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Abstract

Cryospray is a process in which liquid nitrogen is sprayed on a superficial cancerous
lesion to achieve necrosis. In order to achieve necrosis through cryospray a combination
of particular cooling rate and lethal temperature is required. The small aperture of single
hole nozzle (SHN) and less mass flow rate associated with it reduce the rate of heat trans-
fer from the lesion. Moreover, the low thermal conductivity of lesion further reduces the
rate of energy diffusion inside it. These limitations associated with the existing method of
cryospray fail to provide complete necrosis in the lesions larger than 15 mm in diameter.

Moreover, a distinctive trend is always observed in the geometry of skin cancer, i.e.
more lateral spread on superficial skin as compared to the penetration depth into the skin.
Cryospray techniques followed in current scenario compels surgeons to use single hole
nozzle to treat skin cancer. The SHN provides less lateral spread compared to penetration
depth, which ultimately lingers the process and the chances of healthy tissue destruction
also increase due to over penetration of cryogen. In this perspective, six multihole nozzles
(MHN) are designed and fabricated to study their influence on cryoablation. It has been
observed through in-vitro study that these customised MHNs can rule out the existing
limitations of cryospray. The designed MHNs are capable enough to treat larger lesions
in terms of lateral spread in one sitting as compared to the existing methods that require
more than one sitting, resulting in a fair amount of discomfort to patients. Several govern-
ing factors of cryoablation like spraying distance, number of holes in the nozzle, margin
among the holes and spray duration are optimised for the MHN. The optimum range of
cooling rate and lethal temperature required for the intracellular ice formation is obtained
upto 15 mm from the centre of spray (on the surface of gel) when MHNSs are employed to
spray cryogen. However, commercial SHN fails to provide such outcomes.

These nozzles (MHNSs) are tested under the in-vivo conditions as well. An in-vivo ex-
periment is performed on healthy male rats (Charles Foster rats) weighing about 150-200
g while the in-vitro experiment is performed on tissue phantom. Single freeze-thaw cycle
(freezing 120 s and thawing 130 s) with a spraying distance of 18 mm is selected for both
the experiments. A comparative study between customised MHN (with 5 holes and mar-
gin 2 mm) and commercial SHN is conducted to analyze the impact of number of holes on
cryoablation in in-vivo conditions. It is an attempt to explore the difference between in-
vivo and in-vitro experiments. The data extracted through thermocouples advocates that
biological factors have negligible impact on cryoablation. However, histopathological re-
sults suggest that in-vivo necrotic zone is larger than the in-vitro necrotic zone; natural
thawing is responsible for such behavior. The area of cryoablation on the surface of rat

skin is 50 % larger when cryogen is sprayed through MHN as compared to SHN.

Xxi



xxii  Abstract

As mentioned above, a combination of particular cooling rate and lethal temperature
is required to achieve necrosis through cryospray. MHNSs used in the study fulfill that re-
quirement upto a depth of 2 mm below the gel surface and in a radius of 10 mm from the
centre of spray when the spraying distance is taken as 18 mm and the duration of spray
is kept constant as 120 s for all the cases. The dimensions of necrotic zone for the same
spray duration and the spraying distance can further be improved with the introduction
of adjuvant in the lesion. Thus, in-vitro experiment to quantify the role of adjuvant in
cryoablation with MHNs is also carried out in the study. A comparative study between
nano-phantom and normal-phantom is conducted to examine the influence of adjuvant
in cryoablation. The most promising adjuvant and MHN for efficient cryoablation are ob-
tained through the study. It is found that Magnesium Oxide nanoparticle provides the
most optimised result with MHN having 5 holes and margin 1.5 mm in terms of cryoabla-
tion. The proposed approach is employed with SHN as well. It has been observed that le-
sions with a surface area of 7.5 cm? and a penetration depth of 2 mm can easily be treated
through the administration of MgO nanoparticles with SHN. On contrary, conventional
technique of cryospray (without administration of adjuvant) can treat lesions with a sur-

face area less than 3.14 cm? with a penetration depth of 2 mm.

The amount of cooling produced by cryogen during the spray depends on its interaction
with the surrounding. Cryogen sprays are different from liquid sprays in which mechani-
cal forces cause the atomisation of liquid. The saturation temperature of cryogens is much
lower than the ambient temperature, therefore flashing occurs in the cryogen as they inter-
act with the surrounding. Flashing causes primary atomisation of the droplets. Also, sec-
ondary break up occurs due to the surface tension of the droplets and velocity difference
between the two phases. Thus, during its (cryogen) flight from nozzle exit to the cooling
surface, cryogen exchanges heat and mass with the surrounding. The experimental and
numerical studies conducted so far in the field of laser dermatology have enhanced the
understanding of this phenomenon but absorbing its full potential in cryospray requires
more research. In this perspective, an Eulerian- Lagrangian mathematical model is devel-
oped to simulate the behavior of cryogen spray.The effect of spraying distance on necrosis
is quantified. The multi-phase flow of cryogen emanating from commercial cryospray
nozzle is validated against the experimental result. The axial depth and radial spread of
ice ball are found to increase by 15 % and 25 % respectively when the spraying distance
is changed from 27 mm to 9 mm. It is also noticed that spray dispersion increases with
the duration of spray. It causes a larger necrotic zone in radial direction than that in the
axial direction with respect to time. It has been observed that the spraying distance of 18

mm is providing the most optimised necrotic zone among the three spraying distances
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considered in the study.
Keywords: Thermal Imaging Camera; Cryospray; Multihole nozzle; Singlehole noz-

zle; Necrotic zone; Nanoparticle; Flashing;
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