
Chapter 5

A numerical solution of a non-classical

Stefan problem with space-dependent

thermal conductivity, variable latent

heat and Robin boundary condition

5.1 Introduction

A one-phase Stefan problem occurs in the phase change process that involves a

diffusion equation and a moving phase front (moving boundary). In this problem,

we require to investigate the temperature distribution in the time-dependent domain

and the movement of the moving boundary. Classical Stefan problems arise in

many daily life problems such as the melting of materials, freezing of liquid, food

preservation, reintegration of metals, oxygen diffusion process, etc. The detailed

studies of the classical Stefan problems were discussed in [3, 99, 100]. In the last few

decades, studies of Stefan problems have gained a great attention due to their non-

linear nature, presence of the time-dependent domain, and wide range of applications

in engineering, biological and industrial processes [178, 179, 180, 145, 147, 181], such

as melting and freezing processes, molecular diffusion process, sedimentation process,

photovoltaic electricity systems, vanishing and spreading of the species, drug-release

process, tumor growth and crystal growth. The applications of Stefan problem can

also be found in the thermal energy storage devices. At present, thermal energy
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storage has become an exciting and valuable area of renewable energy, and some

recent developments in this area can be seen in [182, 183, 184].

Nowadays, apart from the classical Stefan problems, some mathematical models

of non-classical Stefan problems have been formulated, including variable thermal

coefficients or/and variable latent heat. Ceretani et al. [84] have taken temperature-

dependent thermal coefficients for a phase change problem and presented an ana-

lytical solution to the problem. Voller and Falcini [81] have developed two closed

analytical solutions to the one-phase one-dimensional Stefan problem for two dif-

ferent types of space-dependent thermal diffusivity. A Stefan problem with vari-

able latent heat was discussed by Voller et al. [78], they presented an analytical

solution to this problem. A time-fractional Stefan problem with variable latent

heat has also been discussed by Rajeev and Kushwaha [134]. Moreover, in past

decades, the non-classical heat transfer problems for a semi-infinite length material

have been deliberated in [185, 186, 187]. A Stefan problem governed by the non-

classical heat equation with constant thermal coefficients was discussed by Briozzo

and Tarzia [80]. A phase change problem of a non-classical heat equation with

the temperature-dependent thermal coefficients in a semi-infinite domain was dis-

cussed in [165]. Zhou et al. [82] presented a phase change problem including space-

dependent latent heat in their study and established an analytical solution to the

problem. In 2019, Singh et al. [85] presented a Stefan problem including the moving

phase change material (MPCM) and variable thermal coefficients. Font [46] has dis-

cussed the space-dependent thermal conductivity in a one-phase Stefan problem and

the approximate solution to the problem. Kumar and Rajeev [69] also considered

space-dependent thermal conductivity in a Stefan problem with a MPCM, and they

discussed a numerical solution to the problem. Motivated by the above research

articles, a non-classical Stefan problem (moving boundary problem) is considered
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with the following space-dependent thermal conductivity:

κ(z, τ) = κ0

(
1 + δ

z

S(τ)

)
, (5.1)

where κ0 is the constant thermal conductivity, z is the space variable, τ is the time,

S(τ) is the melting front, δ is the positive constant.

From the literature [188, 189], it is found that the analytical solutions to non-linear

partial differential equations (PDE) are limited, and this is the main reason for the

researchers to choose appropriate numerical schemes/numerical simulations. Some

recent papers on numerical techniques or numerical simulations for solving various

PDEs are reported in [190, 191, 192, 193, 194]. The exact solutions to the Stefan

problems are also not easy to establish in the case of variable thermal coefficients

due to the non-linearity of the heat equation in the time-dependent domain. There-

fore, several numerical methods have been developed to solve the Stefan problems

[68, 120]. Besides these numerical techniques, operational matrix methods attract

many researchers to find the approximate solution to the Stefan problem because of

its exponential rate of convergence. In 2020, Kumar and Rajeev [70] presented the

solution to a Stefan problem with the aid of the operational matrix method based

on shifted Chebyshev polynomials. The operational matrix method based on shifted

Legendre polynomials has been applied by Singh et al. [86] to solve a Stefan problem

including MPCM and variable thermal coefficients. In this chapter, an operational

matrix method is used which is based on transformed Genocchi polynomials and

the collocation scheme. Some properties of Genocchi numbers and Genocchi poly-

nomials can be seen in [195, 196, 197]. The operational matrix based on Genocchi

polynomials for the interval [0, 1] has been discussed in [198] and applied to the de-

lay differential equations. In [199], a numerical solution of the non-linear fractional
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differential equation with the help of new operational matrix based on Genocchi

polynomials has also been discussed in the literature.

