
Received 7 November 2023, accepted 23 November 2023, date of publication 8 December 2023,
date of current version 20 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3341046

Dependency Prediction of Long-Time Resource
Uses in HPC Environment
NAVIN MANI UPADHYAY 1, RAVI SHANKAR SINGH 1, (Senior Member, IEEE),
AND SHRI PRAKASH DWIVEDI 2
1Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh 221007, India
2Department of Information Technology, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, India

Corresponding author: Navin Mani Upadhyay (navinmupadhyay.rs.cse17@iitbhu.ac.in)

ABSTRACT High-Performance computing provides a new infrastructure for scientific calculation and its
simulation. However, unbalanced load distribution among the processors causes a decreased performance
in such computations, and creates a massive requirement of computing resource allocation, that requires
an increased simulation. Therefore long-range resource utilization prediction becomes essential to achieve
optimal performance in an HPC environment. This paper introduces a novel ensemble technique, which
includes two algorithms, the Feature-based capability prediction algorithm(FBCA), and the Accuracy and
Relative Runtime Error Prediction Algorithm (ARRE). A three-level architectural framework (the simulation
environment, resource prediction, and resource queue) has also been proposed and tested on Phold and
SoS. The proposed framework can deal with the requirements of computing and simulations. The FBCA
algorithm reduces the redundancy between available features, and the ARRE algorithm ensures our ensemble
technique’s effectiveness. We have compared the performance of the proposed schemes with other existing
methods such as the Regressive Approach, Linear Regression and Random Forest, and found that our
proposed algorithm achieves better accuracy from 8% to 18%.

INDEX TERMS Multi-core processors, resource prediction, social opinion system, high-performance
computing, parallel and discrete simulation environment.

I. INTRODUCTION
In today’s computational era, the demand for Scientific
Computing is increasing day-by-day because scientific com-
putations affect almost every area of our life, such as science
and engineering, society and economy, and many other
untouched areas. Therefore the requirements of accuracy
and new calculation methodology become important. Such
systems have many interacting components, so they are
categorized as complex systems. The study of complex
systems and their simulation has become a powerful task for
the new generation of researchers, and the results are obtained
in the form of different supercomputers. One of them is
Param Shivay Supercomputer,1 designed by CDAC Pune,
India. This supercomputer is established at Indian Institute of

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .
1https://nsmindia.in/node/155

TABLE 1. Assumptions for parallel computing architectures.

Technology (Banaras Hindu University) IIT(BHU), under the
National Supercomputing Mission (NSM) shown in Table-1.

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 141871

https://orcid.org/0000-0003-2295-6743
https://orcid.org/0000-0002-5394-7551
https://orcid.org/0000-0002-7810-0859
https://orcid.org/0000-0002-3360-9440

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

In the above table-1, it has shown that the Param Shivay
supercomputer at IIT(BHU) Varanasi, boasts impressive
system specifications that underscore its computational
prowess. The theoretical peak-floating-point performance,
a staggering 837 TFLOPS, showcases its capacity for
complex calculations. In terms of sustained performance,
the supercomputer achieves a remarkable 425 TFLOPS,
combining the power of CPU-only nodes (425 TFLOPS)
and GPU nodes (100 TFLOPS). The base specifications of
the compute nodes reveal a robust architecture. Each node
features 2 x Intel Xeon Skylake processors with 20 cores
each, clocking at 2.4 GHz. With 192 GB of memory and
a 480 GB SSD, these nodes form the backbone of Param
Shivay’s computational muscle. The primary, service, and
login nodes, numbering 10, facilitate efficient management
and user interactions. Diving into the specialized nodes,
the CPU-only compute nodes, totaling 192, each equipped
with 192 GB of memory, contribute to the system’s parallel
processing capabilities. Additionally, 20 high-memory nodes,
boasting a substantial 7680 GB of memory, cater to memory-
intensive tasks. The inclusion of 11 GPU compute nodes,
housing 22 Nvidia V100PCle GPUs collectively, underscores
the supercomputer’s versatility in handling parallel tasks and
accelerating specific workloads. The interconnect infrastruc-
ture plays a crucial role, with a primary 100 Gbps Mel-
lanox Infiniband ensuring seamless communication between
nodes.

The computation power of supercomputers brings a
different perspective to the research and overcomes many
traditional computing limitations [2], [6], [8]. Examples of
such limitations are non-linear relationshipmodeling, solving
random problems, solving long-iterative social evolution
problems and algorithms, etc. Nowadays, the scale of such
simulation applications with these traditional limitations
is also becoming complex, so a parallel discrete event
simulation has come into the picture, which provides high-
performance solutions for such problems. The simulation
applications vary in their simulation environment and scenar-
ios. A high-performance computing environment provides a
platform to support and control the scale of such simulations.
For such simulations, the execution environment for all
scientific tasks is usually well-defined before execution
because of its dependency on specific libraries, applications,
job schedulers, and the currently running operating systems.
Thus those who use such services are bound to use limited
implementation of specific applications. In this context, the
operator teams will only be able to manage or control the
extensions of the running time environment. They will also be
able to control the cooperation of system resources, generally
available at the processor level. Therefore access to the
HPC resources will become more restricted, and all the jobs
will have to wait for their execution in a priority queue.
Conversely, this may happen because most of the physical
machines are under-utilized.

These limitations overcome a high-demanding High Per-
formance Computing Clusters (HPCC) model only when

the HPCC tool applies the cloud concept to the existing
resources. The result will be the Infrastructure as a service
(IaaS) for its delivery model [1], [3], [4], [15], [16]. The
cloud computing approach promises to increase flexibility
and efficiency in energy consumption and cost reduction.
Such providers with a large infrastructure and huge amounts
of resources can only gain a good economic scale. The public
IaaS resources may be better in utilization than the private
ones. Therefore, this study focuses on large-scale High-
performance computing simulation based on parallel discrete
event simulation on Param Shivay Supercomputer.

A. MOTIVATION
A lot of different methods and models have been introduced
by several researchers. These works are based on the tasks’
decomposition and historical tracing. The decomposition of
task (DT) model will first decompose the assigned tasks
into small individual tasks and then predict the required
resources. For prediction, it measures the requirement of each
task. The historical trace (HT) model predicts the required
resources based on the nature of jobs and their execution
patterns. However, some researchers have claimed that one
cannot accurately predict the resources needed for running
applications in an HPC environment [2], [3], [5], [40], [42].
These claims motivate us to work on dependency prediction
of long-term resource utilization.

B. CONTRIBUTION
To solve the above discussed problems, we have proposed a
novel computing approach based on the ensemble technique
to predict the long-term required resources in the HPC
environment. The following contribution has been made by
us in this paper:

• A novel Ensemble Algorithm has been proposed with
multiple objectives.

• A new algorithm has been proposed to predict a valid
sequence of execution of jobs.

• A resource prediction framework has been proposed.
This framework describes the simulation models which
computes the required resources and predicts the job
queue of execution.

• A feature-based capability prediction algorithm (FBCA)
with its accuracy and relative error prediction algorithm
to improve its performance is also proposed.

• The proposed work has been validated based on several
workflow scheduling algorithms.

• A sequential and parallel execution of (Uniform and
random based data selection) SVM, KNN, DT, Naive
Bayes and Gradient Boosting algorithms has demon-
strated based on different number of threads.

• To show the effectiveness of our proposed work, a statis-
tical method ‘‘Fired-man Test’’ has been demonstrated.

C. PAPER ORGANIZATION
The rest of the paper is organized as follows. Section II
describes a review of related works and algorithms.

141872 VOLUME 11, 2023

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

Section III presents a basic understanding of the require-
ments, Notation used, assumptions and basic definitions.
Section IV describes problem formulation. The Section V
presents a detailed discussion of the models used in the
proposed algorithms with its framework. In Section VI a
standard overview of work-flow scheduling and resource
prediction algorithms has been introduced in terms of the
experimental setup and discussion. Section VII discusses the
proposed algorithm and its relative performance prediction
in terms of results and discussion followed by statistical
analysis. In Section VII we have analyzed and validated
the proposed algorithms on different scientific workflow
scheduling algorithms. Section IX presents the conclusion
and future work.

II. RELATED WORK
Based on the research gaps, we found that many researchers
have already done some work. Most of the work refers to
the domain of Multi-core, GPUs and CPUs to use instances
and other services. Some have worked on an architecture-
based system that reflects grids and clusters [6], [8], [17],
[18]. The maintenance cost of grid and clusters are very high,
and computing resources are also not easily available. Once
the computing resources are available, the user can require
an enormous cost with large equipment and space to install
them. So, in this situation, computing the long-time running
resources will give a significant change in execution time for
any scientific computing problem.

To provide a better execution time, researchers have pro-
posed work [1], [7] in the domain of data parallelization, load
balancing, cloud-based solutions, etc. This paper is focused
on three aspects, i.e., mining on CPU Datasets, performance
prediction, and workload characterization. A detailed review
of the work related to the above is presented as follows.

A. JOB’S RUNNING TIME PREDICTION
In Scheduling algorithms, the accuracy of job scheduling
prediction is an important and influential area of research.
Several researchers have proposed strategies to predict a HPC
Job’s execution time. A fittingmodel for user’s estimation has
been proposed by Xiaomeng et al. [4]. He and his team have
prioritized users’ habits for their estimation. The drawback of
their proposed algorithm is that their experiments’ prediction
accuracy is not ideal and uniform.

