
Chapter 3

A moving boundary problem with

space-fractional diffusion logistic pop-

ulation model and density-dependent

dispersal rate

3.1 Introduction

A diffusion logistic population model including a moving boundary is one of the

interesting moving boundary problems (Stefan problem) which deals with the study

of spreading and vanishing of the species. In our ecological system, the case of

spreading or vanishing of the species is a remarkable topic and several studies have

been performed by many researchers to understand this natural phenomenon. Some

of them are deliberated in [126, 127, 128]. In ecology, most of the mathematical

models are based on presumption and usually, only a few empirical data are avail-

able to verify the models. In most of the cases, it is difficult and costly to collect

useful field data by covering the vast areas. Due to these facts, the mathematical

formulations of ecological problems are complicated. But, the mathematical formu-

lation of a diffusion logistic population problem attracts many researchers and some

notable achievement has been received to understand spreading and vanishing of

the species through the model analogous to the classical moving boundary problem
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[129, 130, 131, 132, 133]. The basic assumptions of these models are a thin tailed

period of inactivity and thin tailed space for spreading/vanishing of the species.

Besides the classical problems, some processes occurring in nature that cannot be

modelled with the aid of Fick’s and Fourier’s laws. Therefore, many models including

fractional derivatives have been received in recent years for the different physical

phenomenon like sediment transport problem [134], melting and freezing problem

[135], the problem of drug release from polymer matrix [136], etc. The assumption

of the formulation of these models is that the flux for some moment at a certain

point depends on the distribution of the physical quantities at that point as well

as the other points and their history. Gao et al. [136] discussed a problem with a

moving boundary including space-fractional derivative in drug release devices and

discussed a numerical solution of the problem by finite difference method. Some

remarkable research associated with logistic model including fraction derivatives

are also available in the literature [137, 138]. In this study, these facts inspire

us to consider the space-fractional diffusion logistic population model. Recently,

moving boundary problems with variable diffusivity have attracted many researchers

[46, 111]. Kumar et al. [88] and Singh et al. [112] also discussed the models of moving

boundary problems with variable thermal conductivity and heat capacity.

Motivated by the previous observations, the diffusive logistic population model with

space derivative of fractional order is considered here to understand the spreading as

well as the vanishing of invasive species. Moreover, it is assumed that the dispersal

rate is of variable type, which depends on population density, and the expression

of the dispersal rate is considered with the aid of Ims and Andreassen [139]. In

this study, a numerical solution to the proposed model is presented with the help

of the finite difference scheme with its stability and consistency criteria. In moving

boundary problem, the presence of moving front and nonlinear nature makes it
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difficult to establish its exact solution in many complex cases. Therefore, many

approaches have been developed to find numerical solutions of such mathematical

models and some of them are given in [99, 118, 123, 140]. In 2015, Lee et al. [141]

discussed a numerical approach to a moving boundary problem which is a velocity-

based moving mesh method. But, the numerical approaches also need a special

caution to handle moving boundary problems. For some cases, very small mesh

size and/or time step size are required to get a desired accuracy of the solutions

[67]. Recently, Piqueras et al. [125] presented a numerical solution to a moving

boundary problem associated with diffusion logistic population model. Liu et al.

[142] discussed some numerical solutions of a class of reaction–diffusion equations

including Stefan conditions. Zheng et al. [143] also presented a numerical solution

to a time fractional reaction-diffusion model including a moving boundary. The

numerical solution of fractional differential equation by finite difference scheme can

also be seen in [144].

3.2 Mathematical Model

Motivated by [136, 125], the diffusive logistic population model with space derivative

of fractional order and density-dependent dispersal rate is considered to understand

the spreading as well as the vanishing of invasive species. The formulation of the

problem is given below:

∂U

∂τ
−𭟋(U) C

0D
α
zU(z, τ) = U(a− bU), τ > 0, 0 < z < H(τ), 1 < α ⩽ 2, (3.1)

∂U

∂z
(0, τ) = 0, (3.2)
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U(H(τ), τ) = 0, (3.3)

dH

dτ
= −µC

0D
α−1
z U(H(τ), τ), (3.4)

H(0) = H0, U(z, 0) = U0(z) > 0, 0 ⩽ z ⩽ H0, (3.5)

where U is the population density, τ is time, 𭟋 is density dependent dispersal rate,

H(τ) is moving boundary, µ is a non-negative parameter, a and b are positive con-

stants. Here, the density-dependent dispersal rate [139] is considered as

𭟋(U) =
exp(c+ dU)

1 + exp(c+ dU)
, (3.6)

where c and d are constants.