5.2 Preliminaries

Properties of Genocchi numbers and Genocchi polynomials have been widely dis-

cussed by many researchers in the different mathematical branches; for example

elementary number theory, differential topology, homology number theory, etc. Usu-

ally, the Genocchi number Gm is defined with the aid of the exponential generating

functions [195, 197, 196] as given below:

2y

ey + 1
=

∞∑
m=0

Gm
ym

m!
, (|y| < π). (5.2)

With the help of the exponential generating functions, the classical Genocchi poly-

nomials [195, 199] Gm(z) is stated as

2yezy

ey + 1
=

∞∑
m=0

Gm(z)
ym

m!
, (|y| < π). (5.3)

The Genocchi polynomial Gm(z) of degree m− 1 on the interval [0, 1] is given by

Gm(z) =
m∑
k=0

mCkGkz
m−k. (5.4)

where Gk is the Genocchi number.
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In order to use these polynomials in the interval [0, λ], the transformation z = x
λ

is

introduced and the transformed Genocchi polynomials G∗
m(x) becomes

G∗
m(x) =

m∑
k=0

mCkGk

(x
λ

)m−k

. (5.5)

The first few transformed Genocchi polynomials defined on the interval [0, λ] are

given below:

G∗
1(x) = 1,

G∗
2(x) = 2

(x
λ

)
− 1,

G∗
3(x) = 3

(x
λ

)2
− 3
(x
λ

)
,

G∗
4(x) = 4

(x
λ

)3
− 6
(x
λ

)2
+ 1,

G∗
5(x) = 5

(x
λ

)4
− 10

(x
λ

)3
+ 5
(x
λ

)
.

The derivative of (5.5) with respect to x gives us

dG∗
m

dx
=
mG∗

m−1

λ
, m ⩾ 1. (5.6)

Now, the vector form of transformed Genocchi polynomials G∗(x) is taken as

G∗(x) = [G∗
1(x), G∗

2(x), · · · , G∗
M(x)].

According to Isah and Phang [198], the kth derivative of vector G∗(x) is given by

G∗(k)(x) = G∗(x)(DT )
k
, (5.7)
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where

D =
1

λ



0 0 0 0 . . . 0 0 0

2 0 0 0 . . . 0 0 0

0 3 0 0 . . . 0 0 0

0 0 4 0 . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . M − 1 0 0

0 0 0 0 . . . 0 M 0



and [G∗(k)(x)]T =



G∗
1
(k)(x)

G∗
2
(k)(x)

G∗
3
(k)(x)

G∗
4
(k)(x)

...

G∗
M−1

(k)(x)

G∗
M

(k)(x)



.

Now, let us assume that a square integrable function h(x) defined on [0, λ] can be

expressed as the linear sum of first M terms of the transformed Genocchi polynomial

G∗(x). Thus, the following can be written as

h(x) =
M∑

m=1

CmG
∗
m(x) = G∗(x)C, (5.8)

where the constant vector C is given by CT = [C1, C2, · · · , CM ] and the kth derivative

of h(x) is expressed as

h(k)(x) = G∗(x)(DT )
k
C. (5.9)
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5.3 Mathematical formulation and its solution

5.3.1 Mathematical model

Here, a non-classical one-phase Stefan problem ([165, 82, 69]) is considered in a semi-

infinite range in one-dimensional corresponding to the melting process with space-

dependent thermal conductivity, variable latent heat and Robin boundary condition

at the fixed boundary z = 0. The mathematical formulation of the problem is given

below:

ρc
∂U

∂τ
=

∂

∂z

(
κ(z, τ)

∂U

∂z

)
+

ζ0√
τ

∂U

∂z
(0, τ),

0 < z < S(τ), τ > 0, (5.10)

κ(0, τ)
∂U

∂z
(0, τ) =

h√
τ

(U(0, τ) − U∞τ
α/2), (5.11)

U(S(τ), τ) = 0, (5.12)

κ(S(τ), τ)
∂U

∂z
(S(τ), τ) = −γSα(τ)

dS

dτ
, (5.13)