A new loss function has been proposed by Hamidreza et al.
[8]. They investigate and claimed that their proposed method
is easy and effective for backfill scheduling experiments. The
demerits of their proposed model are based on scalability
because they have used Last Level Cache (LLC), Dynamic
Random Access Memory (DRAM), PCI-E links only, which
is not friendly for other NUMA architectures benchmarks.
In LLC case the demerit is when we scale up the number of
cores in a processor, the shared last-level cache can become
a bottleneck. For example: Suppose A quad-core processor
has a shared LLC of 8 MB. Each core has equal access
to this cache. However, as one user move to a 16-core

processor while keeping the same 8 MB LLC, each core
now has to share the cache with more peers, potentially
leading to increased contention and reduced performance
per core. Similarly, The demerit in scalability for DRAM is
often seen in the increasing latency and limited bandwidth
as the number of processors or cores grows. For example:
Consider that we have a server with 32 GB of DDR4 RAM,
and it provides a certain level of bandwidth. If we double
the number of processors without increasing the memory
capacity or bandwidth, each processor now has to contend
for access to the same memory resources, leading to potential
slowdowns. The scalability issues with PCI-E links arise
when multiple devices, such as GPUs or storage controllers,
share the same PCI-E bus. This can lead to contention for
bandwidth. For example: Consider a system with a single
GPU connected via PCI-E, providing a certain bandwidth.
If we add another GPU or high-bandwidth device without
expanding the PCI-E infrastructure, both devices now have
to share the available bandwidth, potentially reducing the
performance benefits of the additional hardware.

One more method to predict the maximum likelihood
estimation has been proposed by Richard et al. [9]. They
used a liner regression model to compare their result with
other’s existing methods. They found a good improvement
of ≈ 22%.

Wang et al. [21] predicted the job’s runtime based on the K-
NN algorithm. The demerit of their proposed method is when
the data distribution is scattered they won’t have any ideal
prediction in this case. One more interesting approach has
been proposed by Mejri et al. [56]. They have studied skiers
from a certain time to predict the result using an ensemble
technique. Phansalkar et al. [10] have used their result based
on three different algorithms i.e. decision tree, random forest
and KNN. They found that the decision tree produces the best
set of prediction results. In recent years, it has been found that
ensembling multiple learning algorithms is often better than
using only a single learning algorithm.

HPC applications come up with many logical processes,
such processes always require simulation entities. So, to sim-
ulate HPC applications in a virtual environment Shaw et
al [17], Amiri et al. [19] introduced a virtual simulator
that performs on a grid for data distribution tasks. That
simulation entity is based on two phases: preprocessing and
post-processing.

An et al. [20] have introduced a parallel architecture for
network discovery system, which focuses on the utilization
of new-generation CPUs and GPUs. They have used a GPU-
CPU buffer manager and a GPU-based view creator. They
have implemented an ensemble algorithm to deal with the
frequent pattern mapping algorithm.

Wang et al. [21], [22] have described an outstanding
consequence about multicore clusters. They performed on
different twin CPU multicore systems with 4 to 8 cores.
They uncovered a good speedup on a large space production.
A remarkable finding about the performance of hashing
algorithm is presented by Engel et al. [23]. Even after

VOLUME 11, 2023 141873

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

having these methods to distribute data-mining equipment in
a cluster or grid, no better technique was made to effectively
use them on any single machine.

Li et al. [57] has analyzed a similar concept on NERSC’s
Perlmutter, a State-of-the-art open science HPC system with
both CPU-only and GPU-accelerated nodes. They have found
a significant result. The supercomputer which they have used
is world’s top 8 supercomputer, and they have found that
about 50% of GPU-enabled jobs uses up to 25% of the GPU
memory, and the capacity was not fully utilized in some ways
for all jobs.

B. PERFORMANCE PREDICTION
Several researchers [24], [25], [26], [27], have demonstrated
a simulation-based performance prediction method, which
criticizes the microarchitecture elements of CPUs. The
proposed work uses a DNN-based model [28], a state-of-the-
art algorithm for existing machine learning methods. Various
features are available for the DNN model as buffer size for
read-write operation and pipeline stages. In this paper, we are
not using these micro-architectural features except the CPU
specifications provided by manufacturers. Some researchers
[29], [30], [31], [32], [33], [34], have developed amechanistic
model to predict the workload on CPUs. An empirical model
[35], [36], [37] has been used with machine learning models
[38], [39] to improve the performance of multi-core systems.
Zheng et al. [40] have used a dynamic coupling-based
performance counter method for performance estimation.

All the authors, as mentioned earlier, have used micro-
architecture-based features which would help to make
performance predictions accurately. Performance predictions
and selection of the CPU component is a well-studied area.
Piccart et al. [41] have used the data transposition technique
for machine similarity.

C. WORKLOAD CHARACTERIZATION
Based on the workload description, Phansalkar et al. have
designed excellent work [10], [42], [43]. However, they do
not discuss the performance and scaling of the CPU, so their
obtained results are not consistent.

In this paper, one of our objectives is performance
prediction. Shelepov et al. [44], [45] use static workload
features, which include cache size, spatial locality, frequency,
etc., to predict performance.

They have also indicated the speedup for such sys-
tems, including different processors. Apart from this, many
researchers have done work based on cloud scheduling
[46], [47] to study workload characterization. A feature-
based study done by Hoste et al. [48], [49] examines such
features independent of micro-architecture to categorize the
workload. They have regarded the locality and ILP metrics
to indicate performance. The locality includes LRU stack
models, Independent reference models, density functions
(temporal and spatial), set models, and memory reuse
distance models [50], [51], [52], [53].

TABLE 2. Details of used symbols.

D. RESOURCE PREDICTION
Most of the researchers have done their work in the cloud
computing environment. There is various little work done in
the field of High-Performance Computing. Here we are trying
to conclude those works necessary to process the resource
prediction graphs in our model. The Resource prediction
methods are classified into two fields in scientific computing,
i.e. Processor Load prediction and Instance prediction based
on running applications [17]. This paper uses both categories.
The dataset preprocessing division and model prediction
phase will forecast the load of HPC systems. Similar work
has been done by Nguyen et al. [18]. He has proposed an
adaptive workload scheduling method for automatic resource
management. They usedGC-traces as their dataset to evaluate
the experimental model.

Similarly, Amiri and Mohammad-Khanli [19] have pro-
posed a hybrid method by using reinforcement learning. The
significant contribution of their research work is that the
model can predict the future demand of complex scientific
computing resources based on current workload. A fuzzy-
based self-adaptive model has been proposed by Zheng et al.
[40] to predict the demand for used resources.

Based on the above-mentioned related works, it is a very
tedious task to decompose the simulation environment with
used applications and their independent subtasks. However,
the existing models fail only because of a single common
error i.e. they won’t consider the required characteristics
of the simulation applications for execution in the physical
environmental setup and hence, cannot achieve higher
accuracy.

III. NOTATION USED, ASSUMPTIONS AND DATASET
DESCRIPTION
A. NOTATION USED
All the used symbols in this paper are listed in Table-2,
which will be required to understand the problem formulation
and other used descriptions. The equations have also been
described in detail throughout the respective sections based
on their use.

141874 VOLUME 11, 2023

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

TABLE 3. Assumptions for parallel computing architectures.

B. ASSUMPTIONS
All the assumptions that will be needed for this paper, are
summarized in Table-3 and described below in detail.

• Priority process coordination:All processes have
a priority level assigned to them that determines their
execution order. The scheduling algorithm ensures
tht higher priority processes are executed first. The
processes with the same priority are executed in FCFS
manner.

• Homogeneity on Network, Host and Processes: All
nodes in the network have the same hardware configura-
tion and operating system. All processes running on each
node have the same memory and CPU requirements.
The network is configured to have identical bandwidth,
latency and packet loss rates for all the nodes.

• Network Speed: The network has a high bandwidth and
low latency to ensure fast data transfer between nodes.
The network is designed to handle a large volume of
data traffic without any congestion or packet loss. The
network supports multiple protocols and data transfer
modes to optimize performance based on the type of
workload.

• Network Reliability: The networks is designed to
be fault-tolerant and resilient to network failures.
Redundant paths are available for data transfer to ensure
continuous operation in case of network failure. The
network has monitoring and diagnostic tools to detect
and resolve issues in real-time.

• Host Speed: Each node has a fast processor and ample
memory to handle the workload assigned to it. The
operating system is optimized for parallel processing
and can efficiently schedule tasks across multiple cores.
Each node has access to high-speed storage to enable
quick read/write operation.

• Host Reliability: Each node has redundant components
such as power supplies, fans, and network interface cards
to minimize downtime due to hardware failures. The
operating system and applications running on each node
are monitored for stability and performance. Automated
backup and restore mechanisms are in place to ensure
data integrity in case of a host failure.

C. DATASET DESCRIPTION
The parameters of the models were modified to effect
distinct simulation applications. After that, the simulation
applications were deployed in a cloud environment. The

TABLE 4. Illustration of the Features.

simulation datasets were developed by gathering informa-
tion regarding simulation applications. The Phold datasets
includes 10050 samples, and the SOS datasets possesses
8010 samples. The collected components are shown in Table-
4. The target of the feature is the number of CPU cores
assigned for the simulation application with the minimum
execution time.