Here, U0(z) is taken as an initial function which satisfies the following condition:

U0(z) ∈ C2([0, H0]),
∂U0

∂z
(0) = U0(H0) = 0, 0 ⩽ z < H0. (3.7)

3.3 Numerical solution of the problem

First, the moving domain [0, H(τ)] is converted into the fixed domain [ 0 ,1] by

using the following Landau-type transformation [99] and Property 3 of Caputo

derivative:

W (x, t) = U(z, τ), x =
z

H(τ)
, t = τ, (3.8)

∂U

∂τ
=
∂W

∂t
− x

H(t)

dH

dt

∂W

∂x
, (3.9)
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C
0D

α
zU(z, τ) =

1

Hα(t)
C
0D

α
xW (x, t), (3.10)

C
0D

α−1
z U(z, τ) =

1

Hα−1(t)
C
0D

α−1
x W (x, t). (3.11)

Under the transformation (3.8) and by using (3.9)-(3.11), the Eqs. (3.1)-(3.5) reduce

to the following system:

∂W

∂t
=

x

H(t)

dH

dt

∂W

∂x
+
F (W )

Hα(t)
C
0D

α
xW (x, t) +W (a− bW ), 0 < x < 1, 1 < α ⩽ 2,

(3.12)

∂W

∂x
(0, t) = 0, (3.13)

W (1, t) = 0, (3.14)

dH

dt
= − µ

Hα−1(t)
C
0D

α−1
x W (1, t). t > 0, (3.15)

The initial conditions (3.5), variable dispersal rate (3.6) and Eq. (3.7) are trans-

formed as

H(0) = H0, W (x, 0) = W0(x) = U0(xH0), 0 ⩽ x ⩽ 1, (3.16)

𭟋(W ) =
exp(c+ dW )

1 + exp(c+ dW )
, (3.17)

and

W0(x) ∈ C2([0, 1]),
∂W0

∂x
(0) = W0(1) = 0, 0 ⩽ x < 1, (3.18)

respectively.

Now, the step size of time discretization is considered as k = ∆t and space dis-

cretization h = ∆x = 1
N

, where N is positive integer. The mesh points are taken as
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(xi, t
n), where xi = ih, 0 ⩽ i ⩽ N and tn = nk, n ⩾ 0. The approximate value of

W (x, t) at mesh point (xi, t
n) is denoted as W n

i , the approximate value of H(t) at

tn is taken as Hn and also F (W n
i ) = F n

i .

Let us approximate the time derivative and space derivative as

∂W (xi, t
n)

∂t
≈ W n+1

i −W n
i

k
, (3.19)

dH(tn)

dt
≈ Hn+1 −Hn

k
, (3.20)

∂W (xi, t
n)

∂x
≈
W n

i+1 −W n
i−1

2h
. (3.21)

The first order approximation for the fractional order derivative [144] is considered

as

C
0D

α
xW (xi, t

n) =
1

Γ(2 − α)

� xi

0

∂2W (x′, tn)

∂x′2
dx′

(xi − x′)α−1
=

1

Γ(2 − α)� xi

0

∂2W (xi − x′, tn)

∂x′2
dx′

x′α−1
=

1

Γ(2 − α)

i−1∑
j=0

� xj+1

xj

∂2W (xi − x′, tn)

∂x′2
dx′

x′α−1

≈ 1

Γ(2 − α)

i−1∑
j=0

An
ij

h2

� xj+1

xj

dx′

x′α−1
=

(h)−α

Γ(3 − α)

i−1∑
j=0

ejA
n
ij. (3.22)

C
0D

α−1
x W (xi, t

n) =
1

Γ(2 − α)

� xi

0

∂W (x′, tn)

∂x′
dx′

(xi − x′)α−1
=

1

Γ(2 − α)� xi

0

∂W (xi − x′, tn)

∂x′
dx′

x′α−1
=

1

Γ(2 − α)

i−1∑
j=0

� xj+1

xj

∂W (xi − x′, tn)

∂x′
dx′

x′α−1

≈ 1

Γ(2 − α)

i−1∑
j=0

Bn
ij

h

� xj+1

xj

dx′

x′α−1
=

(h)−α+1

Γ(3 − α)

i−1∑
j=0

ejB
n
ij. (3.23)

where ej = [(j + 1)2−α − j2−α], An
ij = W (xi − xj+1, t

n) − 2W (xi − xj, t
n) + W (xi −
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xj−1, t
n), Bn

ij = W (xi − xj, t
n) −W (xi − xj−1, t

n), 1 < α ⩽ 2.