S(0) = 0, (5.14)

where U is the temperature distribution in 0 < z < S(τ), κ is the space-dependent

thermal conductivity as given in Eq. (5.1), τ is the time, U∞τ
α/2 characterizes the

surrounding temperature at the fixed face z = 0 with the positive constant α, h

represents the convective heat transfer coefficient, c is the specific heat capacity, ρ

is the density of the material, ζ0 is the given positive constant and the dimension of

ζ0 is given by MK−1T−5/2. γzα(τ) is the space dependent latent heat with γ as a

real constant.
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5.3.2 Similarity transform

In this section, first, the following similarity variables are introduced to transform

the Eqs. (5.10)-(5.14) into a system of ordinary differential equations:

U(z, τ) = U∞τ
α/2Ψ(η), η =

z

2
√
ντ
, (5.15)

and let us take the melting front as

S(τ) = 2ξ
√
ντ , (5.16)

where ν is the thermal diffusivity given by ν = κ0

ρc
and ξ is a positive constant. From

Eq.(5.15) and Eq. (5.16), the system (5.10)-(5.14) reduces to

d

dη

((
1 + δ

η

ξ

)dΨ

dη

)
+ 2η

dΨ

dη
+ 2ζ

dΨ

dη
(0) − 2αΨ(η) = 0, 0 < η < ξ, (5.17)

dΨ

dη
(0) = 2Bi(Ψ(0) − 1), (5.18)

Ψ(ξ) = 0, (5.19)

dΨ

dη
(ξ) = − 2α+1ξα+1

Ste(1 + δ)
, (5.20)

where ζ = ζ0
ρc

√
ν

is a dimensionless number, generalized Biot number Bi = h
√
ν

κ0
and

the generalized Stefan number Ste = κ0U∞
να/2+1γ

.

5.3.3 Operational matrix method with collocation scheme

This section consists the solution of the problem (5.17)-(5.20) by using the oper-

ational matrix of differentiation based on the transformed Genocchi polynomials.
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First, the function Ψ(η) is approximated as

Ψ(η) = θ(η)C, (5.21)

where the transformed Genocchi vector θ(η) and coefficient vector C are given by

θ(η)=[G∗
1(η), G∗

2(η), · · · , G∗
M(η)] and CT=[C1, C2, · · · , CM ], respectively.

Hence the Eq. (5.9) gives

dΨ

dη
= θ(η)DTC and

d2Ψ

dη2
= θ(η)(DT )2C. (5.22)

Now, after substituting the Eqs. (5.21) and (5.22) in the Eq. (5.17), the following

residual corresponding to the Eq. (5.17) can be obtained:

RM(η) =
(

1 + δ
η

ξ

)
θ(η)(DT )2C +

(
2η +

δ

ξ

)
θ(η)DTC

+ 2ζθ(0)DTC− 2αθ(η)C. (5.23)

After collocating the RM at the collocation points ηj = j
M−2

, where, j = 1, 2, ...,M−

2, (M − 2) algebraic equations with (M + 1) unknowns can be found.

Next, substituting the Eqs. (5.21) and (5.22) into the Eqs. (5.18)-(5.20), we get the

following three equations:

θ(0)DTC = 2Bi(θ(0)C− 1), (5.24)

θ(ξ)C = 0, (5.25)

θ(ξ)DTC = − 2α+1ξα+1

Ste(1 + δ)
. (5.26)

Therefore, Eq. (5.23) and Eqs. (5.24)-(5.26) generate (M + 1) nonlinear algebraic
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equations with (M + 1) unknowns that can be easily solved to get the unknown

constant vector C and ξ. Consequently, with the help of Eqs. (5.15) and (5.16), the

temperature distribution U(z, τ) in the molten region 0 < z < S(τ) and the location

of moving melting front S(τ) can be determined.