IV. PROBLEM FORMULATION
The problem is to schedule the workflow and predict the
sequence of execution of tasks. So that the required long-
term resources can be easily identified. For doing this, the
objective of our work is to reduce the make-span, load-
balance and energy consumption according to the maximum
function described in eq. (1).

maxFn = w0×
1

Mspan
+w1×

1
Lbalance

+w2×
1

Econsume
(1)

As in earlier section-I, we have already introduced our
objectives, which are conflicting in nature. So, we have
used the weighted sum method introduced by [18] and [29].
These objectives are bound to sum up with the weight by
the following relation described in the below conditional
equation.

k∑
i=1

wi =

{
1 if k ≤ 3
0 Otherwise

Further, let Lik will be the load on processor p, such that:

Lik =

{
1 if task ti is executed by processor pk
0 Otherwise

By using wi and Lik , we get:

n∑
j=1

Ljk =

{
1 {∀ j | 1 ≤ j ≤ n}
0 Otherwise

3∑
j=1

wj = 1, {∀ j | 0 < j ≤ 3}

VOLUME 11, 2023 141875

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

where, Lik is the load and wi is described as the weight of
the loaded resources on processor pk . The assigned tasks will
also be passed through our proposed framework to determine
the respective execution time with its consumed voltage and
frequency. So our job is to predict wi with respect to pk
according to eq. (1).

V. PROPOSED ALGORITHM
In this section, we will first briefly introduce the ensemble
algorithm and then we will discuss the different phases of
our proposed algorithm in detail. We will also describe the
evaluation scheme and metrics to show the effectiveness of
our proposed algorithm.

A. OVERVIEW OF ENSEMBLE ALGORITHM
In figure-1, we have designed a flow diagram of our proposed
framework. The proposed algorithm is used to train multiple
independent models by using bagging technique in this floe
diagram. We have proposed Feature Based Compatibility
Prediction Algorithm (FBCA) for feature selection. We have
also used this algorithm for the selection of optimal feature
among all the training sets. To improve its quality and
effectiveness, we have proposed one more algorithm entitled,
ARRE in terms of use. As shown in figure-1, the long-term
resource prediction will be calculated by using FBCA and
ARRE algorithms. The components of the flow diagram are
described below.

FIGURE 1. Flow diagram of dataset processing and passing through the
CPU cores.

• Dataset: A huge amount of data is required to predict
required long-term resources. So we have selected the
application prototype to generate the simulation-based
datasets. These generated datasets are best suited based
on their characterization of features. We have built
different samples from the obtained datasets by applying
different configuration parameters such as maximum
main memory, minimum main memory, maximum
cache memory, minimum cache memory, processing
frequency, etc. [8]. We have selected a standard FP
benchmark [6] for the deployment of our generated
datasets.

FIGURE 2. Feature distribution based on number of SPECs (CGs) and Time
domain (loading time).

• Data preprocessing: To improve the quality of any
dataset, preprocessing is a necessary phase. We have
done our experiments in two parts: first part will
cover the data cleaning and the second part will cover
transformation. The data cleaning part is required to
identify the outliers. The feature distribution has shown
in the form of a line-graph, shown in the figure-2.
The figure is made up by excluding the outliers with
respect to the baseline. The outliers are the instances
plotted outside of the lower and upper bound from the
base-line. The transformation part covers a replacement
of instances. Suppose that, if the value of any outliers
shows a large difference from its neighbor instance,
then it will replace the such value with its mean
value. If the outliers show a reasonable difference,
then the transformation part will not process. After the
replacement of the value of the instance form dataset,
the transformation part also does a format conversion
to process the proposed Algorithm. After that, we have
used a normalized form of dataset. This normalization
will done by the Z-score technique.
The Z-score technique is feasible to normalize SPEC
(Standard Performance Evaluation Corporation) dataset
because it transforms the original data to a standard
normal distribution, which has a mean of zero and a
standard deviation of one. This transformation makes
it easier to compare and analyze data across different
experiments and benchmark. The Z-score technique
helps skewness and kurtosis of the distribution by
centering the data around the mean and scaling it by the
std. deviation. The Skewness measures the asymmetry
of the distribution, while kurtosis measures the degree
of peak or flatness of the distribution. When using the
Z-Score technique, data points that are farther away
from the mean will have a higher absolute Z-score,
indicating that they are outliers or extreme values.

141876 VOLUME 11, 2023

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

By standardizing the data, the effort of outliers is
reduced, and the distribution becomesmore symmetrical
with lower skewness and kurtosis values.
We have tried min-max scaling, decimal scaling for
normalizing data. The main difference between these
techniques and Z-score technique for normalizing SPEC
dataset lies in their scaling capability of the data.
The min-max scaling scales the data to a specific
range(between 0 to 1 or -1 to 1) by subtracting the
minimum value and dividing by the range. This method
can be affected by outliers and can result in loss of
information.
The Decimal scaling involves scaling the data by
dividing by a power of 10, such as 10 or 100, to move the
decimal point to the left. This method can be simple and
efficient but does not take into account the distribution of
the data. On the other-hand, the Z-score technique scales
the data by subtracting the mean and dividing by the
standard deviation, resulting in a standard distribution
with a mean of 0 and std-deviation of 1. This techniques
takes into account the distribution of the data, is not
affected by outliers, and preserves the information in the
original data.
In the selected dataset, the Z-score technique is a better
normalization method because it is more robust to
outliers and can better handle variations in the data. This
important in performance evaluation where benchmarks
can vary widely in terms of their characteristics and
performance results. Additionally, the Z-score technique
is widely used and well understood in the field of
statistics andmachine learning, making it amore reliable
and trusted method for normalizing SPEC dataset.

• Feature selection: Feature selection is one of the best
phases in machine learning techniques because by using
this method one can improve the prediction of accuracy
and time complexity. Both of these (time and accuracy)
constraints play a vital role in problem-solving and
Algorithms. Therefore, feature selection also becomes
a crucial task to select the best set of features. The
main advantage of feature selection is that it reduces
the redundancies of selected features and improves
the performance of simulation application algorithms.
Webar et al. [35] have found that most of the feature
selection algorithms are based on two different features:
the first one is maximizing the relevance instance value
and the second one is to minimizing the redundancies.
In this paper, we have proposed a FBCA algorithm
shown in Algorithm-1, to create an impact over existing
feature selection.

Suppose Minfo is the mutual information shared between
two individuals I1 and I2, then the measurement of depen-
dence between I1 and I2 will be written as Minfo(I1, I2).
The entropy H (I1) is defined as the dependence disorder
or randomness or uncertainty of the mutual information.
The uncertainty measurement will be done on 36 instances,
represented as I [36]. The relation between Minfo(I1, I2) and

Algorithm 1 Feature Based Capability Prediction Algo-
rithm (FBCA)
Input: Feature_Set : F, class_Set :

D,No._of _features : n, Selected_features : x
Output: Selected_Set_of _features : Fs

Initialisation: t = 1
1: for i=1 to n do

Compute weigt(Fi,D)
2: end for
3: Select feature Fm|max_weight(Fi,D)
4: Fs = Fs U Fm //
Fs = Fs1 U Fs2 U Fs3 U . . . U Fsn

5: for x=1 to m do
if (x > t)

remove Fm from F
end if

6: end for
7: for i=1 to Len(F) do

Compute F(xi)
8: Select the feature set Fx |max_weight(Fx ,D)

Fs = Fs U Fx
t = t + 1

9: end for
10: return Fs

H (I1) is represented by the below-mentioned equation (eq. 2):

Minfo =

∑
I1∈I

∑
I2∈I

D(I1, I2)log(
D(I1, I2)
D(I1)D(I2)

)

H (I1) =

∑
I1∈I

D(I1)log(I1)

H (I2) =

∑
I2∈I

D(I2)log(I2) (2)

D(I1) and D(I2) are defined as the normal distribution of
I1 and I2. D(I1, I2) is defined as joint distribution of I1 and I2.
We have chosen normal and joint distribution for the above

equation (eq. 2) because the mutual information will be the
intermediate part of the information from both individuals.
So, the normalized mutual information will be written as
eq. 3:

Norm(Minfo(I1, I2)) = 2 ×
Minfo(I1, I2)
H (I1) + H (I2)

(3)

Since the information depends upon both individuals I1 and
I2. So, we havemultiplied our normalizedmutual information
with 2. Also the it is notable that the distribution is joint in
nature with respect to I1 and I2. So, we have used their entropy
in an additive manner.

To calculate the feature capabilities of the contribution
of individual Is we have assumed that the Contribution of
I1 candidate feature is Icontri|(I1, I2) ∈ C , where C is specific
feature class for Icontri. So, the feature capabilities (fcap) is

VOLUME 11, 2023 141877

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

defined as eq. 4:

fcap(Icontri,C) = Norm(Minfo,C) + Const

×(1 − (
H (Icontri)
log k

)) (4)

where Const is any constant 0 ≤ Const ≤ k defined as
the weight between the distribution of mutual information
D(Icontri,C), and k is the total number of contributed
candidate features (Icontri) of (I1, I2) categories.
Based on the above assumptions, the redundancies

between selected feature (Iselect) and contributed feature
(Iconti) can be defined as eq. 5:

Minfo(Icontri, Iselect)

=

{
Overall ∀(Icontri ≤ redundancy ≤ Iselect)
Ignored (if (Icontri − Iselect) = 0)

(5)

Therefore, we have used standard deviation (SD) as Const.,
defined in fcap(Icontri, Iselect) formula. The standard deviation
(SD) is a measure of the amount of variation or dispersion of
a set of values. A low SD indicates the expected value, since
the value tends to be close to the mean, whereas a high SD
indicates that the values are spread out over a wider range.

