
CHAPTER 4 METHODS EMPLOYED TO ESTIMATE WEIBULL PARAMETERS 

4. Methods Employed to Estimate Weibull Parameters 

Methods employed to estimate 2-parameter W.pdf play a crucial role in the 

accurate assessment of wind resources. A slight difference in estimation of Weibull 

parameters leads to the high difference in estimation of wind power potential at a given 

site. Therefore, the selection of appropriate method is utmost important for accurate 

estimation of Weibull parameters. The ideal method to estimate Weibull parameters 

should have following necessary and sufficient criteria: 

(i) The method should be accurate for estimating the Weibull parameters. 

(ii) The formulation of the method should be simple and explicit. 

(iii) The solution should be efficient in terms of calculations, and preferably do not 

involve any iterative procedures. 

(iv) The method should be free from the binning problem. 

Binning problem is of major concern while estimating the parameters of Weibull 

distribution. The two conventional methods such as LSM, and MMLM are influenced 

by the binning problem. In both LSM and MMLM, higher weight is given to lower tail 

of the wind speed data. The two major drawback of binning is that, firstly, it is difficult 

to predict the optimum size of each bin. As too high bin size results in information loss, 

and too low bin size results in sampling errors. Secondly, within each bin, the choice 

of the middle or upper value of bin taken for estimation of Weibull parameters is still 

of major concern. The improper choice of value results in an underestimation of 

Weibull parameters [161]. The proposed method has an advantage that there is no such 

requirement to classify data into bins for the calculation of Weibull parameters like 

MOM and its formulation is also explicit unlike MOM.   



 
67 METHODS EMPLOYED TO ESTIMATE WEIBULL PARAMETERS 

In this study, a new Modified Energy Pattern Factor (MEPF) method has been proposed 

to estimate the parameters of the 2-parameter W.pdf. This MEPF method has the 

advantage that is simple, robust, efficient in terms of calculations, free from the binning 

problem and does not require any iterative procedures. Our new proposed method has 

the additional advantage that it takes into account the wind speed variability, i.e., the 

moments calculated from the parameters estimated from the MEPF method are very 

close to the empirical moments. The performance of the MEPF is compared with the 

available six methods, namely LSM, EM, MOM, PDM, MLM, and MMLM. This 

comparison will be based on simulated data of varying sample size from 100-100,000 

for a fixed seed value. The well-performing MEPF has been used to estimate the 

Weibull parameters for real wind data from three sites in India.  

The chapter is organized as follows. Section 4.1 describes the locations as well 

as wind data that are going to be analyzed. The various mathematical methods used in 

the present paper are presented in Section 4.2, while Section 4.3 contains both a 

simulation study to compare the various Weibull estimation methods to our new MEPF 

method and a detailed analysis of the wind data at the three sites in India in terms of 

wind speed, load, and power. The final Section 4.4 provides the overall summary of 

this chapter. 

4.1 Geographical Condition and Observation Period 

The IMD, Pune, recorded the long-term hourly mean wind speed data in km/h 

at 10 m height above the ground level with a dyne pressure tube anemograph. Among 

the 40 locations that are discussed in chapter 3 (see Table 3.1). In this study, three 

locations were taken as a reference sites to carried out the further research work. These 

sites were Calcutta (42809), Ahmedabad (42647) and Trivandrum (43371). Calcutta is 

located on the east coast of India whereas Trivandrum is located on the south-west coast 
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and Ahmedabad is located on the inland area of the west coast. Figure 4.1 shows the 

map of India with locations of the three stations and Table 4.1 shows the latitude, 

longitude, altitude, observation periods and a total number of observations of these 

stations. For India, the choice of appropriate class width is of prime importance as the 

wind speed data supplied by IMD Pune were in integer km/h. The hourly wind speed 

histogram for 1 km/h class width will induce error in the histograms, and the histograms 

are not at all stable. Hence, a class width of 2 km/h has been opt (as discussed in section 

3.1, chapter 3). The calm hours are not considered in order to avoid potential wrong 

wind speed measurements. 

 

Figure 4.1: Map of India with the location of the three stations [192]. 
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Table 4.1: Description of the stations. 