5.4 Results and discussions

To the best of our knowledge, the analytic solution to the problem (5.10)-(5.14) has

not yet been derived for non-zero δ. According to [99, 100], the analytical solution

to the problem (5.10)-(5.14) for the particular case δ = 0, α = 0 and ζ = 0 is given

by

U(z, τ) = U∞

Bi
√
π
(
erf(ξ) − erf( z

2
√
ντ

)
)

1 +Bi
√
πerf(ξ)

,

0 < z < S(τ), τ > 0, (5.27)

S(τ) = 2ξ
√
ντ . (5.28)

The value of ξ can be determined by the following equation:

2ξ

Ste
− 2Bie−ξ2

1 +Bi
√
πerf(ξ)

= 0. (5.29)

To show the accuracy of the proposed method, the results of the operational ma-

trix method and finite difference technique are compared with the analytic solution

(5.27)-(5.29) for the particular case (δ = 0, α = 0 and ζ = 0) of (5.10)-(5.14). The

most common problem in looking for a numerical solution to the Stefan problem

is how to discretize the moving domain that changes over time. To resolve this is-

sue, it is necessary to define a new space variable that changes the variable domain
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into a certain domain. This method is known as the front-fixing method and the

transformation is called Landau-type transformation which is given below:

Φ(x, τ) =
U(z, τ)

U∞τα/2
, x =

z

S(τ)
. (5.30)

After using the transformation (5.30), the moving space domain converts to 0 < x <

1 and Eqs. (5.10)-(5.14) becomes

∂Φ

∂τ
=
ν(1 + δx)

S2(τ)

∂2Φ

∂x2
+

νδ

S2(τ)

∂Φ

∂x
+

x

S(τ)

dS

dτ

∂Φ

∂x

− α

2τ
Φ(x, τ) +

ζ
√
ν

S(τ)
√
τ

∂Φ

∂x
(0, τ), (5.31)

∂Φ

∂x
(0, τ) =

BiS(τ)√
ντ

(Φ(0, τ) − 1), (5.32)

Φ(1, τ) = 0, (5.33)

∂Φ

∂x
(1, τ) =

−Sα+1

Ste(1 + δ)να/2+1τα/2
dS

dτ
, (5.34)

S(0) = 0. (5.35)

Now a forward time central space method is used to discretize the Eq. (5.31) which

produces

Φn+1
i =Φn

i+1

(
kν(1 + δxi)

h2Sn2
+

kνδ

2hSn2
− Ste(kν)α/2+1nα/2xi

4h2

(1 + δ)(Φn
N−2 − 4Φn

N−1)

Snα+2

)
+ Φn

i

(
1 − α

2n
− 2kν(1 + δxi)

h2Sn2

)

+ Φn
i−1

(
kν(1 + δxi)

h2Sn2
− kνδ

2hSn2
+
Ste(kν)α/2+1nα/2xi

4h2

(1 + δ)(Φn
N−2 − 4Φn

N−1)

Snα+2

)
+
Biζ(Φn

0 − 1)

n(1 + δxi)
,

0 ⩽ i ⩽ N, n ⩾ 0. (5.36)
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For i = 0, the space derivative of Eq. (5.32) is approximated by central difference

as given below

Φn
−1 = Φn

1 −
2hBiSn(Φn

0 − 1)√
knν

. (5.37)

The Eq. (5.37) is used in the Eq. (5.36) to eliminate the fictitious value of Φ−1

from (5.36). The space derivative of Eq. (5.34) is discretized by Euler’s three point

backward difference and time derivative is discretized by forward difference which

gives us

Sn+1 = Sn −
Ste(kν)α/2+1nα/2(1 + δ)(Φn

N−2 − 4Φn
N−1)

Snα+1 . (5.38)

The approximation (5.36) is consistent with O(k) + O(h2) and stable under the

condition

k ⩽
h2Z

2ν
, (5.39)

in the particular case (δ = 0, α = 0 and ζ = 0, where Z(t) = S2(t)) [120].

For the particular case, two tables are presented to show the accuracy of the proposed

scheme. In Table 5.1, the relative errors of the temperature distribution obtained

by the finite difference method (FDM) and proposed Genocchi operational matrix

method (GOMM) are shown for the particular case of the problem (5.10)-(5.14) at

time τ = 10 s, ν = 1 m2s−1, U∞ = 10 K for three different values of Bi and Ste,

i.e. ((Bi = 0.5, Ste = 1.0), (Bi = 0.5, Ste = 0.5), (Bi = 1.0, Ste = 0.5)). Table

5.2 presents the relative errors of the finite difference method and the Genocchi

operational matrix method with the analytical solution (5.28)-(5.29) for the moving

melting front at δ = 0, α = 0, ζ = 0 and ν = 1 m2s−1 for the earlier three cases
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((Bi = 0.5, Ste = 1.0), (Bi = 0.5, Ste = 0.5), (Bi = 1.0, Ste = 0.5)). From

Tables 5.1-5.2, it can be easily seen that the solution determined by the Genocchi

operational matrix method is more accurate than the finite difference technique.