A detailed definition of SD is shown below in eq. 6:
Let µ be the expected value (the average) of distribution

D(I1, I2) with density of selected features Iselect . Then,

µ ≡
1

| Iselect |

∑
Iselect (I1,I2)∈Icontri

Norm(Minfo(Icontri, Iselect)) (6)

The standard deviation (SD) denoted as σ of Iselect is
defined as, shown in the equation at the bottom of the page.

This is because the standard deviation is the square root of
the variance of Icontri & Iselect with respect to I1 & I2. Based
on the above formula if the standard deviation σ is low then
the redundancy between Icontri and Iselect is closer to mean µ.
To evaluate its contribution we have expressed E(Icontri) in
the following terms:

E(Icontri)

= fcap(Icontri,C) − const.

×(1 − σ)
∑

Iselect (I1,I2)∈Icontri

Norm(Minfo(Icontri, Iselect)) (7)

The (1 − σ)
∑

Iselect (I1,I2)∈Icontri

Norm(Minfo(Icontri, Iselect)) is

defined as the representation of both overall and individual
feature selection between Icontri and Iselect .
The proposed algorithm 1 is divided into five major steps.

The steps are described as follows:

1) Compute the feature capability of all features available
in feature-set (i.e. FeatureSet : F).

2) Select the feature, which has the highest feature
capability and make the time-span (t = 1).

3) Based on feature selection criteria, rank them into
their corresponding computed scores and evaluate
them.

4) Merge the feature having the highest capability score to
the feature set and increase the time span (i.e. t = t+1)

5) Repeat the steps from 3 to 5 until the selected feature
has highest score (i.e. x > t)

• Training and Model Selection: We have selected
supervised learning to predict the number of required
CPU cores. We have selected supervised learning
because the problem discussed in section IV is a
classification-based problem and the mapping of input
to output level is continuous. We used K-nearest
neighbor (KNN), Decision Tree (DT) and Support
Vector Machine (SVM) with different parameters to
generate the base model for CPU requirement prediction
and simulation of applications. We have tried several
Algorithms including Naive Bayes, Gradient Boosting
machines, KNN, DT and SVM and found that the SVM,
KNN and DT generate the base model more accurately.
A comparison of Different algorithms has show in Table-
5. The reason behind choosing the SVM is, SVM is
known to be effective in handling non-linear relationship
between the features and the target variables. It is
also important in performance evaluation where, the
relationship between features and performance results
may not be linear. The SPEC dataset has the same
favorable features. KNN is best useful algorithm in
handling noisy data. The SPEC dataset has some noise
due to variations in hardware configurations, operating
systems, and other factors (Min-Memory,Max-Memory,
Min-Clock, Min-Cache, Min-Frequency etc.) Similarly
the decision tree is well-suited for all datasets with a
mixture of continuous and categorical variables, which
is often the cause in performance evaluation where
benchmarks have different types of features. It can also
handle missing values, in our dataset missing values
occurs due to measurement errors. The Naive Bayes and
Gradient Boosting Algorithms are supportive only when
all the features are independent, which is not true in our
case.
A sequential and parallel execution of our selected
dataset (SPEC) has shown in figure-3, 4, 5 and
figure-6.
The total dataset size is 3 terabytes (TB). The SPEC
CPU benchmark uses a base reference dataset size

σ ≡

√√√√ 1
| Iselect |

∑
Iselect (I1,I2)∈Icontri

((Norm(Minfo(Icontri, Iselect))) − µ)2

141878 VOLUME 11, 2023

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

TABLE 5. Comparison of different normalization algorithms, based on
accuracy, precision, recall and F1-Score for SPEC dataset.

FIGURE 3. Uniform execution of algorithms (SVM, KNN, DT, GBT, and
Naive Bayes).

FIGURE 4. Random execution of algorithms (SVM, KNN, DT, GBT, and
Naive Bayes).

of 1000 MB. In this case the dataset scale is as follows:

Dataset Scale =
Total Dataset Size

Base Reference Dataset Size

So, Dataset Scale =
3 TB

1000 MB
= 3, 000

So, the dataset scale is 3,000. This means that the
working dataset used in this benchmark is 3,000 times
larger than the base reference dataset.
We have divided the dataset into two categories: training
and test datasets for the better use of simulation

FIGURE 5. Parallel uniform execution of algorithms (SVM, KNN, DT, GBT,
and Naive Bayes).

FIGURE 6. Parallel random execution of algorithms (SVM, KNN, DT, GBT,
and Naive Bayes).

applications. We have also used a similar approach to
train and test our simulation mode as any ML system
does.
For model selection, we have used the ensemble model
selection techniques, because, as we know, a single
ML model has several limitations in meeting the
computation requirements of a complex system, and
ensemble model uses a combination of multiple base
models to achieve better results. These models have
a better generalization with respect to local optima as
compared to any single ML model.
For the basic understanding, ensemble models are
defined as an integration of different base models.
In such base models whenever the accuracy increases
the diversity will also increase. Based on its accuracy
and diversity, its performance will also increase. So, for
our simulation, we have to increase the disturbance of

VOLUME 11, 2023 141879

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

the sample data set to train our base model. This will
increase the existing difference between the base and
selected models. It will also improve its generalization
performance.

Notably, none of any base models has that much of a
positive impact on ensemble techniques based on perfor-
mance. So, we have proposed Algorithm 2, which will be
able to choose the correct set of base models as per the user’s
requirement. Since it will be able to choose the required
model as per the user’s need. It can also reduce the execution
time by discarding the timestamp selection of weak models.
The proposed Algorithm 2 is shown below:

Algorithm 2 Accuracy and Relative Runtime Error
(ARRE)
Input: Base Model Sets {BM1,BM2,BM3, . . . ,BMn},

Dataset(Ds)
Output: Predicated Base model sets{PBM1,PBM2,

. . . ,PBMk}

Initialization: t = 1
1: for i=1 to n do

Compute weigt(Fi,D)
2: end for
3: Select feature Fm|max_weight(Fi,D)
4: Fs = Fs U Fm

// Fs = Fs1 U Fs2 U Fs3 U . . . U Fsn
5: for x=1 to m do

if (x > t)
remove Fm from F

end if
6: end for
7: for i=1 to Len(F) do

Compute F(xi)
8: Select the feature set Fx |max_weight(Fx ,D)

Fs = Fs U Fx
t = t + 1

9: end for
10: return Fs

Algorithm Explanation: The Proposed ARRE
Algorithm-2 is processed into 4 steps. The corresponding
steps are described as follows:

1) After taking a set of base models as input, the algorithm
computes each base model’s Accuracy and Relative
Error.

2) The obtained accuracy and relative error values will
be arranged into ascending order (the algorithm will
perform a sorting operation).

3) Select all the based models having the same or higher
accuracy and relative error.

4) Apply the ensemble technique to select the best-
combined base models.

5) Finally, select the best base model set based on their
maximum accuracy and minimum relative error.

Once the predicted base models has obtained then the
ensemble technique has applied on them. The following
formula (eq. 8) is used to apply ensemble technique:

Ensemble_Ipredict{PBM1 U PBM2 U . . . U PBMk}

= Iselect (6t
j=1PBMj{PBM1 U PBM2 U . . . U PBMt })

(8)

where Ipredict {PBM1 U PBM2 U . . . U PBMk} is the infor-
mation predication among predictive base models sets, is the
information class described earlier.

B. PERFORMANCE EVALUATION OF PROPOSED
ALGORITHMS
The performance of any model depends on the following
characteristics: Accuracy, RMSE, F1-Score and Relative
Error. So, to evaluate the performance measurement of
our proposed Algorithm, we have also used the above-said
metrics, which are defined as follows:

Accuracy =
1
n

n∑
i=1

[Ipredict [i] = Iselect [i]]

RMSE =

√√√√1
n

n∑
i=1

[Iselect − Ipredict]2

Pi =
TPi

TPi + FPi
,

Ri =
TPi

TPi + FNi
, and

F1 − Score =
1
C

n∑
i=1

2PiRi
Pi+ Ri

(9)

RelativeError = λ ∗ Accuracy+ (1 − λ)

∗ (1 −

∑n
i=1[Iselect − Ipredict]2∑n
i=1[Iselect − ¯Ipredict]2

) (10)

where, TPi,FPi,FNi are true positive, false positive, and
false negative scores for the Ipredict and Iselect class. Hence,
the selection of a number of CPU core is referred to
Iselect and Ipredict . n is the total number of samples, and
C is the total number of classes. λ is the weight to be
selected according to the user’s performance requirement
and accuracy. The Relative Error is only the indicator for
comprehensive computation of accuracy andDeviation of TPi
and Ipredict .

VI. EXPERIMENTAL SETUP AND SIMULATION
We used Phold [27], [39] and SoS (Social opinion systems)
in our experiments. Both of these applications are CPU-
Intensive and supported by resource prediction algorithms.
To find better performance, we have done different studies
on the configuration of these applications. The detailed
configuration parameters are shown in the table-3.