Stations Latitude 

(°N) 

Longitude 

(°E) 

Altitude 

(m) 

Observation 

period 

Total 

No. of 

data 

Ahmedabad 23.0300  72.5800 53.00 Jan.1969-Oct.1998 145834 

Trivandrum 8.4875  76.9525 4.90 Jan.1973-Dec.2005 121251 

Calcutta  22.6200 88.4200 7.00 Jan.1969-Dec.1994 147608 

4.2. Mathematical Models  

The W.pdf is a flexible distribution that is widely used to describe unimodal 

frequency distributions like the wind regime at a particular location. The probability 

density function f(v) and cumulative distribution function F(v) are respectively given 

by 
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 (4.2) 

for v > 0 and k, s > 0, where ν is the reference wind speed, k is the non-dimensional 

shape parameter, and s is the scale parameter whose dimension coincides with that of v 

(m/s). The brief description of six distinct existing methods to estimate the Weibull 

parameters, and then introduce our new MEPF method has been given in subsequent 

section. The observed data have been written as 
1 2 3, , ,...., nv v v v . 
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4.2.1 Least Square Method or Graphical Method (LSM) 

Estimation of the W.pdf parameters can be made graphically. Taking the double 

logarithms of Eq. (4.2) (after a small manipulation of that equation) yields 

 
 

1
ln ln ln ln

1
k v k s

F v

 
    

 (4.3) 

The plot of 
 

1
ln ln

1 F v

 
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 against ln v has been used to estimate the Weibull 

parameters by fitting a straight line for the data 
1 2 3, , ,...., nv v v v . It is to be noted that 

one has to use for F(v) the empirical distribution function of the data in Eq. (4.3).  

The Weibull parameter k is the slope of the best-fitted straight line and –k ln s is its 

vertical axis intercept. Although a line may be fitted graphically using eye-estimation, 

fitting the straight line using least-squares regression is preferred for the accuracy of 

estimation. 

4.2.2 Method of Moments (MOM) 

The Method of Moments is a very common statistical estimation technique to 

estimate parameters of any distribution. The idea consists in comparing the theoretical 

Moments of distribution to their empirical counterparts, the latter being only based on 

data 
1 2 3, , ,...., nv v v v . The first and second order Weibull theoretical Moments are 

respectively given by  
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Its empirical counterpart is given by  
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A clever way to isolate k consists in considering the theoretical coefficient of variation 

(CV): 
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 (4.8) 

and to equate it with its empirical counterpart. Once the value of k is estimated, Eq. 

(4.9) has been used to estimate the value of s where v  is the observed mean wind speed: 

 













k

v
s

1
1

 (4.9) 

4.2.3 Empirical Method (EM)  

The Empirical Method is a special case of the Method of Moments to estimate 

Weibull parameters. Justus [156] proposed the following estimation for k: 
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
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 (4.10) 

Once k is estimated s can be found using Eq. (4.9). 
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4.2.4 Maximum Likelihood Method (MLM) 

Stevens, and Smulders [159] suggested the use of the Maximum Likelihood 

Method for estimating the Weibull parameters. The MLM is probably the most popular 

parameter estimation method in statistics. The aim is to find those parameter values that 

maximize the likelihood function of the data, in other words, those values rendering the 

observed data most likely. Straightforward calculations yield the following expressions 

for the Weibull shape and scale parameters: 
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From Eq. (4.11) it can be seen that the parameter k appears on both sides of the equality 

and cannot be isolated, hence numerical approximation methods are required to 

determine k. Once k is calculated, the value of s is easily obtained from Eq. (4.12). 

4.2.5 Modified Maximum Likelihood Method (MMLM) 

When the wind speed data are available under frequency distribution format (in 

other words, classified into bins because of repetitive values), the Modified Maximum 

Likelihood Method is used to estimate the Weibull parameters. These are then 

calculated as follows [28]: 
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where P(vi) is the frequency of the class in which vi is the wind speed central to the bin 

and ( 0)P v  is the total frequency for wind speed equal to or exceeding zero. The detail 

description to solve Eqs. 4.13 and 4.14 have been discussed in Appendix A. 