Figs. 5.1 and 5.2 are plotted to validate the correctness of the proposed numerical

algorithms (GOMM) for a particular case of our model. Fig. 5.1 depicts the de-

pendence of log10|error| on the degree of Genocchi polynomials for Ψ(η) obtained

by GOMM at the parameters δ = 0, α = 0, ζ = 0, Ste = 0.5, Bi = 0.5, ν = 1

m2s−1 and η = 0.2. In Fig. 5.2, the dependence of log10|error| on the degree of

Genocchi polynomials is shown at δ = 0, α = 0, ζ = 0, Ste = 0.5, Bi = 0.5 and

ν = 1 m2s−1 for the moving phase change factor (ξ). From these figures, it is nu-

merically shown that the proposed algorithm converges rapidly when we enhance

the degree of Genocchi polynomials or order of the considered operational matrix of

differentiation.

Next, the considered problem (5.10)-(5.14) is solved by GOMM, and the results

are presented through four figures (Figs.5.3-5.6), which show the effects of variable

thermal conductivity and variable latent heat on the phase change processes. Fig.

5.3 and 5.4 are plotted at the parameters α = 1, ζ = 1, Ste = 1.5, Bi = 0.75 and

ν = 0.5 m2s−1 for different values of δ (δ = 0, 1, 2, 3) for the temperature profile and

moving phase front, respectively. From Fig. 5.3, it is observed that the temperature

is maximum at z = 0 and continuously decreases to zero at the melting phase front.

Moreover, the temperature in the molten region decreases as we increase the values

of δ. Fig. 5.4 shows that the movement of melting front accelerates as we increase

the parameter δ. Hence, the parameter δ affects the melting process, and the melting

process enhances as the parameter δ increases. Figs. 5.5 and 5.6 are drawn at the

parameters δ = 1, ζ = 1, Ste = 0.5, Bi = 0.5 and ν = 1 m2s−1 for different α

(α = 0, 1, 2, 3) to show the effects of α on the temperature profile and the location of
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moving phase front, respectively. In Fig. 5.5, the trends of the temperature profiles

are reversed to the temperature profiles of Fig. 5.3, i.e., the temperature in the

molten region increases with the increment of α. From Fig. 5.6, it can be seen

that the speed of melting front increases as we enhance the value of α. Hence, the

parameter α affects the melting process, and this process becomes fast as the value

of α increases.
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Figure 5.1: Convergence of approximation of temperature Ψ(η).
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Table 5.1: Comparison of relative error between FDM and GOMM for temper-
ature distribution at α = 0, δ = 0, ζ = 0, ν = 1 m2s−1 and τ = 10 s for different

parameters.

S.No. Parameters x Relative ErrorFDM Relative ErrorGOMM

1 0.0 2.04141×10−2 1.09658×10−4

0.1 2.05073×10−2 1.19718×10−4

0.2 2.05653×10−2 1.19902×10−4

0.3 2.05877×10−2 1.16736×10−4

0.4 2.05745×10−2 1.13819×10−4

Bi = 0.5 0.5 2.05256×10−2 1.11873×10−4

Ste = 1.0 0.6 2.04411×10−2 1.08785×10−4

0.7 2.03214×10−2 9.96417×10−5

0.8 2.01667×10−2 7.67576×10−5

0.9 1.99777×10−2 2.97005×10−5

1.0 0.000000 0.000000

2 0.0 6.06276×10−2 1.65683×10−5

0.1 6.07349×10−2 1.78551×10−5

0.2 6.08037×10−2 1.78441×10−5

0.3 6.08339×10−2 1.78388×10−5

0.4 6.08255×10−2 1.69605×10−5

Bi = 0.5 0.5 6.07784×10−2 1.66554×10−5

Ste = 0.5 0.6 6.06928×10−2 1.61912×10−5

0.7 6.05686×10−2 1.49108×10−5

0.8 6.04061×10−2 1.17830×10−5

0.9 6.02056×10−2 5.40268×10−6

1.0 0.000000 0.000000

3 0.0 1.53753×10−2 4.92444×10−5

0.1 1.54380×10−2 5.50575×10−5

0.2 1.54798×10−2 5.51639×10−5

0.3 1.55003×10−2 5.33326×10−5

0.4 1.54996×10−2 5.16465×10−5

Bi = 1.0 0.5 1.54775×10−2 5.05203×10−5

Ste = 0.5 0.6 1.54342×10−2 4.87315×10−5

0.7 1.53697×10−2 4.34072×10−5

0.8 1.52842×10−2 3.00619×10−5

0.9 1.51780×10−2 2.59273×10−6

1.0 0.000000 0.000000
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Table 5.2: Comparison of relative error between FDM and GOMM for moving
front at α = 0, δ = 0, ζ = 0 and ν = 1 m2s−1 for different parameters.