141880 VOLUME 11, 2023

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

TABLE 6. Benchmark with the number of instances used for simulation.

A. PHOLD
In the Parallel and Discrete Simulation Environment (PEDS)
[13], the Phold is the most powerful and effective per-
formance evaluation benchmark. Many LPs (Linear pro-
gramming simulation object models) are connected with
Phold. All events pass through the event simulator object
state. These transferred events are classified into three major
categorical objects (i.e. Local, Autonomous, and Simulation
object/Event). The detailed structure of Phold is shown in the
figure-7.

FIGURE 7. Phold structure with n simulation objects.

In figure-7, the simulation of Phold benchmark has shown.
A single simulation object contains the following set of
components and processed in different set of steps

• Initialization: At the start of the simulation, n simulation
objects are created. Each objects have its initial state,
attributes, and defined behavior.

• Event Generation: Each simulation object can generate
events at a specific time based on their pre-defined
conditions. These events has shown as event-1, event-2,
. . . , event-n in the figure-7.

• Event Queue: All the events generated are placed into
an event queue in FCFS order. All the events are further
processed by simulation objects.

• Event Execution: Event execution and an execution
clock keeps track of the current executed event and
simulation.

B. SOS
SOS is relatively typical and complex in the parallel &
discrete simulation environment because it can map the
interrelationships of remarks mentioned in the table-6.
In the table the remarks of each simulation object has
explained, the details are as follows:

• No. of objects participated in Simulation (50,400):
This remark indicates that the simulation involved
a substantial number of objects, with a total count
of 50,400. Each object likely represents an entity or
element within the simulated environment, showcasing
the scalability and complexity of the simulation.

• Objects/Events generated from Simulation (10,100):
The simulation generated a notable quantity of objects
or events, totaling 10,100. This metric reflects the
dynamic nature of the simulation, where various objects
interacted or events unfolded, contributing to the overall
complexity and richness of the simulated environment.

• Total running time of Simulation/Experiments Phold
(1000): The running time for the Phold simulation or
experiments reached a significant duration, clocking in
at 1000 units. This indicates the duration for which
the simulation was executed, providing insights into the
time scale over which the simulated events and processes
unfolded.

• Preserved Time Distribution based on resources
(0.1,1): This remark suggests that the simulation con-
sidered a time distribution based on available resources,
with a range of 0.1 to 1. It implies that the simulation
took into account varying resource availability, possibly
simulating scenarios where resources fluctuated within
this specified range.

• Look Ahead Carry Buffer [100, 1000]: The inclusion
of a look-ahead carry buffer with a range of 100 to
1000 implies that the simulation implemented a mech-
anism to anticipate future events or conditions. This
buffer range could influence decision-making within the
simulation, allowing for a degree of foresight in the
simulated environment.

• No. of Profiles (5,20): The simulation involved a
range of profiles, with the number falling between
5 and 20. These profiles likely represent distinct
configurations or characteristics within the simulated
entities, contributing to the diversity and variability of
the simulated population.

• No. of Cities Selected (10): In this simulation, 10 cities
were selected, suggesting a spatial or geographical
component to the simulated scenario. The choice of
cities as entities may be relevant to simulations involving
urban planning, resource distribution, or other city-
centric scenarios.

• No. of Infrastructure Social Opinion System: The
simulation incorporated an infrastructure social opinion
system, indicating that social opinions within the sim-
ulated environment were influenced by an underlying

VOLUME 11, 2023 141881

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

infrastructure. This feature adds a layer of complexity,
as social dynamics are intertwined with the state of the
infrastructure.

• Probability of IP Networks (5%,20%): The probabil-
ity range of 5% to 20% for IP networks suggests that
the simulation considered varying probabilities for the
existence or utilization of IP networks. This could reflect
scenarios where network connectivity plays a role in the
overall dynamics of the simulated environment.

• Total running time of Simulation/Experiments Pre-
served Time Distribution based on resources (1000):
Similar to the earlier mention, this remark reiterates
the total running time of the simulation or experiments,
emphasizing the importance of the 1000-unit duration.
The preserved time distribution based on resources fur-
ther underscores the consideration of resource dynamics
throughout the simulation.

• Look Ahead Carry Buffer (0.1,1): This repetition
emphasizes the utilization of a look-ahead carry buffer
with a range of 0.1 to 1, highlighting its significance in
influencing the simulation’s decision-making processes.

In summary, these remarks collectively describe the intrica-
cies of the simulation, including the scale of entities involved,
time considerations, resource dynamics, and the incorpora-
tion of specific features like profiles, cities, infrastructure,
and social opinion systems.

It becomes more complex when the infrastructure is not
available or destroyed. the infrastructure includes electric
power supply, key resources of cities, etc. Based on these
infrastructures, we can say that this can influence the person.
The cities will also play a major role while making policies,
based on infrastructure changes. A basic structure of SOS has
shown in Figure-8.

FIGURE 8. Social opinion system structure.

In the above figure-8, the infrastructure represents the
physical and digital framework of a society, including com-
munication network, Internet access and storage facilities.
The media represents various channels and platforms through
which information is disseminated to the public. Cities are
influenced by polices made by authorities based on the
feedback and opinion.

TABLE 7. Selected node configuration.

C. DATA SET DESCRIPTION
All the datasets are standard and taken from the official
website of Phold-IBM.2 We have adjusted the parameters
from the datasets to generate the simulation application. The
adjustment of datasets are already described in Algorithms
(1 and 2), used benchmark for simulation in Table-6.
The adjustments are followed by 10-step procedure which
includes; Defining the event generation, configuring events,
event queues for FCFS scheduling, event processing, setting
of simulation time and termination criteria, collecting the
results and analyzing the data recursively followed by
parameter tuning.

Then we deployed them to our virtual HPC environment.
The Phold & SOS contains 10050 and 5010 samples,
respectively. Table-6 contains a detailed description of these
used data sets’ features. The selected features are based on
their minimum execution time for all the selected CPU cores.

VII. RESULTS AND DISCUSSIONS
This section describes the results and discussions in detail.
In this section, we have calculated our proposed Algorithm.

A. EXPERIMENTAL SETUP
We have used Eight nodes having 64 bits Operating System.
Every node is selected from a selected set of CPU components
discussed and published earlier by us [1], [7]. Table-7 shows
a detailed used configured devices as the set of nodes for this
experiment.

For this experiment, we have installed a docker on our
machine. Docker is equipped with a core and a minimum
of 2GB memory. A detailed configuration of node has
already mentioned in table-7 The long-term running resource
prediction has shown in figure-9. In this structure the datasets
are first passes through a preprocessing methodology and
then based on the requirements the train and test sets will
be divided. Based on the best suitable dataset the model
has selected and bind-up with the Ensemble Algorithm and
Applied Simulation Application to find the best suitable
results. Then it passes through the computation nodes having
pre-defined cores (defined in section-I)

As per the structure, the LPs are responsible for distributing
load among all cores. One notable thing here is that each
LP partition has the same CPU configurations in terms of

2ibm.com/docs/en/zos/2.3.0?topic=initialization-page-data-set-sizes

141882 VOLUME 11, 2023

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

FIGURE 9. Long-term running resource prediction structure.

memory, frequency, cores, etc. The LP partition is based
on Objective function (defined in proposed Algorithms-
1,2), Decision Variables, resource allocation constraints,
resource utilization constraints, model selection, forecasting
and predicting the required results. In this architecture,
the primary node is the controlling node, which collects
the resource information. After collecting the resource
information the primary node applies the algorithm to predict
the computing resource.

B. EXPERIMENTAL RESULTS AND ANALYSIS
We have performed our analysis on three different
aspects.1)On the basis of parameter selection, 2) On the basis
of result validation, and 3) Based on Result comparison.

• Parametric Experiments: In this section we have
discussed and analyze the performance of the model
with different parameters. The proposed algorithm can
be affected by multiple parameters, as discussed in
the problem formulation section, i.e., feature selec-
tion dimension and ensemble of base models. The
performance of the ensemble algorithm with selected
parameters has calculated with 10-Fold cross-validation.
The results has been shown in Figure-10. In our study,
we chose to use k=10 in the 10-fold cross-validation
for several reasons, and we did consider other values.
The choice of k=10 is indeed a common and widely
recommended practice in cross-validation for various
datasets and machine learning tasks. Here’s the rationale
behind our decision:
– Common Practice: k-fold cross-validation, where

k=10, is a well-established and widely accepted
standard in the machine learning communities.

– Bias-Variance Trade-off:As we know that there is
a bias-variance trade-off associated with the choice
of k smaller values of k (k=5) can lead to higher

variance in the estimated error rates, while larger
values (k=9 or 10) tend to reduce bias. Our choice
of k=10 was made with the aim of achieving a
reasonable between bias and variance in the error
rate estimates.

– Empirical Evidence: Emprical studies and best
practices have indicated that values like k=10 often
yield stable and reliable estimates of test error rates
without excessively high bias or variance.

– Computational Efficiency: While k=10 provides
robust estimates, it is also computationally efficient,
especially when compared to larger values of
k. This allows us to perform cross-validation
efficiently, especially when dealing with SPEC
datasets.

FIGURE 10. Performance comparison of intelligent ensemble algorithm
with different feature dimensions.

