at a location are 

solved. First, the initial solution is determined using a set covering model and then that solution 

is further optimized using Gurobi solver. This solution is now used for simulation. In the 

simulation, normally distributed number of MTBs at each location are determined using the 

coefficient of variation (COV) and then the same are allocated according to the allocation 
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solution determined in optimization phase. This process is repeated or replicated until a pre 

specified amount of precision on service quality is achieved.  

 

Figure 3.5: Optimization and simulation framework 

The simulation model was validated using face validity and validation based on Input-Output 

Transformations (Banks et al., 1998). For face validity, experts were involved. Validation of 

input-output transformations was carried out by visualizing the impact on the service quality, 

which was found to decrease with the increase in the demand level or its variability or with the 
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reduction in the capacity of various facilities for various service types. The results of such 

transformation, for the example problem of Chapter 2 (Section 2.4), are presented below. 

3.6.3 Simulation for example problem 

For the experimentation, the capacity of the service type 1 in SC as 500 is reduced in the step 

of 20. It was found that the optimal location solution did not change, but the optimal allocation 

result until the capacity was reduced to 420. Since the optimal location decision did not change, 

the associated cost remained constant. Because of the change in the allocation decision, the 

travel cost was found to change. The trend in the change is shown in  Figure 3.6. A further 

reduction in the capacity changed the optimal location decisions as well. A reduction in the 

capacity is expected to increase the penalty cost. To avoid the severe increase in the penalty 

cost, the model tried to redistribute MTBs to other locations that were relatively far and had 

the capacity to absorb them. It has resulted in an increase in the travel cost. To visualize the 

effect of the capacity on the service level, the illustrative example problem was simulated with 

service type 1 in SC’s capacity as 500 and 420, taking COV as 0.1, 0.2, 0.3, 0.4, and 0.5. The 

results are presented in Figure 3.7. 
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Figure 3.6: Effect of the capacity on overall traveling cost for the example problem 

 

Figure 3.7:Effect of COV on the service level of BU’s for the example problem 

During the experimentation, the service level was found to decrease with the increase in the 

COV value. This validates the proposed model from the perspective of input-output 
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transformation. The decrease in the service level was found to be linear with the increase in 

the value of COV. In the example considered, the demand had no pattern across all the 18 

locations. The existence of such relationship was further investigated for different demand 

patterns. Two different cases were taken. In the first case, the number of MTBs at each location 

was taken to be the same. In the other case, the number of MTBs at various locations was 

randomly fixed and was taken to follow a uniform distribution. In both the cases, however, the 

total number of MTBs for each service type was kept to be the same as for the example 

problem. It was done so for a meaningful comparison. The simulation results are shown in 

Figure 3.7 for all these cases. In this figure, cap500_R and cap420_R stand for the cases when 

the simulation was carried out with the demand data as for the example problem of Section 2.4 

but with the respective capacity of service type 1 at SC as 500 and 420. cap420_U and 

cap420_E are for the cases when each SC capacity is 420, but the demand is respectively 

uniformly distributed or the same. The simulation results show that the service level decreases 

almost linearly with the increase in the value of COV irrespective of the capacity constraint or 

the nature of the demand in terms of its mean value. Similar results and observations were 

found in the cases of service type 2 and 3 in respective facility types. The simulation results 

tend to indicate that the service quality is highly dependent upon COV. To have more 

confidence in this finding, further investigations were carried out for many problem instances. 

3.6.4 Simulation on randomly generated problems 

For the purpose of computational experimentation, the problem instances generated in Chapter 

2 are used here. Each problem instance was simulated for five values of COV as 0.1, 0.2, 0.3, 

0.4, and 0.5 until the steady-state condition was reached. A total of 200 test instances were 

generated for the simulation purpose. The problem instances are solved by generating an initial 
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solution by the set covering model. The initial solution is then fed as a starting solution to the 

solver Gurobi 8.0.1. The optimization and simulation model is developed using Python 

interface on a personal computer equipped with Intel Core i7 3.40 GHz processor, 8GB RAM, 

and Microsoft Windows 10 Pro 64-bit operating system.  

