
Chapter 2

A Stefan problem with moving phase

change material, variable thermal

conductivity and periodic boundary

condition

2.1 Introduction

A Stefan problem (moving boundary problem), describing the process of phase

change, is one of the interesting problems from the mathematical and industrial

point of view due to its nonlinear nature even in its simplest form and presence

of moving phase boundary/front. The moving phase front is a part of the solu-

tion, so it has to be calculated from the energy balance condition described at the

moving phase front which is often called as Stefan condition. Due to the involve-

ment of Stefan condition in the problems, these problems are frequently known as

Stefan problems. There are several practical processes that are governed by mov-

ing boundary problem, such as freezing of ice, melting of material, preservation of

foods, recrystallization of metals, thermal energy storage, oxygen diffusion process,

etc. The mathematical models of classical moving boundary problems, its solutions,

and applications are well covered in [3, 99, 100].
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Moving boundary problems with new thermo-physical properties of the phase change

material have been attracted many investigators [76, 101, 102, 79, 103, 104] in last

century that can be observed as the modification in the classical problems. Recently,

Kumar et al. [87] presented a moving boundary problem with time and tempera-

ture dependent thermal conductivity. Ceretani et al. [84] discussed a phase change

problem with temperature-dependent thermal conductivity and presented an exact

solution to the problem. A phase change problem involving temperature-dependent

specific heat and thermal conductivity is also presented by Kumar et al. [88]. In

2005, Jou et al. [105] discussed size-dependent thermal conductivity of a solid from

the Extended Irreversible Thermodynamics theory [106]. Based on this fact, Font

[46] and Calvo-Schwarzwälder [107] also analyzed a mathematical model of a moving

boundary problem in which he assumed a variable thermal conductivity that is a

function of moving interface, and discussed approximate solutions to the problem via

perturbation and numerical approaches. Moving boundary problems with moving

phase change material (PCM) arise in many phase change processes, but only a few

investigators [108, 109] considered the phase change problem with moving PCM. Re-

cently, Turkyilmazoglu [110] discussed the analytical solutions to the phase change

problems with unidirectional moving phase change material by assuming constant

thermo-physical properties of the material. After that Singh et al. [111] discussed

a phase change problem with convective boundary condition, moving phase change

material and variable thermal coefficients. Singh et al. [112] also discussed a melt-

ing problem with Dirichlet’s boundary condition that includes moving phase change

material and variable thermal coefficients.

In this study, based on previous observations, a moving boundary problem is consid-

ered with moving PCM and variable thermal conductivity that depends on moving
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interface. Moreover, a periodic boundary condition is assumed at the first bound-

ary, i.e. x = 0 which was earlier considered in the phase change problems by many

researchers [113, 114, 66, 115, 116, 117]. The exact solution of a moving bound-

ary problem with periodic boundary condition is not available even in its simplest

form; therefore, a numerical solution based on finite difference method to our prob-

lem is presented to determine temperature profile in the domain and moving phase

boundary during the phase change process. Numerical schemes to these problems

require a special care, and sometime a very small mesh size and time step size are

often required for the accuracy of the solutions [118, 119]. In the literature, many

researchers used either finite element method or finite difference method or inte-

gral method to present numerical solution to the moving boundary problems with

different kinds of boundary conditions, some of them are given in the references

[120, 121, 51, 122, 123, 67, 124, 125].

2.2 Mathematical Model

Here, a melting problem of a solid is considered which is initially at its equilibrium

melting temperature 𭟋m. It is assumed that the edge at z = 0 is suddenly subjected

to a time-dependent temperature 𭟋0(τ) which is higher than 𭟋m. As time proceeds,

the solid starts to melt and a moving melting front (moving boundary) is formed

which propagates along the positive z direction. Besides the classical melting prob-

lem, it is assumed that the phase change material moves with a speed of u [110].