From Eqs.(3.19)-(3.22), the Eq.(3.12) is approximated as

W n+1
i −W n

i

k
− xi
Hn

(Hn+1 −Hn

k

)(W n
i+1 −W n

i−1

2h

)
− 𭟋n

i h
−α

(Hn)αΓ(3 − α)
i−1∑
j=0

ej((W
n
i−j+1 − 2W n

i−j +W n
i−j−1)) = W n

i (a− bW n
j ),

n ⩾ 0, 0 ⩽ i ⩽ N − 1, (3.24)

which can be rearranged as

W n+1
i =

[ k𭟋n
i h

−α

(Hn)αΓ(3 − α)
+

xi
Hn

(Hn+1 −Hn

2h

)]
W n

i−1 +
[
1 + k(a− bW n

i )

− 2k𭟋n
i h

−α

(Hn)αΓ(3 − α)

]
W n

i +
[ k𭟋n

i h
−α

(Hn)αΓ(3 − α)
− xi
Hn

(Hn+1 −Hn

2h

)]
W n

i+1

+
𭟋n

i h
−α

(Hn)αΓ(3 − α)

i−1∑
j=1

ei(W
n
i−j+1 − 2W n

i−j +W n
i−j−1),

n ⩾ 0, 0 ⩽ i ⩽ N − 1, (3.25)

Eqs. (3.13) and (3.14), respectively become

W n
1 −W n

0

h
= 0, (3.26)

and

W n
N = 0. (3.27)
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Using first order forward difference approximation for time derivative and Eq.(3.23)

for space discretization, the Stefan condition (3.15) becomes

Hn+1 −Hn

k
=

−µ
(Hn)α−1

(h)−α+1

Γ(3 − α)

N−1∑
j=0

ei(W
n
N−i −W n

N−i−1)), n ⩾ 0, (3.28)

The Eq.(5.37) can be rewritten as

Hn+1 = Hn+
µk

(Hn)α−1

(h)−α+1

Γ(3 − α)

(
W n

N−1−
N−1∑
j=1

ei(W
n
N−i−W n

N−i−1))
)
, n ⩾ 0. (3.29)

Now, using Eq.(3.29) in the Eq.(3.25), we have

W n+1
i = aniW

n
i−1 + bniW

n
i + cniW

n
i+1 +

kµxih
−α

2(Hn)αΓ(3 − α)

N−1∑
j=1

ej(W
n
N−j −W n

N−j−1)

(W n
i−1 −W n

i+1) +
k𭟋n

i h
−α

(Hn)αΓ(3 − α)

i−1∑
j=1

ej(W
n
i−j+1 − 2W n

i−j +W n
i−j−1), (3.30)

where

ani =
[ k𭟋n

i h
−α

(Hn)αΓ(3 − α)
− kµxih

−α

2(Hn)αΓ(3 − α)
W n

N−1

]
,

(3.31)

bni =
[
1 + k(a− bW n

i ) − 2k𭟋n
i h

−α

(Hn)αΓ(3 − α)

]
, (3.32)

cni =
[ k𭟋n

i h
−α

(Hn)αΓ(3 − α)
+

kµxih
−α

2(Hn)αΓ(3 − α)
W n

N−1

]
, n ⩾ 0, 1 ⩽ i ⩽ N − 1. (3.33)

3.4 Consistency

The consistency of a numerical technique depends upon the problem [118, 125],

therefore, here the consistency of the numerical scheme for the considered problem is
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discussed. A finite difference method is consistent with a partial differential equation

when truncation error goes to zero as step-size approaches to zero.