4.2.6 Power Density Method (PDM) 

Akdag, and Dinler [139] suggest a method to estimate the Weibull parameters 

that is useful when the mean wind speed and wind power density are available. The 

wind power density depends directly on the third Moment of the W.pdf 3

0
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  and 

hence also on the empirical version 
3v , the mean of the wind speed cube. The ratio of 

the mean of the wind speed cube to the cube of the mean wind speed 
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 is defined 

as Energy pattern factor (Epf). Equating the theoretical and empirical expressions for 

Epf thus leads to 
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Weibull shape parameters can be estimated by solving Eq. (4.15) or approximately by 

using the simple expression suggested by [139]:  
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The above expressions need just the mean of the wind speed cube and the cube of the 

mean wind speed to estimate the Epf, and consequently, the shape parameter of the 

W.pdf can be estimated. The scale parameter can be determined using Eq. (4.9). As the 

estimated k from Eq. (4.16) is only an approximated value as mentioned by Akdag, 

and Dinler [139], the accuracy of this method is in doubt. As a response, a more 

accurate and simple-to-use way to estimate the Weibull parameters from Epf has been 

proposed in the subsequent section. This new method has been called as Modified 

Energy Pattern Factor Method. 

4.2.7 Our New Proposal: The Modified Energy Pattern Factor Method (MEPF)  

As defined earlier, Epf is the ratio of the mean of the wind speed cube to the cube 

of the mean wind speed. From Eq. (4.15) it is observed that Epf is a function of only the 

shape parameter. However, Eq. (4.15) is rather difficult to solve. In order to overcome 

this problem and avoid inaccuracy issues as in the PDM, the following new process has 

been adopted. Let the k value vary from 1 to 15 because earlier findings indicate that, 

in the wind regime of India, k is never less than 1 [8]. The plot k vs. Epf has been plotted 

with Epf on the abscissa and k on the ordinate. The variation between Epf and k is 

Modelled using curve fitting techniques. Table 4.2 shows the three different rational 

functions M1, M2, and M3 that were used to fit the variation between k and Epf. The 

reason for the selection of these rational formulae is that the graph of k vs. Epf is 

horizontally asymptotical at k ≠ 0 and the function f(∞) = constant. Therefore, the 

rational function should be such that the degree of the numerator should be equal to the 

degree of the denominator. That is why these three rational functions which have equal 

degrees of numerator and denominator have been opted. The one showing a minimum 

sum of squared error is the most suitable rational function to describe the variation 
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between k and Epf. Our findings indicate that M3 is the most suitable function. Figure 

4.2 shows the graphical representation of k vs. Epf and the best fitted rational function 

M3. The rational function coefficients an, and bn are determined using the nonlinear 

Least Square Method with the Levenberg-Marquardt algorithm. 
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Figure 4.2: Variation of k versus Epf and best fitted rational function. 

Table 4.2: Comparison of rational formulae for the Modified Energy Pattern Function. 

Methods Shape Parameter SSE (%) 

M1 2

2 1 0

2
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b E b E b

 


 
 

31.58 

M2 3 2

3 2 1 0

3 2

3 2 1 0

pf pf pf
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Table 4.3: Modified Energy Pattern Factor coefficient for both shape and scale 

parameters. 
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Figure 4.3: Comparison of M2 and M3 methods based on the ratio of estimated Shape 

parameter to Shape Weibull parameter versus shape parameter for different sample 

sizes. 

  

Coefficient for Shape Parameter 

a0 = -0.2204 b0 = -1.2728 

a1 = 3.2753 b1 = 3.6912 

a2 = -5.7896 b2 = -2.6097 

a3 = 2.1514 b3 = -0.8005 

a4 = 0.5904 b4 = 0.9920 
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Figure 4.4: Comparison of M2 and M3 methods based on the ratio of estimated Scale 

parameter to Scale Weibull parameter versus shape parameter for different sample 

sizes. 