  

 
 

Figure 3.8: Variation in service level with the length of simulation run for COV as 0.5 for the 

problem class D10, D20, D50 and D100 

The solutions obtained are fed into the simulation framework. Initially, simulation is carried 

out for ten independent replications and the same is further carried out for more number of 

replications to achieve error level of 0.1 in steady state condition. For COV value of 0.5, the 
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fluctuation in the service level with the length of the simulation run is shown in Figure 3.8 to 

illustrate the steady-state condition for a problem instance of each problem class. The detailed 

results are presented in Appendix A-1, and the summary of the simulation is presented here in 

Table 3.5.  

In Table 3.5, a mean service level for an average of five problem instance of each problem 

class for each service type for varying COV is presented. Column 3 represents the total number 

of replications in the simulation. Columns 5, 8 and 11 show the mean service level of service 

types 1, 2, and 3, respectively. Columns 4, 7, and 10 show the lower limit of the confidence 

interval for service types 1, 2, and 3, respectively. Columns 6, 9, and 12 show the upper limit 

of the confidence interval for service types 1, 2, and 3, respectively.  

From Table 3.5, it is observed that for all problem classes, the developed model is able to 

provide a service level of more than 95% for COV as 0.1 and 0.2 for service type 1. In other 

words, the number of facilities opened, to provide service type 1 have sufficient capacity to 

handle the demand variation expressed as 0.1 and 0.2 of COV for the 95% service level. For 

0.3 and 0.4 values of COV, the service level for service type 1 is reported at around 93% and 

90%, respectively, for all the problem classes. For the worst case, that is for 0.5 COV, the 

service level of service type 1 is around 88% for all problem classes. Service type 2 has a high 

service level because the capacity of service type 2 at a facility is more and is able to cater to 

the demand variation of 0.1 to 0.4 COV. The service level of service type 2 is more than 95% 

for 0.1, 0.2, 0.3, and 0.4 COV for all the problem classes; whereas around 93% service level 

is reported for service type 3 for all the problem classes. The service level of service type 3 is 

more than 95% in all the problem classes for each COV. The facilities opened have an 

underutilized capacity of service type 3. Due to that, enough capacity is available and thus the 
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model can provide a service level of more than 95% for each COV in each problem class. The 

reason behind the opening of a high number of facilities of type 3 and 2 is the considered 

coverage distance, which helps to handle the demand variation.  