The vector form of Eqs.(3.12)-(3.16) is denoted as

X (Y(x, t),H(t)) = (X1(Y(x, t),H(t)),X2(Y(x, t),H(t)),X3(Y(x, t),H(t))), (3.34)

where

X1(Y ,H) =
∂Y
∂t

− x

H(t)

dH
dt

∂Y
∂x

− 𭟋(Y)

Hα(t)
C
0D

α
xY(x, t)

− Y(a− bY) = 0, t > 0, 0 < x < 1, 1 < α ⩽ 2 (3.35)

X2(Y ,H) =
∂W

∂x
(0, t) = 0, t > 0, (3.36)

X3(Y ,H) =
dH
dt

+
µ

Hα−1(t)
C
0D

α−1
x Y(1, t), t > 0. (3.37)

The vector form of the difference scheme Eqs. (3.24), (3.26) and (3.28) are denoted

and defined as

X(W,H) = (X1(W,H), X2(W,H), X3(W,H)), (3.38)

where X1, X2 & X3 are defined at mesh point (xi, t
n) as

X1(W
n
i , H

n) =
W n+1

i −W n
i

k
− xi
Hn

(Hn+1 −Hn

k

)(W n
i+1 −W n

i−1

2h

)
+

𭟋n
i h

−α

(Hn)αΓ(3 − α)

i∑
j=0

ei(W
n
i−j+1 − 2W n

i−j +W n
i−j−1)

−W n
i (a− bW n

j ), n ⩾ 0, 0 ⩽ i ⩽ N − 1, (3.39)
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X2(W
n
i , H

n) =
W n

1 −W n
0

h
= 0, (3.40)

X3(W
n
i , H

n) =
Hn+1 −Hn

k
+

µ

(Hn)α−1

(h)−α+1

Γ(3 − α)

N−1∑
j=0

ej(W
n
N−j −W n

N−j−1)),

n ⩾ 0. (3.41)

According to [118] and [125], the local truncation error En
i (Y ,H) is defined as

En
i (Y ,H) = (E(1)ni , E(2)ni , E(3)ni ), (3.42)

where

E(1)ni = X1(Yn
i ,Hn) −X1(Yn

i ,Hn), (3.43)

E(2)ni = X2(Yn
i ,Hn) −X2(Yn

i ,Hn), (3.44)

E(3)ni = X3(Yn
i ,Hn) −X3(Yn

i ,Hn), (3.45)

In Eqs. (3.43)-(3.45), Yn
i = Y(xi, t

n), and Hn = H(tn) are taken as the exact values

at the mesh point (xi, t
n) of the solutions of the Eqs.(3.12)-(3.16). It is clear that

when h → 0 and k → 0, the local truncation error En
i (Y ,H) goes to 0 and hence,

our numerical solution X(Y ,H) is consistent with X (Y ,H). Next, it is assumed

that Y(x, t) is four times continuously partial differentiable with respect to x and

two times w.r.t. t. Moreover, it is considered that H(t) is continuously differentiable

two times w.r.t. t.
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Now, Taylor’s expansion of X1(Yn
i ,Hn) about (xi, t

n) is used in Eq.(3.43) which

gives:

E(1)ni = T n
i (1)k − xi

Hn
H′(tn)T n

i (2)h2 − xi
Hn

∂Y
∂x

(xi, t
n)T n

i (3)k

− xi
Hn

T n
i (2)T n(3)kh2 − 𭟋n

i h
3−α

(Hn)α
T n
i (4), (3.46)

where

T n
i (1) =

1

2

∂2Y
∂t2

(xi, δ), tn < δ < tn+1, (3.47)

T n
i (2) =

1

6

∂3Y
∂x3

(Ψ1, t
n), xi−1 < Ψ1 < xi+1, (3.48)

T n(3) =
1

2

d2H
dt2

(Λ), tn < Λ < tn+1, (3.49)

|T n
i (4)| ⩽ 2Ψ2−α

2

Γ(3 − α)
, xi−1 < Ψ2 < xi+1. (3.50)

Clearly, the local truncation error becomes

E(1)ni (Y ,H) = O(k) + O(h3−α). (3.51)

In the similar manner, the following can be written as

E(2)ni (Y ,H) = O(h), (3.52)

by substituting Eqs.(3.36) and (3.40) in the Eq.(3.44), and the following equation

can be obtained by using Eqs.(3.37), (3.41) in the Eq.(3.45):

E(3)ni (Y ,H) = O(k) + O(h3−α). (3.53)
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3.5 Stability

3.5.1 Positiveness

When we work on the population density model, then we have to ensure that the

numerical solution of our model is non-negative. This section has two parts. In the

first part, the non-negative nature of the model is discussed, while in the second

part the stability of our solution has been discussed.