A special comparison of M2 and M3 has been done by plotting the ratio of 

estimated Weibull parameters to true Weibull parameters (for k = 1-4 and s = 2-15 m/s) 

as a function of the true shape parameters for various sample sizes (100-100,000), (see 

Figures 4.3 and 4.4). A visual inspection of Figures 4.3 and 4.4 confirms the better fit 

provided by M3. Therefore, it can be concluded that M3 can be used to model the 

variation of k vs. Epf as shown in Figure 4.2. The values of the coefficients for M3 are 

given in Table 4.3. Once k has been estimated, s can be determined from Eq. (4.9). 
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4.2.8 Random Variable Generation of the Weibull Distribution 

In view of simulation study conducted at Section 4.1, the procedure for 

generation of random variables following a specified W.pdf has been described. The 

random variables have been generated to compare different methods to estimate the 

parameters of W.pdf. To this end, the sample sizes varying from 100 to 100,000 in 

multiples of 10 with a fixed seed value have been considered. Therefore, to model wind 

speed, W.pdf with shape parameter (k) varying from 1 to 4 with a step size of 0.5 and 

scale parameter (s) varying from 2 to 15 in a step size of 1 have been generated. These 

Weibull parameters are referred to as true Weibull parameters, and how well the 

different methods can estimate them has been investigated. The equation used to 

generate wind speed data with such W.pdfs is given by 
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where RN is a random variable uniformly distributed on [0,1], and v is the targeted 

Weibull random variable. 
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4.2.9 The Weibull Quantile Function and the Detection of Extreme Wind Data 

The wind speed data are asymmetric (skewed) data. Not all the supplied wind 

speed data are eligible to fit the W.pdf, hence a method to detect the most extreme values 

is needed. This will be done by following a quantile-based method suggested by Tukey 

[193]. From Eq. (4.17) the general Weibull quantile function (here qa = right-hand side 

of Eq. (4.17) with RN replaced by a) has been derived as: 

 

1/

1
ln

1

k

aq s
a

  
   

  
 (4.18) 

where qa is the quantile of order a of the W.pdf with parameters k and s. This yields 

directly the expressions for the first Quartile (a = 0.25) 

      ( )1/
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q s    (4.18(a)) 

the second Quartile (a = 0.5) 
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and the third Quartile (a = 0.75) 

    ( )1/

3    ln  4
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With these expressions in hand, a value lower than q1 - 3H or higher than q3 + 3H, has 

been considered as extreme, where H is the inter-quartile range, i.e., H = q3-q1 [240]. 

The purpose of using 3 times the Inter quartile range (H) is to identify the maximum 

data point beyond which data are considered as an extreme outliers. Eliminating such 

extreme data will lead to identify the data that can be modeled by Weibull distribution 

so that the stability of the remaining data is maintained without much loss of 

information from the data. 
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4.3 Results and Discussion 

4.3.1 Comparison of Different Methods to Estimate the Weibull Parameters Based 

on Simulated Data 

The best way to see which estimation method works best in which 

circumstances consist in simulating data from a W.pdf, as we then know the true values 

of the shape and scale parameters and can compare the estimates to these true values. 

Therefore, various simulation scenarios have been considered with sample sizes 

varying between 100 and 100,000. In each case, the Weibull parameters have been 

estimated using the seven different methods described in Section 4.2, namely LSM, EM, 

MOM, MLM, MMLM, PDM, and MEPF, and the estimated values have been compared 

with the true Weibull parameters from the simulated data. Different values of the shape 

parameter can have marked effects on the behaviour of the W.pdf. The shape parameter 

k is determinant for the nature of the W.pdf. Therefore, it has been selected as the 

abscissa for the visual comparison of the distinct methods. Figure 4.5 shows the 

comparison of seven different methods based on the ratio of estimated Weibull 

parameter to true Weibull parameter versus shape parameter for different sample sizes. 