S.No. Parameters T ime τ/s Relative ErrorFDM Relative ErrorGOMM

1 1 1.03836×10−1 2.96778×10−6

2 6.81695×10−2 1.48389×10−6

3 5.32988×10−2 1.33550×10−6

4 4.47807×10−2 1.18711×10−6

5 3.91118×10−2 1.03872×10−6

Bi = 0.5 6 3.50303×10−2 8.90333×10−7

Ste = 1.0 7 3.19106×10−2 7.41944×10−7

8 2.94479×10−2 5.93555×10−7

9 2.74319×10−2 4.45166×10−7

10 2.57493×10−2 2.96778×10−7

2 1 2.21878×10−1 1.19408×10−6

2 1.57516×10−1 3.52646×10−6

3 1.27809×10−1 3.92424×10−6

4 1.09883×10−1 3.24104×10−6

Bi = 0.5 5 9.75975×10−2 3.24458×10−6

Ste = 0.5 6 8.85186×10−2 3.00438×10−6

7 8.14654×10−2 9.05068×10−6

8 7.57869×10−2 7.05340×10−5

9 7.10910×10−2 3.65669×10−6

10 6.7126×10−2 6.82258×10−6

3 1 8.36470×10−2 2.33565×10−5

2 5.57874×10−2 2.57735×10−5

3 4.37232×10−2 2.53300×10−5

4 3.66994×10−2 2.50656×10−5

Bi = 1.0 5 3.20051×10−2 2.48852×10−5

Ste = 0.5 6 2.86030×10−2 2.47520×10−5

7 2.60017×10−2 2.46485×10−5

8 2.39353×10−2 2.45650×10−5

9 2.22463×10−2 2.44959×10−5

10 2.08348×10−2 2.44374×10−5
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Figure 5.2: Convergence of approximation of ξ.
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Figure 5.3: Effect of δ on temperature profile (U(z, τ)) at τ = 5.
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Figure 5.4: Effect of δ on moving phase front S(τ).
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Figure 5.5: Effect of α on temperature profile (U(z, τ)) at τ = 5.
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Figure 5.6: Effect of α on the evolution of moving phase front S(τ).

5.5 Conclusions

This chapter presents a mathematical model of a non-classical Stefan problem that

includes the convective boundary condition, variable latent heat and space-dependent

thermal conductivity. The collocation method with the aid of the operational ma-

trix of Genocchi polynomials is applied to solve the proposed non-classical Stefan

problem. For a particular case of the model, relative errors of the Genocchi opera-

tional matrix method (GOMM) and finite difference method (FDM) are shown in

the tables. From the tables, it is found that the maximum percentage error of tem-

perature for GOMM and FDM are 0.011902 % and 6.0833 %, respectively, which

shows that the proposed GOMM is more accurate than the FDM for solving the

Stefan problems. It is also observed that boundary fixation is the main fundamental

problem when we use FDM to find the numerical solution of the Stefan problems.

But, there is no need of boundary fixation in the case of GOMM,and this is an extra
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advantage of GOMM over FDM. Moreover, the accuracy of the solution by GOMM

for the Stefan problem improves as the order of the operational matrix or degree of

Genocchi polynomials increases. Therefore, the proposed algorithm (GOMM) is a

simple, reliable and accurate scheme to solve the non-classical Stefan problems. It

is believed that the proposed approach will be a beneficial tool for the researchers

working in this area. From this study, it is also observed that the parameters α

and/or δ accelerate the speed of moving phase front. Hence, these parameters influ-

ence the phase change processes. Therefore, the manufacturers or researchers can

control the phase change process by the parameters α and/or δ.

***********


	5 A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition
	5.1 Introduction
	5.2 Preliminaries
	5.3 Mathematical formulation and its solution
	5.3.1 Mathematical model
	5.3.2 Similarity transform
	5.3.3 Operational matrix method with collocation scheme

	5.4 Results and discussions
	5.5 Conclusions