The temperature distribution in molten region can be described by the following
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mathematical model:

ρc(
∂𭟋
∂τ

+ u
∂𭟋
∂z

) = κ(S(τ))
∂2𭟋
∂z2

, 0 < z < S(τ), τ > 0 (2.1)

𭟋(0, τ) = 𭟋0(τ), (2.2)

𭟋(S(τ), τ) = 𭟋m, (2.3)

ρL
dS

dτ
= −κ(S(τ))

∂𭟋(S(τ)), τ)

∂z
, (2.4)

S(0) = 0. (2.5)

where 𭟋 is temperature profile in molten region, z is space, τ is time, ρ is density,

c is the specific heat, u is the unidirectional speed depending on time, L is latent

heat and S is the moving melting front.

Here, the size-dependent thermal conductivity is considered as

κ(S(τ)) =
2κ0S

2(τ)

l2

(√
1 +

l2

S2(τ)
− 1
)
. (2.6)

The expression of size-dependent thermal conductivity is derived from the theory of

Extended Irreversible Thermodynamics by assuming equal phonon mean-free paths

and relaxation times. The physical relevance of size-dependent thermal conductivity

can be seen in [46] and [107].

2.2.1 Dimensionless form

To make the model in dimensionless form, the following transformations

T =
𭟋−𭟋m

∆𭟋ref

, x =
z

l
, t =

k0
l2ρc

τ, s =
S

l
, u = Pe

√
κ0
ρcτ

(2.7)
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are substituted in the Eqs. (1)-(5), which give

∂T

∂t
+

Pe√
t

∂T

∂x
= 2s(

√
s2 + 1 − s)

∂2T

∂x2
, 0 < x < s(t), t > 0, (2.8)

T (0, t) =
𭟋0(τ) −𭟋m

∆𭟋ref

= f(t), (2.9)

T (s(t), t) = 0, (2.10)

1

Ste

ds

dt
= −2s(

√
s2 + 1 − s)

∂T (s(t)), t)

∂x
, (2.11)

s(0) = 0, (2.12)

where f(t) = 1 + ϵ sin(ωt), Ste =
c∆𭟋ref

L
is the Stefan number, Pe = u

√
τ
α

denotes

the Peclet number and α = κ0

ρc
.

2.3 Numerical solution

First, the moving domain [0, s(t)] is converted into the fixed domain [ 0,1] by using

the following Landau-type transformation [99],

U(ζ, t) = T (x, t), ζ =
x

s(t)
. (2.13)

Under the transformation (2.13) our problem (2.8)-(2.12) reduce to the following

system:

∂U

∂t
− ζ

s(t)

ds

dt

∂U

∂ζ
+

Pe

s(t)
√
t

∂U

∂ζ
=

2(
√
s2 + 1 − s)

s

∂2U

∂ζ2
, t > 0, 0 < ζ < 1, (2.14)

U(0, t) = f(t) = 1 + ϵsin(ωt), (2.15)
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U(1, t) = 0, (2.16)

1

Ste

ds

dt
= −2(

√
s2 + 1 − s)

∂U(1, t)

∂ζ
, (2.17)

s(0) = 0. (2.18)

Now, the step size of time discretization is considered as k = ∆t and space dis-

cretization h = ∆ζ = 1
P

, where P is positive integer. The mesh points are taken

as (ζi, t
n), where ζi = ih, 0 ⩽ i ⩽ and tn = nk, n ⩾ 0. The approximate value of

U(ζ, t) at mesh point (ζi, t
n) is denoted as Un

i and the approximate value of s(t) at

tn is taken as sn.

Let us approximate the time derivative and space derivative as

∂U(ζi, t
n)

∂t
≈ Un+1

i − Un
i

k
,

ds(tn)

dt
≈ sn+1 − sn

k
(2.19)

∂U(ζi, t
n)

∂ζ
≈
Un
i+1 − Un

i−1

2h
,

∂2U(ζi, t
n)

∂ζ2
≈
Un
i+1 − 2Un

i + Un
i−1

h2
. (2.20)