Figure 4.5 (a) shows the ratio of estimated to true shape parameters versus the shape 

parameter. Figure 4.5 (a) reveals that for the sample size n = 100 and at k = 1, the LSM 

method underestimates the true shape parameter whereas PDM overestimates the true 

Weibull parameter followed by MEPF, EM, and MOM. As k increases, the estimated 

Weibull parameters from MEPF, MOM, and EM approach towards the true Weibull 

parameters. With increasing sample size n the performances of LSM, and MEPF are 

remarkably improved, and all methods lead to good estimates except for PDM followed 

by EM. At n = 100,000, among the seven methods compared. It can be seen that LSM, 

MOM, MLM, MMLM, and MEPF show equal behaviour, whereas PDM performs less 

well, followed by EM. 
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Figure 4.5: Comparison of seven different methods based on the ratio of estimated 

Weibull parameter to true Weibull parameter versus shape parameter for different 

sample sizes. 
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Figure 4.5 (b) shows the ratios of estimated scale parameter to true scale 

parameter versus the shape parameter. Similarly to our previous conclusions, it has been 

seen that for n = 100 and at k = 1, PDM overestimates the scale parameter followed by 

MEPF and EM, whereas LSM underestimates the true scale parameter. Remarkably, in 

the range of k = 1.5 to 3, the PDM estimates approach towards the true values while 

beyond k = 3 there is again overestimation. As n increases, the performances of all the 

methods improve, with extraordinary improvement for LSM. For n = 100,000, all 

methods show a similar behaviour to what it have been discussed for the shape 

parameter. From the above discussion, it has been observed that the proposed MEPF 

performs equally well in estimating the Weibull parameters as LSM, MOM, MLM, and 

MMLM provided the sample size is large enough. For a smaller sample size and a low 

value of k, the MOM, MLM, and MMLM perform best. For large n, PDM performs less 

well than the other methods, followed by EM.  

On the basis of this simulation study, it has been concluded that the MEPF 

clearly outperforms its antecedent PDM and is a competitive method to estimate the 

parameters of the W.pdf. To further ensure about the performance of the proposed 

MEPF method, a comparison of all seven methods based on the absolute percentage 

error in mean wind power density (WPD ) at different values of shape parameters have 

ben cried out (see Figure 4.6).  
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The expression for the calculation of absolute percentage error in mean wind 

power density is given as: 
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Figure 4.6: Comparison of seven different methods based on the absolute error in 

mean wind power density versus sample size for different shape parameters. 

  

                                                           
1 

trueWPD  can be calculated empirically using Eq. 1.2 
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It is seen from the Figure 4.6 that a very strong improvement in terms of 

percentage error in mean wind power density between the MEPF and the PDM. 

However, the MEPF is equivalently good in estimating the true mean wind power 

density as compared to LSM, MOM, MLM, and MMLM. Therefore, this new method 

has been used for further analysis of wind speed data at the three different locations 

Ahmedabad, Trivandrum, and Calcutta. 

4.3.2 Step 1 of Wind Data Analysis: Do the Observed Data Follow a Weibull 

Distribution? 

The wind speed data supplied by IMD Pune contain wide ranges of hourly mean 

wind speed data. To be confident about the estimated Weibull parameters, the authors 

first measure the extent to which the wind speed data actually follow a W.pdf. In this 

chapter, upper extreme wind speed data are detected using the Weibull quantile function 

mentioned in Eq. (4.18). The total number of extreme wind speed data for the three 

stations Ahmedabad, Trivandrum, and Calcutta are 44, 136 and 427 in numbers, 

respectively. The trend of supplied wind data and wind data after elimination of extreme 

wind speed are graphically represented using Quantile-Quantile plots. The Q-Q plot is 

a graphical technique for determining whether the data set under investigation follows 

a given distribution. On the abscissa theoretical quantiles of the given distribution and 

on the ordinates the empirical quantiles of given data have been plotted. A 450 reference 

line is plotted to check whether the data follow that distribution. The points should fall 

approximately along this reference line. The greater the departure from this reference 

line, the greater the evidence that the data do not follow the given distribution. Figure 

4.7 shows the graphical representation of Q-Q plots of W.pdfs with parameters 

estimated via the MEPF method with and without extreme data for the three stations, 

and the corresponding estimated Weibull parameters are provided in the captions of 

each figure. Figure 4.7 (a) shows the deviation of the observed data from the theoretical 
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Weibull line. After elimination of the extreme data, it can nicely be seen from Figure 

4.7(b) that the wind data follow the theoretical Weibull line for all three stations.  
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Figure 4.7: Q-Q plot of wind speed data (a) with and (b) without extreme data for 

three stations. 