With the help of induction method on index n, the non-negative nature of our solu-

tion W n
i (given in (3.30)) and monotonicity of Hn (3.29) are shown. If n = 0 then

from Eq. (3.18), we have W 0
i > 0, 0 ⩽ i ⩽ N − 1. For small h, the difference

approximation
(Wn

N−2−4Wn
N−1+3Wn

N )

2h
=

(Wn
N−2−4Wn

N−1)

2h
< 0 by taking the left derivative

of W ′
0(1

−) at z = 1 in Eq. (3.18).

Since, H0 > 0 therefore from (3.29), we get:

H1 > H0 > 0.

Now, assume that W p
i > 0 and Hp > Hp−1 > · · · > H0 > 0 for 1 ⩽ p ⩽ n. In order

to prove the positivity and monotonicity of the solution, it is required to show that

W n+1
i > 0 and Hn+1 > Hn.

As given in [125], the Taylor’s expansion about xN = 1 give rise to

W n
N−2 = 2W n

N−1 + O(h2), n ⩾ 0. (3.54)
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From Eq. (3.29) and by using W n
N−1 = O(h), we get

Hn+1 = Hn +
kµh−α

(Hn)α−1Γ(3 − α)

(
W n

N−1 −
N−1∑
j=1

ej(W
n
N−j −W n

N−j−1

)
,

= Hn + O(k), n ⩾ 0. (3.55)

which is similar to the results concluded from [125].

Now, let us come back to the positiveness of the solution. Taking i = N − 1 in Eqs.

(3.30) - (3.33) and Eq. (3.54), we get

W n+1
N−1 = (1 + k(a− bW n

N−1) −
kxiµh

−α

(Hn)αΓ(3 − α)
W n

N−1)W
n
N−1 + O(h3−α). (3.56)

According to the assumption Hn > H0 and xN−1 < 1, the (3.56) reduces to

W n+1
N−1 > (1 + k(a− bW n

N−1) −
kµh−α

(H0)αΓ(3 − α)
W n

N−1)W
n
N−1 = ψn

N−1W
n
N−1. (3.57)

for small h. To show the positivity of W n
N−1, we must show that ψn

N−1 > 0 by

bounding W n
N−1. For small h, the Eq. (3.56) produces W p+1

N−1 < W p
N−1(1 + ka) for

0 ⩽ p ⩽ n− 1 and recursively we get

W n
N−1 < W 0

N−1(1 + ka)p+1 < eaTW 0
N−1, 0 ⩽ p ⩽ n ⩽M − 1, kM = T, (3.58)

for T > 0.

By using Eq. (3.58) and expression of ψn
N−1, we have W n

M−1 > 0 when

k <
hα

µP
(H0)αΓ(3−α)

+ hα(bP − a)
,

(3.59)
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where

P = eaTW 0
N−1.

(3.60)

The positivity of W n
N−1 has been proved under the condition (3.59). Now, we have

to prove that W n
i > 0 for 0 ⩽ i ⩽ N − 2 and this is possible when the assumption of

induction and all positive coefficients of Eq. (3.30) are considered. By considering

Eq. (3.31) and taking into account that 0 ⩽ xi < 1, every coefficients of ani > 0 if

W n
N−1 <

2Fn
i

µ
. In view of Eq. (3.60), we can say that ani > 0 under the following

condition:

W 0
N−1 <

2F n
i e

−aT

µ
. (3.61)

Again from Eq. (3.33), the coefficients cni > 0 for small h. As given in [125], let

us define K(n) as K(n) = max{wn
i : 0 ⩽ i ⩽ n}. Now by using the assumption of

induction, we have Hn > H0 > 0. Hence, bni > 0 for i > 0 if

k <
hα

2Fn
i

(H0)αΓ(3−α)
+ hα(bK(n) − a)

. (3.62)

From the positivity of the coefficients ani , bni , cni and Eq. (3.30), we have

W n+1
i ⩽ (1 + k(a− bW n

i ))K(n) ⩽ (1 + ka)K(n) ⩽ (1 + ka)2K(n− 1)

⩽ · · · ⩽ (1 + ka)n+1K(0) < eaTK(0), 0 ⩽ n ⩽M − 1, kM = T, (3.63)

where K(0) = max{W (xi, 0), 0 ⩽ i ⩽ N}, 0 ⩽ xi ⩽ 1. From (3.29) and (3.54), we

have Hn+1 > Hn which proves the monotonicity of the moving boundary Hn.
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As given in [125], the following result is considered:

Theorem 3.1. Let us define k0 as:

k0 = min
{
k1 =

hα

µP
(H0)αΓ(3−α)

+ hα(bP − a)
, k2 =

hα

2Fn
i

(H0)αΓ(3−α)
+ hα(beaTK(0) − a)

}
.