Table 3.5: Summary of Computational Experiments 

Problem 

Class 
COV R SQ1

ll  SQ1 SQ1
Ul SQ2

ll SQ2 SQ2
ul SQ3

ll SQ3 SQ3
ul 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

D10 

0.1 1369 97.51 97.62 97.74 98.98 99.05 99.11 98.98 99.00 99.06 

0.2 8434 95.36 95.44 95.52 97.41 97.47 97.53 97.41 98.33 98.39 

0.3 11481 93.18 93.28 93.39 95.75 95.83 95.91 95.75 97.43 97.51 

0.4 10161 90.96 91.09 91.23 94.02 94.13 94.24 94.02 96.50 96.61 

0.5 32381 88.83 88.92 89.01 92.39 92.47 92.54 92.39 95.46 95.54 

D20 

0.1 851 97.89 97.98 98.08 99.06 99.13 99.20 99.06 100.00 100.00 

0.2 2366 95.47 95.58 95.70 97.89 97.98 98.07 97.89 100.00 100.00 

0.3 4079 92.86 92.99 93.12 96.58 96.68 96.78 96.58 99.94 100.00 

0.4 8057 90.38 90.50 90.62 95.20 95.30 95.40 95.20 99.80 99.90 

0.5 16407 87.77 87.87 87.98 93.69 93.77 93.86 93.69 99.58 99.67 

D50 

0.1 279 97.66 97.78 97.89 98.61 98.70 98.80 98.61 98.21 98.30 

0.2 1245 95.49 95.59 95.70 97.50 97.59 97.67 97.50 97.77 97.85 

0.3 2442 93.30 93.41 93.52 96.32 96.41 96.50 96.32 97.22 97.31 

0.4 4369 91.15 91.25 91.36 95.11 95.19 95.28 95.11 96.62 96.71 

0.5 6579 88.91 89.02 89.12 93.79 93.88 93.97 93.79 95.85 95.94 

D100 

0.1 196 97.46 97.57 97.67 98.35 98.42 98.50 98.35 98.37 98.44 

0.2 587 95.36 95.47 95.59 97.36 97.44 97.53 97.36 98.02 98.11 

0.3 1370 93.11 93.21 93.32 96.23 96.31 96.40 96.23 97.54 97.62 

0.4 2040 90.85 90.96 91.07 94.99 95.08 95.17 94.99 96.99 97.08 

0.5 3866 88.64 88.73 88.83 93.68 93.76 93.84 93.68 96.35 96.43 

COV = Coefficient of variation 

R = Total number of replications 

SQ1, SQ2, SQ3= Service level for service types 1, 2 and 3, respectively. 

SQ1
ll, SQ2

ll, SQ3
ll = Lower limit of confidence interval of service level for service types 1, 2 and 3, respectively. 

SQ1
ul, SQ2

ul, SQ3
ul = Upper limit of confidence interval of service level for service types 1, 2 and 3, respectively. 
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(a) (b) 

 
 

(c) (d) 

Figure 3.9: Service level vs COV for the problem instances (a) D10 (b) D20 (c) D50 (d) D100 

 

3.4.5 Observations 

The results from the simulation in terms of variation in the service level with COV value are 

shown in Figure 3.9. Figure 3.9 also shows that the service level decreases almost linearly with 

the increase in COV value. This figure also shows that the fall in the service level of service 

type 1 is more than that for the other service types. Similarly, the fall in service type 2 is more 
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in comparison to that for service type 3. It is because of the high level of the mean demand 

causing more spread or variation even for the same level of COV. It can be concluded that with 

the increase in the coefficient of variation, the service level deteriorates irrespective of problem 

class. The model is able to provide a service level of more than 95% for service types 1 till 0.2 

COV. The developed model can handle the variation in demand up to 0.5 COV for service 

types 2 and 3 for a 95% service level. This simulation results show that the service level will 

be strongly governed by the mean level of the demand and the corresponding COV. These 

results also indicate that one should not restrict oneself to the location decisions obtained from 

the application of the HCFLP model but go with more facilities of each type. These 

observations are drawn from the 100 location problem.  

3.7 Conclusions 

This chapter is devoted to the service quality issue and proposes some metaheuristic 

approaches for solving large scale maternal healthcare facilities' location-allocation problems. 

The developed mathematical model ensures quality in service by considering a penalty on 

allocations of MTBs beyond the facility's limited capacity along with the availability and 

accessibility issues. The objective considered is the minimization of the total cost, which 

includes the cost of establishing a new facility, transportation costs and the penalty cost due to 

overburdening.   

This chapter also proposed three metaheuristics, namely PSO, ABC and JAYA, to solve the 

large scale real-world problems. A major effort has gone into identifying the most effective 

and efficient metaheuristics out of the three in solving the model vis-à-vis the usual 

mathematical programming approach (use of Gurobi Solver). For this purpose, extensive 

computational experiments were carried out by solving 50 problem instances of varying sizes 
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generated randomly. Based on the statistical analyses, the PSO approach was found to be the 

most effective and efficient, even over the Gurobi Solver. The ABC approach was found to 

perform generally better than the JAYA approach in terms of solution quality and vice-versa 

in terms of CPU time used. The performance of the proposed metaheuristics has been found to 

be better than the usual optimizing approach adopted by Gurobi Solver. One may try to further 

improve the performance of these metaheuristics. It may be desirable to incorporate various 

search techniques such as local search, neighbourhood search and Tabu search.  

The effect of randomly varying demand on the service quality was also examined using Monte-

Carlo simulation method. The results of the simulation show that the service level decreases 

almost linearly with the increase in the coefficient of variation. This fall is more severe if the 

mean demand of a service type is large. The results of the simulation can be useful in deciding 

on additions to the capacity of various service types available at various locations in order to 

maintain the desired service level. In this way, the hybrid approach of combining simulation 

with the optimizing framework is expected to yield a much better practical solution. In India, 

the childbirth rate is almost constant. In case the same is not stationary in a country, the right 

planning framework would require the growth factor to be considered in the proposed 

formulation for effective planning. 
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