4.3.3 Step 2 of Wind Data Analysis: MEPF Estimates for Wind Speed, Wind Load, 

and Wind Power  

The wind speed data without the extreme observations have been detected in 

the previous section. Figures 4.8-4.10 show the histograms of wind speed, and Figure 

4.11 shows the histograms of load, and power together with the superimposed best-

fitting Weibull density obtained via the MEPF method for the three stations of 

Trivandrum, Ahmedabad, and Calcutta. The left ordinate of the graph represents the 

probability density function, and the right ordinate represents the cumulative 
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distribution function. The respective estimated parameter values are indicated in the 

captions of each figure.  

Figure 4.8 shows the wind speed histogram of the Ahmedabad station. The peak 

of the Weibull function is approximately on the mean wind speed, i.e., 2.8637 m/s, 

implying that wind flows more likely around the mean wind speed. The Ahmedabad 

station lies in the western region of India, and hence the probability of getting higher 

wind speed is much pronounced, due to the onset of the southwest monsoon season. 

Moreover, it is the largest city of Gujarat, which is the 2nd leading state of wind power 

generation in India. 
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Figure 4.8: Histogram of wind speed together with the corresponding Weibull density 

and cumulative distribution function. The parameters have been estimated via the 

MEPF method at the Ahmedabad station 

Figure 4.9 shows the wind speed histogram of the Trivandrum station. It reveals 

that the slope of the observed histogram decreases gradually. Trivandrum lies in the 

southwest region of India, located near the coastal region where sea breeze is most 

prominent, and the southwest monsoon enters India from this zone. Therefore, chances 

of low and medium range wind speeds are more pronounced. This may be the possible 

reason for the gradual decay of the slope for the Trivandrum station.  
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The peak of the Weibull function is on the left-hand side of the mean wind speed, 

meaning that the wind speeds are more likely to be lower than the mean. This makes 

Trivandrum a probable site for the installation of the wind farm. As per “Agency for 

Non-Conventional Energy and Rural Technology” Ramakkalmedu in Idukki district of 

Kerala is the second most suitable place in India for setting up a wind farm.  
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Figure 4.9: Histogram of wind speed together with the corresponding Weibull density 

and cumulative distribution function. The parameters have been estimated via the 

MEPF method at the Trivandrum station. 

Figure 4.10 shows the wind speed histogram of the Calcutta station. It has been 

observed that the histogram shows a pattern of steep decay, which in turn reveals that 

the peak of the Weibull function is less than the mean wind speed (2.2133 m/s). Calcutta 

is a station that lies at the eastern part of India with the Bay of Bengal at its southern 

zone, the sea breeze from the Bay of Bengal flows over Calcutta. According to the West 

Bengal Renewable Energy Department (WBRED), Sagar island and Frazerganj are the 

two sites located at the south of Calcutta that are the most probable for the installation 

of a wind farm and WBRED is planning to install the wind farm at these two sites.  
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Figure 4.10: Histogram of wind speed together with the corresponding Weibull 

density and cumulative distribution function. The parameters have been estimated via 

the MEPF method at the Calcutta station. 
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Figure 4.11: Histogram of (a) wind load and (b) wind power together with the 

corresponding Weibull density and cumulative distribution function. The parameters 

have been estimated via the MEPF method for all three stations. 
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4.4 Summary 

In this chapter, the proposed Modified Energy Pattern Factor Method is 

compared to six different Weibull parameter estimation methods proposed in the 

literature. The simulation study revealed that the MEPF is a suitable alternative to these 

methods, and it clearly outperforms in terms of precision and simplicity its antecedent, 

the Power Density Method of Akdag, and Dinler [139]. Compared to the other 

methods MEPF has an advantage that it is robust, efficient in calculation, free from 

binning problems and does not require any complicated calculation for its solution as 

may be the case with other methods such as the Least Square Method, Method of 

Moments, and Maximum Likelihood Method. It has much higher precision in 

estimating parameters of the W.pdf than the Empirical Method. Moreover, it has the 

additional advantage that it takes into account the wind speed variability, that enables 

the accurate assessment of wind power density. The MEPF method has been used to 

estimate the Weibull parameters for the wind data that has been available from three 

stations in India.  

  