(3.64)

If k < k0 and h is sufficiently small then the solution {W n
i , H

n} given in Eqs. (3.26),

(3.27), (3.29) and (3.30) shows that Hn is a positive monotonically increasing and

0 ⩽ W n
i ⩽ eaTK(0), 0 ⩽ i ⩽ N, 0 ⩽ n ⩽M, kM = T. (3.65)

3.5.2 Stability

As given in [125], the infinity norm (∥.∥∞) is assumed to define stability criteria

which is given below.

Definition 3.2. In the domain [0, 1]×[0, T ], the numerical technique (3.28)-(3.30)

is ∥.∥∞-stable for each partition with h and k if

∥W n∥∞ ⩽ L∥W 0∥∞, 0 ⩽ n ⩽M, (3.66)

where ∥W n∥∞=max(|W n
0 |, |W n

1 |, . . . , |W n
N |) and L is independent from h, k and n.

By considering Eq. (3.65), Theorem 3.1 and taking into account that K(n) =

∥W n∥∞, we have

∥W n∥∞ ⩽ L∥W 0∥∞,

where L = eaT . Thus, we have the following result:
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Theorem 3.3. In the domain [0, 1] × [0, T ], the numerical technique (3.28)-(3.30)

is conditionally ∥.∥∞-stable for sufficiently small h and k < k0, where k0 is given in

Eq. (3.64)

3.6 Convergence

The convergence of the proposed numerical technique is discussed here.

Theorem 3.4. If k < k0, then the numerical technique (3.24) is convergent for the

space-fractional diffusion logistic population model (3.12)-(3.17), and the order of

convergence is O(k + h3−α).

Proof Let W n
i = Yn

i − En
i and Hn = H(tn),

where W n
i is approximate solution, Yn

i = Y(xi, t
n) is the exact solution and En

i is

the error.

From (3.24), we have

(Yn+1
i − Yn

i ) − (En+1
i − En

i )

k
− xi

Hn

(Hn+1 −Hn

k

)((Yn
i+1 − Yn

i−1) − (En
i+1 − En

i−1)

2h

)
+

𭟋n
i h

−α

(Hn)αΓ(3 − α)

i−1∑
j=0

ej

(
(Yn

i−j+1 − 2Yn
i−j + Yn

i−j−1) − (En
i−j+1 − 2En

i−j + En
i−j−1)

)
= (Yn

i − En
i )(a− b(Yn

i − En
i )), n ⩾ 0, 0 ⩽ i ⩽ N − 1. (3.67)
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Now, the Taylor’s series expansion in Eq. (3.67) is used which gives

(∂Y(xi, t
n)

∂t
+ O(k) − (En+1

i − En
i )

k

)
− xi

Hn

(dH(tn)

dt
+ O(k)

)(∂Y(xi, t
n)

∂x
+ O(h2)−

(En
i+1 − En

i−1)

2h

)
+

F n
i

(Hn)α

(
C
0D

α
xY(xi, t

n) + O(h3−α)
)
− 𭟋n

i h
−α

(Hn)αΓ(3 − α)
i−1∑
j=0

ej(E
n
i−j+1 − 2En

i−j + En
i−j−1) = (Yn

i − En
i )(a− b(Yn

i − En
i )),

n ⩾ 0, 0 ⩽ i ⩽ N − 1. (3.68)

Thus, Eq. (3.12) and Eq. (3.68) produce

(En+1
i − En

i )

k
− xi

Hn

dH(tn)

dt

(En
i+1 − En

i−1)

2h
+

𭟋n
i h

−α

(Hn)αΓ(3 − α)

i−1∑
j=0

ej(E
n
i−j+1−

2En
i−j + En

i−j−1) ⩽ En
i (a− bEn

i ) + O(k) + O(h3−α), n ⩾ 0, 0 ⩽ i ⩽ N − 1,

(3.69)

or

En+1
i ⩽ (1 + k(a− bEn

i ))En
i − kxi

Hn

dH(tn)

dt

(En
i+1 − En

i−1)

2h
+

k𭟋n
i h

−α

(Hn)αΓ(3 − α)
i−1∑
j=0

ej(E
n
i−j+1 − 2En

i−j + En
i−j−1) + k(O(k + h3−α)), n ⩾ 0, 0 ⩽ i ⩽ N − 1.