In the Figure-10(a) the evaluation matrices have shown
where the number of selected feature’s dimensions
increases, the respective accuracy, F-1 score and Abso-
lute root mean error have increase once and then
become stable within a specific range. After the range it
decreases to some extent. When the number of folds i.e.
k is equal to ≈ 9, the selected model shows an optimum
performance. One thing is notable is that the low feature
dimension representation is very difficult to represent
because of its prediction task accuracy un-stability over
a certain period of time. In the figure-10, it is observable
that due to redundancy in features, the dimension gets
over to a specific value, and the predicted performance
has declined.

VOLUME 11, 2023 141883

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

According to Figure-10(b) it has clearly observable
that the RMSE starts declining when the k feature
dimensions have increased. It is also observable that it
remains stable for a certain period of time and then rises
again. The RMSEwill become lower within the range of
3 to 13.

FIGURE 11. ARE of proposed algorithm.

Figure-11 shows different sizes of ensembles based on
our proposed algorithms. The AREP method has been
applied to choose the best base model for the experiment
with the final predictor outcome. In this figure, it is
also clearly shown that the ensemble is increasing for
a range of periods and with this increase, the ARE
is also increasing. When the ensemble size becomes
4 the ARE increases slowly up to 8. After an ensemble
size of 8 the performance graph shows a slow increase
in nature. This is just an indicator that the proposed
algorithm becomes saturated after reaching a certain
level. That is whywe have used different basemodels for
our experiments. The model descriptions are described
in section III. Based on those base models, we have
selected our intelligent ensemble algorithm to combine
with our ARRE algorithm.

• Experimental Result Verification:
In this section, we performed our experiments on the
simulated virtual environment and validated our pro-
posed algorithm. We have also compared our algorithm
with existing algorithms (KNN, Traditional Bagging
algorithm). One notable thing is that the KNN uses a
grid-based searching technique to find its best optimal
parameters, whereas the traditional Bagging algorithm
uses a bagging technique to club its base models. Table -
8 contains a detailed comparison report of bothKNNand
traditional bagging techniques.
From the above table-8, it is clear that our proposed
model has a higher accuracy, and a lower root mean
square error (RMSE). As we know that the RSME is
the resultant of deviation between predicted and true
values, so based on RSME, it is also clear that our
proposed model is very good in terms of deviation.
From the F1-score, the difference between performed
activity between bagging and the proposed algorithm,
the proposed algorithm shows a higher value ≈ 10%.

TABLE 8. Performance comparison of different selected model &
proposed model.

TABLE 9. Performance comparison between major resource prediction
methods and proposed method.

Based on the result in terms of time and F1-score,
we can say that the Bagging algorithm performs lower
then our proposed algorithm. The proposed algorithm is
independent of the accuracy or true and false prediction.
The compared method shows less training time, but our
proposed algorithm’s accuracy is 4% faster.
The proposed algorithm performs better because it
chooses its base models wisely. The selection is based
on Phold and SOS simulation services which reduce the
influences of the poorly performed models.

• Performance Comparison: The table-9 shows a spe-
cific comparison between the proposed method and
other major resource prediction methods like (the
regressive ensemble approach for predicting resource
(REAP[23]), Bayesian Approach (BN[24]), cost-aware
auto-scaling approach (LR[25]), the advanced model for
efficient workload prediction (RF[26]), and fuzzy neural
network (FNN[20]).
For all our experiments we have used Root mean square
error and absolute root error at (λ = 0.5)%.We have also
used F1-score to evaluate the comparative prediction
with the indices parameter. During our experiments,

141884 VOLUME 11, 2023

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

we have observed that the parameters of the comparative
experiments needs to be discretized. A clear difference
can be seen in Table-9.
In this table, it is also clear that our proposed algorithm is
significantly better than other traditional models. Other
methods like REAP can achieve good accuracy, but it
is not ideal with other performance evaluation indices.
If we see at BN and LR they take less amount of time but
they also have a lower accuracy. The FNN requires more
training time then the RMSE and proposed method.
So, overall we can say that our proposed method can
achieve high accuracy, low training time and a better user
requirements to improve the QoS.

C. BENCHMARK SUBSETS VALIDATION
In this section, we will be validating all the created
simulation entities. By doing this one can easily identify
which set of simulation entities will be suitable to represent in
modern CPUs and SPEC benchmarks. We used inter-process
communication [1] and L1-cache memory-based miss ratio
technique [7] for all the use benchmarks shown in Table-9.
At last, we have compared it with other existing related works
[23], [38], [39], [40], [54], [55].

FIGURE 12. Evaluation of simulation entities used to check
representation of modern CPUs and SPEC benchmarks.

• Computing IPC: Using the subset based on overall
program characteristics, we calculated the average IPC
of the entire suite for two different micro-architectures
configurations with issue widths of 8 and 16. Figure-12
& 13 shows the average IPC of the entire benchmark
suite calculated using the program subset and every
program in the benchmark suite. We obtained the IPC
on 8-way and 16-way issue widths for every program in
the SPEC CPU2000 benchmarks from Huang et al. [54].
The configurations in brief are: 8-way machine (32KB
2 way L1 I/D cache, 1M 4-way L2, Functional Units 4 I-
ALU, 2 I-MUL/DIV, 2 FP-ALU, 1 FP-MUL/DIV) and
16-way machine(64 KB 2-way L1 I/D, 2M 8-way L2,
Functional Units 16 I-ALU, 8 I-MUL/DIV, 8 FP-ALU,

FIGURE 13. Evaluation of simulation entities used to check Memory
congestion effect on different CPUs and SPEC benchmarks.

4 FP-MUL/DIV). The rest of the details about branch
predictors and different penalties in cycles can be found
in [28]. From Table-8 we observe that each cluster
has a different number of programs; hence, the weight
assigned to each representative program should depend
on the number of programs that it represents.

D. STATISTICAL TEST AND COMPARISON
In this section, we have presented a statistical test to analyze
the significant difference between proposed and compared
methods [56], based on simulation entities and executed on
different clusters [1], [7]. First, we have applied the Friedman
test [1], [7] to analyze the significant differences in average
influence. Since the result shows a significant difference
of 1.6 to 13.44 for Treematch(sim), which is known as
a benchmark for cluster computing. For Socket-span(sim),
we have found a difference in speed up from 0.02 to 2.19,
for cluster B we have achieved a difference of 0.04 to 1.8
(shown in table 10). Therefore we have applied the Holm-
Bonferroni procedure [12] as post-hoc procedure to find the
degree of rejection for each hypothesis (shown in Table-11).
We consider the level of confidence αc = 0.05 and the degree
of freedom Df = 3 for both.

The Friedman test indicates a significant difference in
average influence spread for each iteration, as shown in
table-10. The null hypothesis (H0) states that the methods
compared are statistically equivalent with no significant
difference. The Friedman test rejects the hypothesis because
the test statistic value Ff is greater than the X2(α3,Df), i.e.
Ff > 11.0705. Table 10 shows the results of the Friedman
test for average influence spread and indicates that the
null hypothesis is rejected for each iteration. Similarly, the
post hoc procedure test also rejects the null hypothesis for
each iteration. Therefore, the Holm-Bonferroni procedure
(independent test statistics) has been applied to measure
the concrete differences between all proposed methods. The
Holm-Bonferroni procedure rejects the hypothesis because
the p-value is greater than the adjusted level of confidence
value shown in Table-11. Therefore, we can say that the
statistical tests on proposed clusters demonstrate that our

VOLUME 11, 2023 141885

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

TABLE 10. The Friedman test on Mining erasable item-set MEI and MEIs based on multicore processors pMEI based method for running time.

TABLE 11. The estimation of p-value based on Holm procedure (unadjusted) for post-hoc analysis; TM:Treematch, SS:Socket-span.

method is comparable to both base algorithms [56] and
significantly superior to the remaining existing methods in
terms of running time.

VIII. LIMITATIONS AND FUTURE WORK
Based on conducted research work this paper has some
limitation and need to work in near future. Some of them are
as follows:

• Assumptions: The models and algorithms are rely on
certain assumptions about the behavior of jobs and
resources. If these assumptions do not hold in real-world
scenarios, it could impact the accuracy and reliability of
predictions.

• Dependency Modeling and Real-world Implemen-
tation: The Dependency Modeling and prediction is
a complex task. So, there may always a chance to
explore more about the challenges and limitations of
implementing the proposed algorithms in real-world
HPC systems.

• Benchmarking: The validation of proposed algorithm
is based on some workflow scheduling algorithm, there
are several workflow scheduling algorithms remains
untouched and unexplored.

The further work can be done based on the following
parameters to improve and justify more on this research.

• Auto-tuning of Parameters: Develop automated tech-
niques for tuning the hyperparameters of the proposed
algorithms. This could involve leveraging machine
learning or optimization approaches to find the opti-
mal settings for different HPC scenarios, leading to
improved overall performance.

• Scalability Studies: This research has conducted on
Param shivay Super computer having 1.20 Lacs proces-
sors and 833 TF speed. Still all the computing nodes has
not been used in this research, so there is still a chance
available to conduct in-depth scalability studies to assess
the performance of the algorithms andmodels as the size
of the HPC system and the complexity of workflows
increase.

• Examine Resource Prediction Framework: Further
explore and refine the resource prediction framework.
Consider additional factors and parameters that could
impact resource requirements, such as variations in
network conditions, and devise strategies to enhance the
accuracy of resource predictions.

IX. CONCLUSION
In this paper, we have proposed two algorithms Feature-
based capability prediction Algorithm FBCA and Accuracy
and Relative Runtime Error ARRE for long-range resource
prediction problems. These algorithms are a part of the
intelligent ensemble learning technique. The FBCS algorithm
is proposed to reduce the noise presented in the datasets
whereas the ARRE algorithm is used to improve the
model ability so that the model becomes different from
the traditional model. The experimental setup utilized eight
nodes, each selected from a set of CPU components,
incorporating Nehalem CPU cores, Tesla GPU cores, SC10-
EP, and SC10-EX configurations. The proposed algorithm
demonstrated superior performance in extensive experiments,
showcasing its effectiveness in resource prediction and load
distribution optimization. Parametric experiments revealed

141886 VOLUME 11, 2023

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

that the proposed algorithm, under various parameters,
achieved optimal performancewith a 10-fold cross-validation
at k=10. Performance comparison with different feature
dimensions showcased stability in accuracy, F-1 score, and
absolute root mean error within specific feature dimension
ranges. Comparative analysis against traditional models
(SVM, DT, KNN, Bagging Ensemble) highlighted the supe-
riority of the proposed algorithm. For instance, the proposed
algorithm outperformed SVM and DT with an accuracy of
94.11%, a lower RMSE of 0.06, and a higher F1-score
of 94.68%. Comparative evaluation against major resource
prediction methods (REAP, BN, LR, RF, FNN) underscored
the proposed algorithm’s superiority. In comparison to RF, the
proposed algorithm achieved an accuracy of 91.82%, a lower
RMSE of 0.38, and a higher F1-score of 87.13%. A new
SoS and Phold based resource prediction framework has been
proposed to describe the simulation model and computes the
required resources. The proposed framework has three levels
that automatically predict the computing resources that will
be used for a long-time. Our Experimental result shows that
the proposed algorithm can effectively predict the long-term
resource utilization for scientific computing and achieves
better accuracy from 8% to 18%. The Validation of created
simulation entities, utilizing inter-process communication
and L1-cache memory-based miss ratio techniques, aimed
to identify suitable simulation entities for modern CPUs
and SPEC benchmarks. The Statistical tests, including the
Friedman test and post-hoc procedures, confirmed that the
proposed algorithm is comparable to base algorithms and
significantly superior to other existing methods in terms of
running time. For instance, the AREP method applied to
ensemble sizes demonstrated a gradual increase in ARE until
an ensemble size of 8, indicating saturation beyond that
point. We will use one more method based on incremental
learning in the near future so that our proposed algorithm
will update its predicted model to dynamic changes required
during execution.

REFERENCES
[1] N. M. Upadhyay, R. S. Singh, and S. P. Dwivedi, ‘‘Prediction of multicore

CPU performance through parallel data mining on public datasets,’’
Displays, vol. 71, Jan. 2022, Art. no. 102112.

[2] S. Wang, F. Zhu, Y. Yao, W. Tang, Y. Xiao, and S. Xiong, ‘‘A computing
resources prediction approach based on ensemble learning for complex
system simulation in cloud environment,’’ Simul. Model. Pract. Theory,
vol. 107, Feb. 2021, Art. no. 102202.

[3] V. Mauch, M. Kunze, and M. Hillenbrand, ‘‘High performance cloud
computing,’’ Future Gener. Comput. Syst., vol. 29, no. 6, pp. 1408–1416,
2013.

[4] C. Xiaomeng, Z. H. Bai, H. Yang, Z. Xujian, and Li Bo, ‘‘Runtime
prediction of high-performance computing jobs based on ensemble
learning,’’ in Proc. 4th Int. Conf. High Perform. Compilation, Comput.
Commun., 2020, pp. 56–62.

[5] A. E. Tyas, A. Dharma Wibawa, and M. H. Purnomo, ‘‘Theta, alpha and
beta activity in the occipital based on EEG signals for mental fatigue in
high school students,’’ in Proc. Int. Conf. Smart Technol. Appl. (ICoSTA),
Feb. 2020, pp. 1–7.

[6] D. Segev, ‘‘An approximate dynamic-programming approach to the joint
replenishment problem,’’ Math. Oper. Res., vol. 39, no. 2, pp. 432–444,
May 2014.

[7] N. M. Upadhyay and R. S. Singh, ‘‘An effective scheme for memory
congestion reduction in multi-core environment,’’ J. King Saud Univ.-
Comput. Inf. Sci., vol. 34, no. 6, pp. 3864–3877, Jun. 2022.

[8] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, ‘‘A novel
data-partitioning algorithm for performance optimization of data-parallel
applications on heterogeneous HPC platforms,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 29, no. 10, pp. 2176–2190, Oct. 2018.

[9] R. Neill, A. Drebes, and A. Pop, ‘‘Automated analysis of task-parallel
execution behavior via artificial neural networks,’’ in Proc. IEEE Int.
Parallel Distrib. Process. Symp. Workshops (IPDPSW), May 2018,
pp. 647–656.

[10] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John, ‘‘Measuring program
similarity: Experiments with SPECCPU benchmark suites,’’ inProc. IEEE
Int. Symp. Perform. Anal. Syst. Softw., Mar. 2005, pp. 10–20.

[11] H. Wei, Z. Wang, G. Hua, J. Sun, and Y. Zhao, ‘‘Automatic group-based
structured pruning for deep convolutional networks,’’ IEEEAccess, vol. 10,
pp. 128824–128834, 2022.

[12] S. S. Singh, A. Kumar, K. Singh, and B. Biswas, ‘‘LAPSO-IM: A learning-
based influence maximization approach for social networks,’’ Appl. Soft
Comput., vol. 82, Sep. 2019, Art. no. 105554.

[13] P. Arabas, ‘‘Modeling and simulation of hierarchical task allocation system
for energy-aware HPC clouds,’’ Simul. Model. Pract. Theory, vol. 107,
Feb. 2021, Art. no. 102221.

[14] S. Li, Y. Li, W. Han, X. Du, M. Guizani, and Z. Tian, ‘‘Malicious
mining code detection based on ensemble learning in cloud computing
environment,’’ Simul. Model. Pract. Theory, vol. 113, Dec. 2021,
Art. no. 102391.

[15] F. Yao, Y. Yao, L. Xing, H. Chen, Z. Lin, and T. Li, ‘‘An intelligent
scheduling algorithm for complex manufacturing system simulation with
frequent synchronizations in a cloud environment,’’ Memetic Comput.,
vol. 11, no. 4, pp. 357–370, Dec. 2019.

[16] G. Kaur, A. Bala, and I. Chana, ‘‘An intelligent regressive ensemble
approach for predicting resource usage in cloud computing,’’ J. Parallel
Distrib. Comput., vol. 123, pp. 1–12, Jan. 2019.

[17] R. Shaw, E. Howley, and E. Barrett, ‘‘An energy efficient anti-correlated
virtual machine placement algorithm using resource usage predictions,’’
Simul. Model. Pract. Theory, vol. 93, pp. 322–342, May 2019.

[18] X.-T. Nguyen, T.-T. Hoang, H.-T. Nguyen, K. Inoue, and C.-K. Pham,
‘‘An FPGA-based hardware accelerator for energy-efficient bitmap index
creation,’’ IEEE Access, vol. 6, pp. 16046–16059, 2018.

[19] M. Amiri and L. Mohammad-Khanli, ‘‘Survey on prediction models of
applications for resources provisioning in cloud,’’ J. Netw. Comput. Appl.,
vol. 82, pp. 93–113, Mar. 2017.

[20] N. An, H. Ding, and J. Yang, ‘‘Deep ensemble learning for Alzheimer’s
disease classification,’’ J. Biomed. Informat., vol. 105, Oct. 2020,
Art. no. 103411.

[21] H. Wang, Y.-M. Zhang, J.-X. Mao, and H.-P. Wan, ‘‘A probabilistic
approach for short-term prediction of wind gust speed using ensemble
learning,’’ J. Wind Eng. Ind. Aerodyn., vol. 202, Jul. 2020, Art. no. 104198.

[22] F. Cakir, K. He, S. A. Bargal, and S. Sclaroff, ‘‘Hashing with mutual
information,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 10,
pp. 2424–2437, Oct. 2019.

[23] T. A. Engel, A. S. Charão, M. Kirsch-Pinheiro, and L.-A. Steffenel,
‘‘Performance improvement of data mining in Weka through GPU
acceleration,’’ Proc. Comput. Sci., vol. 32, pp. 93–100, Jan. 2014.

[24] M. S. E. Ipek, B. R. De Supinski, and S. A. McKee, ‘‘An approach
to performance prediction for parallel applications,’’ in Proc. Eur. Conf.
Parallel Process. Cham, Switzerland: Springer, 2005, 196–205.

[25] G. K. Shyam and S. S. Manvi, ‘‘Virtual resource prediction in cloud
environment: A Bayesian approach,’’ J. Netw. Comput. Appl., vol. 65,
pp. 144–154, Apr. 2016.

[26] B. C. Lee and D. M. Brooks, ‘‘Accurate and efficient regression modeling
for microarchitectural performance and power prediction,’’ in Proc. 12th
Int. Conf. Architectural Support Program. Lang. Operating Syst. (ACM),
2006, pp. 185–194.