(3.70)

Let En = max{En
i : 0 ⩽ i ⩽ N}, then

En+1 ⩽ (1 +k(a− bEn))En +k(O(k+h3−α)) ⩽ (1 +ka)En +k(O(k+h3−α)). (3.71)
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Hence,

||En+1||∞ ⩽ (1 + ka)||En||∞ + k(O(k + h3−α)) ⩽ (1 + ka)2||En−1||∞ + (1 + ka)k(O(k + h3−α)+

⩽ · · · ⩽ (1 + ka)n+1||E0||∞ + (1 + ka)nk(O(k + h3−α))

⩽ Lk(O(k + h3−α)). (3.72)

Consequently, |En+1
i | → 0 as h → 0 and k → 0 which proves that W converges to

Y when k < k0. Moreover, it is seen from Eq. (3.72) that the global error of the

method is of order O(k + h3−α).

3.7 Results and Discussions

Theoretical results at α = 2 has been established for spreading as well as vanishing

cases in [128] and these results are also verified numerically [125]. In [128], it is

observed that spreading occurs when H0 ⩾ L, where L = π
2

√
F
a

. On the other hand

if H0 < L, the spreading occurs when µ > µ∗, where µ∗ is unknown threshold which

depends on W0 (see Theorem 3.9 of [128]). As the time approaches infinity, the

population density in spreading case approaches to habitat carrying capacity a/b

(see Lemma 3.2 of [128]). In the case of H0 < L and µ ⩽ µ∗ the population density

starts vanishing when H(t) ⩽ L for t > 0.

In this study, the above conditions are assumed and solve the problem (3.1)-(3.5)

for different values of α. In our knowledge, the exact solution of the problem

(3.1)-(3.5) is not available in the literature, therefore a numerical solution of the

problem is discussed and obtained results are presented through figures. For all

computations, the stability of the technique is achieve by taking grid size h = 0.05

(N = 20 or ∆x = 1
20

) and the time step k = 0.0001.
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In Figs. 3.1 - 3.12, the dependence of population density and moving boundary on

various time τ are shown for different density-dependent dispersal rate 𭟋(U) and α.

Figs 3.1 - 3.6 represent the variation of population of species with time for different

values of α while dispersal rate is density-dependent. Figs. 3.1 - 3.3 depict the case

of spreading of population density for three different values of α (α=1.4, 1.6, 1.8)

at the parameters a = 3, b = 2, c = 1, d = 1, µ=1 and H0=2 by taking initial

function U0 = cos(πz/4). From these figures, it is observed that the population

density reaches to habitat carrying capacity when we increase the time. Moreover,

it is seen that the population density covers small space domain to reach the habitat

carrying capacity when α increases for a fixed time (t > 2). Figs. 3.4 - 3.6 represent

the the case of vanishing of the species for three different values of α (α=1.4, 1.6,

1.8) for the parameters a = 0.02, b = 0.02, c = 1, d = 1, µ=0.2, H0=2 by considering

initial function U0 = cos(πz/4). Figs 3.4 - 3.6 show that the process of vanishing of

population density becomes slow when we increase the value of α as time proceeds.

Figs. 3.7 - 3.11 represent the effect of density-dependent dispersal rate over the

constant dispersal rate on U(z, τ) and H(τ). In order to show the effect of density-

dependent dispersal rate, here constant dispersal rate=1 is considered because for

the positive values of c and d, F (U) ≈ 1. Fig. 3.7 represent the comparison of

population density for density-dependent and constant dispersal rate for spreading

case at the parameters α=2, a = 1, b = 1, c = 1, d = 1, µ=2 and H0=2 with

the initial function U0 = cos(πz/4). This figure shows that the population density

curve is more near to the habitat carrying capacity in the case of density-dependent

dispersal rate than the constant dispersal rate. Fig. 3.8 is plotted for the comparison

of population density for density-dependent and constant dispersal rate for vanishing

case at the parameters α=2, a = 1, b = 1, c = 1, d = 1, µ=0.1 and H0=2 with the

initial function U0 = cos(πz/4). In this figure, it is observed that the population
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density vanishes faster for the case of constant dispersal rate than density-dependent

dispersal rate. Figs. 3.9 and 3.10 show the trajectory of moving boundary for

different value of α (α=1.4, 1.7, 2.0) by considering density-dependent dispersal rate

and constant dispersal rate, respectively at parameters a = 1, b = 1, c = 1, d = 1,