[27] S. Sharkawi, D. DeSota, R. Panda, R. Indukuru, S. Stevens, V. Taylor,
and X. Wu, ‘‘Performance projection of HPC applications using SPEC
CFP2006 benchmarks,’’ in Proc. IEEE Int. Symp. Parallel Distrib.
Process., May 2009, pp. 1–12.

[28] R. M. Fujimoto, ‘‘Research challenges in parallel and distributed
simulation,’’ ACM Trans. Model. Comput. Simul., vol. 26, no. 4, pp. 1–29,
May 2016.

VOLUME 11, 2023 141887

N. M. Upadhyay et al.: Dependency Prediction of Long-Time Resource Uses in HPC Environment

[29] X. E. Chen and T. M. Aamodt, ‘‘Hybrid analytical modeling of pending
cache hits, data prefetching, and MSHRs,’’ ACM Trans. Archit. Code
Optim., vol. 8, no. 3, pp. 1–28, Oct. 2011.

[30] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, ‘‘A mechanistic
performance model for superscalar out-of-order processors,’’ ACM Trans.
Comput. Syst., vol. 27, no. 2, pp. 1–37, May 2009.

[31] S. Eyerman, K. Hoste, and L. Eeckhout, ‘‘Mechanistic-empirical processor
performance modeling for constructing CPI stacks on real hardware,’’ in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., Apr. 2011, pp. 216–226.

[32] A. Hartstein and T. R. Puzak, ‘‘The optimum pipeline depth for a
microprocessor,’’ in Proc. 29th Annu. Int. Symp. Comput. Archit., 2002,
pp. 7–13.

[33] S. Van den Steen, S. De Pestel, M. Mechri, S. Eyerman, T. Carlson,
D. Black-Schaffer, E. Hagersten, and L. Eeckhout, ‘‘Micro-architecture
independent analytical processor performance and power modeling,’’ in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2015,
pp. 32–41.

[34] S. Van den Steen, S. Eyerman, S. De Pestel, M. Mechri, T. E. Carlson,
D. Black-Schaffer, E. Hagersten, and L. Eeckhout, ‘‘Analytical processor
performance and power modeling using micro-architecture independent
characteristics,’’ IEEE Trans. Comput., vol. 65, no. 12, pp. 3537–3551,
Dec. 2016.

[35] G. M. Weber, ‘‘MATOG: Array layout auto-tuning for CUDA,’’ ACM
Trans. Archit. Code Optim., vol. 14, no. 3, p. 28, 2017.

[36] K. Singh, E. Ipek, S. A. McKee, B. R. de Supinski, M. Schulz, and
R. Caruana, ‘‘Predicting parallel application performance via machine
learning approaches,’’Concurrency Comput., Pract. Exper., vol. 19, no. 17,
pp. 2219–2235, Dec. 2007.

[37] A. Li, X. Zong, S. Kandula, X. Yang, and M. Zhang, ‘‘CloudProphet:
Towards application performance prediction in cloud,’’ in Proc. ACM
SIGCOMM Conf., Aug. 2011, pp. 426–427.

[38] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu, ‘‘Cross-
architecture performance prediction (XAPP) using CPU code to predict
GPU performance,’’ in Proc. 48th Annu. IEEE/ACM Int. Symp. Microar-
chitecture (MICRO), Dec. 2015, pp. 725–737.

[39] X. Zheng, L. K. John, and A. Gerstlauer, ‘‘Accurate phase-level
cross-platform power and performance estimation,’’ in Proc. 53rd
ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2016, pp. 1–6.

[40] X. Zheng, H. Vikalo, S. Song, L. K. John, and A. Gerstlauer, ‘‘Sampling-
based binary-level cross-platform performance estimation,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 1709–1714.

[41] B. Piccart, A. Georges, H. Blockeel, and L. Eeckhout, ‘‘Ranking
commercial machines through data transposition,’’ in Proc. IEEE Int.
Symp. Workload Characterization (IISWC), Nov. 2011, pp. 3–14.

[42] A. Phansalkar, A. Joshi, and L. K. John, ‘‘Analysis of redundancy and
application balance in the SPECCPU2006 benchmark suite,’’ in Proc. 34th
Annu. Int. Symp. Comput. Archit., Jun. 2007, pp. 412–423.

[43] A. Phansalkar, A. Joshi, and L. K. John, ‘‘Subsetting the SPEC CPU2006
benchmark suite,’’ ACM SIGARCH Comput. Archit. News, vol. 35, no. 1,
pp. 69–76, Mar. 2007.

[44] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez,
Z. F. Huang, S. Blagodurov, and V. Kumar, ‘‘HASS: A scheduler for
heterogeneous multicore systems,’’ ACM SIGOPS Operating Syst. Rev.,
vol. 43, no. 2, pp. 66–75, Apr. 2009.

[45] D. Shepelow and A. Fedorova, ‘‘Scheduling on heterogeneous multicore
processors using architectural signatures,’’ in Proc. WIOSCA Workshop
35th Annu. Int. Symp. Comput. Archit., 2008, pp. 1–9.

[46] C. Delimitrou and C. Kozyrakis, ‘‘Paragon: QoS-aware scheduling for
heterogeneous datacenters,’’ in Proc. 18th Int. Conf. Architectural Support
Program. Lang. Operating Syst., vol. 48, 2013, pp. 77–88.

[47] C. Delimitrou and C. Kozyrakis, ‘‘Quasar: Resource-efficient and QoS-
aware cluster management,’’ in Proc. 19th Int. Conf. Architectural Support
Program. Lang. Operating Syst., 2014, pp. 127–144.

[48] K. Hoste, L. Eeckhout, and H. Blockeel, ‘‘Analyzing commercial processor
performance numbers for predicting performance of applications of
interest,’’ in Proc. ACM SIGMETRICS Int. Conf. Meas. Model. Comput.
Syst., Jun. 2007, pp. 375–376.

[49] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and
K. De Bosschere, ‘‘Performance prediction based on inherent program
similarity,’’ in Proc. Int. Conf. Parallel Architectures Compilation Techn.
(PACT), Sep. 2006, pp. 114–122.

[50] S. Haas, T. Karnagel, O. Arnold, E. Laux, B. Schlegel, G. Fettweis, and
W. Lehner, ‘‘HW/SW-database-codesign for compressed bitmap index
processing,’’ in Proc. IEEE 27th Int. Conf. Application-specific Syst.,
Architectures Processors (ASAP), Jul. 2016, pp. 50–57.

[51] N.-P. Tran, M. Lee, and D. H. Choi, ‘‘Memory-efficient parallelization of
3D lattice Boltzmann flow solver on a GPU,’’ inProc. IEEE 22nd Int. Conf.
High Perform. Comput. (HiPC), Dec. 2015, pp. 315–324.

[52] M. Nelson, Z. Sorenson, J. M. Myre, J. Sawin, and D. Chiu, ‘‘GPU
acceleration of range queries over large data sets,’’ in Proc. 6th IEEE/ACM
Int. Conf. Big Data Comput., Appl. Technol., Dec. 2019, pp. 11–20.

[53] A. Lastovetsky and R. R. Manumachu, ‘‘New model-based methods
and algorithms for performance and energy optimization of data parallel
applications on homogeneous multicore clusters,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 4, pp. 1119–1133, Apr. 2017.

[54] R. Huang, L. Ma, J. He, and X. Chu, ‘‘T-GAN: A deep learning
framework for prediction of temporal complex networks with adaptive
graph convolution and attention mechanism,’’ Displays, vol. 68, Jul. 2021,
Art. no. 102023.

[55] B. Huynh and B. Vo, ‘‘An efficient method for mining erasable itemsets
using multicore processor platform,’’ Complexity, vol. 2018, pp. 1–9,
Oct. 2018.

[56] D. Mejri, M. Limam, and C. Weihs, ‘‘A new dynamic weighted majority
control chart for data streams,’’ Soft Comput., vol. 22, no. 2, pp. 511–522,
Jan. 2018.

[57] J. Li, G. Michelogiannakis, B. Cook, D. Cooray, and Y. Chen, ‘‘Analyzing
resource utilization in an HPC system: A case study of NERSC’s
perlmutter,’’ inHigh Performance Computing (Lecture Notes in Computer
Science), vol. 13948. Cham, Switzerland: Springer, 2023.

NAVIN MANI UPADHYAY received the B.E.
and M.Tech in CSE. He is a Ph.D. scholar in
computer science and engineering at IIT(BHU)
Varanasi, India. His research focuses on high-
performance computing, particularly in advancing
computational capabilities.

RAVI SHANKAR SINGH (SeniorMember, IEEE)
received the B.Tech., M.Tech., and Ph.D. degrees
in CSE.

He is currently an Associate Professor with
the Department of Computer Science and Engi-
neering, Indian Institute of Technology (BHU)
Varanasi, Varanasi. More than 50 research papers
has included in his account. His research interests
include high performance computing and cloud
computing.

Dr. Singh is a Senior Member of ACM.

SHRI PRAKASH DWIVEDI received the B.Tech.
degree in IT, the M.Tech. degree in CS and
the Ph.D. degree in CSE. He is currently an
Assistant Professor with the Department of IT, G.
B. Pant University of Agriculture Technologies,
Pantnagar, India. His current research interests
include algorithms, graph matching, and pattern
recognition.

141888 VOLUME 11, 2023