µ=0.5, H0=2 and U0 = cos(πz/4). Figs. 3.9 and 3.10 demonstrate that the speed of

moving boundary becomes slow when we increase the value of α. But, the movement

of moving boundary is faster for the case of density-dependent dispersal rate than the

case of constant dispersal rate. Fig. 3.11 represents the comparison of tracking of the

moving boundary between density-dependent dispersal rate and constant dispersal

rate for different values of µ (µ=1.0, 1.5, 2.0) and it is plotted for parameters α=2,

a = 1, b = 1, c = 1, d = 1, H0=1 and initial function U0 = cos(πz/2). From this

figure, it is observed that the moving boundary in the case of density-dependent

dispersal rate moves faster than the case of constant dispersal rate.

Fig. 3.12 is plotted for the tracking of moving boundary by considering density-

dependent dispersal rate at α=2 (standard case) for different values of µ to estimate

µ∗ (threshold). This figure is plotted for the parameters a = 1, b = 1, c = 1, d = 1,

H0=1 and initial function U0 = cos(πz/2).

Fig. 3.13 is plotted to show the behaviour of |W n+1 −W n| = max|W n+1
i −W n

i |,

1 ⩽ i ⩽ N − 1 with n for three different values of α (α = 1.4, 1.6, 2.0) at the

parameters a = 1, b = 1, c = 1, d = 1, H0 = 1, µ = 0.5 and initial function

U0 = cos(πz/4). From this figure, it is clear that |W n+1 − W n| decreases as n

increases for all values of α, 1 < α ⩽ 2.
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Figure 3.1: Spreading of population density for α=1.4.

0 5 10 15 20 25 30

z

0

0.5

1

1.5

2

2.5

3

3.5

4

Habitat carrying capacity a/b=1.5

Figure 3.2: Spreading of population density for α=1.6.
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Figure 3.3: Spreading of population density for α=1.8.
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Figure 3.4: Vanishing of population density for α=1.4.
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Figure 3.5: Vanishing of population density for α=1.6.
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Figure 3.6: Vanishing of population density for α=1.8.
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Figure 3.7: Comparison of spreading population density for density-dependent
and constant dispersal rate at α=2.
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Figure 3.8: Comparison of vanishing population density for density-dependent
and constant dispersal rate at α=2.
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Figure 3.9: Trend of moving boundary for different values of α in the case of
density-dependent dispersal rate.
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Figure 3.10: Trend of moving boundary for different values of α in the case of
constant dispersal rate.
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Figure 3.11: Comparison of moving boundary for different values of µ.
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Figure 3.12: Trend of moving boundary for different values of µ.
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Figure 3.13: Trend of |Wn+1 −Wn| as n increases for different values of α.

3.8 Conclusion

In this chapter, a finite difference scheme is applied to present a numerical solution

of a population logistic diffusion model with fractional order space derivative and

density-dependent dispersal rate. From this study, it is observed that the numerical

approach is simple and efficient scheme for the solution of wide class of a nonlinear

diffusion model with moving boundary. It is found that the population density is

affected by the density-dependent dispersal rate (𭟋(U)) and α. For spreading case,

it is observed that the population density reaches to the habitat carrying capacity

faster in case of density-dependent dispersal rate than the constant dispersal rate

and it is also seen that the population density covers small space domain to reach

the habitat carrying capacity when α increases. For the vanishing case, it is found

that the population density vanishes faster for the case of constant dispersal rate

in comparison to density-dependent dispersal rate and it is also observed that the
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process of the vanishing of the population density become slow with the increment in

the value of α. Density-dependent dispersal rate also affects the expanding front and

the expanding front moves faster when we consider the density-dependent dispersal

rate in our model. The parameter µ∗ (threshold) is calculated in our case to confirm

the occurrence of spreading and vanishing cases.

***********
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