From Eqs.(2.19)-(2.20), the Eq.(2.14) is approximated by

Un+1
i − Un

i

k
− ζi
sn

(sn+1 − sn

k

)(Un
i+1 − Un

i−1

2h

)
+

Pe

sn
√
nk

(Un
i+1 − Un

i−1

2h

)
=

2(
√
sn2 + 1 − sn)

sn
(Un

i+1 − 2Un
i + Un

i−1)

h2
, n ⩾ 0, 1 ⩽ i ⩽ P − 1, (2.21)

which can be arranged as

Un+1
i =

[2k(
√
sn2 + 1 − sn)

h2sn
+

Pe

2hsn

√
k

n
− kζi

2hsn

(sn+1 − sn

k

)]
Un
i−1

+
[
1 − 4k(

√
sn2 + 1 − sn)

h2sn

]
Un
i +

[2k(
√
sn2 + 1 − sn)

h2sn
− Pe

2hsn

√
k

n

+
kζi

2hsn

(sn+1 − sn

k

)]
Un
i+1, n ⩾ 0, 1 ⩽ i ⩽ P − 1. (2.22)
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The Eqs. (2.15) and (2.16) become

Un
0 = 1 + ϵ sin(ωnk), & Un

P = 0, n ⩾ 0. (2.23)

Using three point backward difference formula for space derivative and first order

forward difference approximation for time derivative, the Stefan condition (2.17)

becomes

sn+1 − sn

k
= −2Ste(

√
sn2 + 1 − sn)

(Un
P−2 − 4Un

P−1 + 3Un
P )

2h
, n ⩾ 0, (2.24)

for the accuracy of order O(k) + O(h2).

From Eq.(2.23), the Eq.(2.24) can be rewritten as

sn+1 = sn − 2kSte(
√
sn2 + 1 − sn)

(Un
P−2 − 4Un

P−1)

2h
, n ⩾ 0. (2.25)

Now, using Eq.(2.25) in the Eq.(2.22), we have

Un+1
i = ani U

n
i−1 + bni U

n
i + cni U

n
i+1, n ⩾ 0, 1 ⩽ i ⩽ P − 1, (2.26)

where

ani =
[2k(

√
sn2 + 1 − sn)

h2sn
+

Pe

2hsn

√
k

n
+
kζiSte(

√
sn2 + 1 − sn)

sn
(Un

P−2 − 4Un
P−1)

2h2

]
,

(2.27)

bni =
[
1 − 4k(

√
sn2 + 1 − sn)

h2sn

]
, (2.28)

cni =
[2k(

√
sn2 + 1 − sn)

h2sn
− Pe

2hsn

√
k

n
− kζiSte(

√
sn2 + 1 − sn)

sn
(Un

P−2 − 4Un
P−1)

2h2

]]
,

(2.29)
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n ⩾ 0, 1 ⩽ i ⩽ P − 1.

2.4 Consistency

Since a numerical scheme is problem dependent [118], therefore, the consistency of

the numerical scheme for our problem is discussed. A numerical scheme is said to be

consistent with a partial differential equation if the local truncation error becomes

zero when the step-size of space and time reduce to zero.

Let us denote the Eqs.(2.14)-(2.18) in vector form as

X (Y(ζ, t),S(t)) = (X1(Y(ζ, t),S(t)),X2(Y(ζ, t),S(t)), (2.30)

where

X1(Y ,S) =
∂Y
∂t

− ζ

S(t)

dS
dt

∂Y
∂ζ

+
Pe

S(t)
√
t

∂Y
∂ζ

− 2(
√
S2 + 1 − S)

S
∂2Y
∂ζ2

, t > 0, 0 < ζ < 1

(2.31)

X2(Y ,S) =
1

Ste

dS
dt

+ 2(
√
S2 + 1 − S)

∂Y(1, t)

∂ζ
, t > 0. (2.32)

Let us write the vector form of the difference scheme mentioned in the Eqs. (2.22)

and (2.25),

X(U, s) = (X1(U, s), X2(U, s)), (2.33)
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where X1 & X2 are defined at mesh point (ζi, t
n) as:

X1(U
n
i , s

n) =
Un+1
i − Un

i

k
− ζi
sn

(sn+1 − sn

k

)(Un
i+1 − Un

i−1

2h

)
+

Pe

sn
√
nk

(Un
i+1 − Un

i−1

2h

)
− 2sn(

√
sn2 + 1 − sn)

sn
(Un

i+1 − 2Un
i + Un

i−1)

h2
, n ⩾ 0, 1 ⩽ i ⩽ P − 1,

(2.34)

X2(U
n
i , s

n) =
sn+1 − sn

k
+ 2Ste(

√
sn2 + 1 − sn)

(Un
P−2 − 4Un

P−1 + 3Un
P )

2h
, n ⩾ 0,

(2.35)

According to [118, 125], the difference scheme X(U, s) is consistent with problem

X (Y ,S) when the local truncation error

En
i (Y ,S) = (E(1)ni , E(2)ni ), (2.36)

E(1)ni = X1(Yn
i ,Sn) −X1(Yn

i ,Yn), (2.37)

E(2)ni = X2(Yn
i ,Sn) −X2(Yn

i ,Sn), (2.38)

goes to 0 as h → 0 and k → 0, where Yn
i = Y(ζi, t

n), and Sn = S(tn) are the exact

values of the solution of the Eqs.(2.14)-(2.17).

Let us assume that Y(ζ, t) is continuously partial differentiable four times with

respect to (w.r.t.) ζ and two times w.r.t. t. Moreover, S(t) is assumed as two times

continuously differentiable function w.r.t. t.
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By using Taylor’s expansion, expanding X1(Yn
i ,Sn) about (ζi, t

n) and using it in

Eq.(2.37) which produces:

E(1)ni = T n
i (1)k − ζi

Sn
S ′(tn)T n

i (2)h2 − ζi
Sn

∂Y
∂ζ

(ζi, t
n)k − ζi

Sn
T n(4)kh2

+
Pe

Sn
√
nk
T n
i (2)h2 − 2Sn(

√
Sn2 + 1 − Sn)

Sn
T n
i (3)h2, (2.39)

where

T n
i (1) =

1

2

∂2Y
∂t2

(ζi, t
n), (2.40)

T n
i (2) =

1

6

∂3Y
∂ζ3

(ζi, t
n), (2.41)

T n
i (3) =

1

12

∂4Y
∂ζ4

(ζi, t
n), (2.42)

T n(4) =
1

2

d2S
dt2

(tn). (2.43)

Clearly, the local truncation error becomes:

E(1)ni (Y ,S) = O(k) + O(h2). (2.44)

In the similar manner, we have

E(2)ni (Y ,S) = O(k) + O(h2) (2.45)

by substituting Eqs.(2.32) and (2.35) in the Eq.(2.38).

Clearly, the technique X(U, s) is consistent with the considered problem X (Y ,S)

with the local truncation error O(k) + O(h2).
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2.5 Stability

In this section, the stability of our solution of the problem is discussed. From the

Eq.(2.26), the matrix form of the explicit scheme is

Un+1 = AUn, n ⩾ 0, (2.46)

where

A =



bn1 cn1 0 0 . . . 0 0

an2 bn2 cn2 0 . . . 0 0

0 an3 bn3 cn3 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . anP−1 bnP−1


,

Un =



Un
1

Un
2

Un
3

...

Un
P−1


& Un+1 =



Un+1
1 − an1U

n
0

Un+1
2

Un+1
3

...

Un+1
P−1


.

The explicit scheme given in Eq.(2.46) is stable if ||A||∞ ⩽ 1. To show this, first,

it is needed to show that all the coefficients of Eq. (2.26) are positive under some

conditions. By using the Taylor’s expansion about ζP = 1 as given in [118, 125], we

get

Un
P−2 = 2Un

P−1 + O(h2), n ⩾ 0. (2.47)
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From Eqs.(2.27), (2.47) and by taking into account that 0 ⩽ ζi < 1, we have

2(
√
sn2 + 1 − sn)k

h2sn
− kSte(

√
sn2 + 1 − sn)

h2sn
Un
P−1 <

2(
√
sn2 + 1 − sn)k

h2sn2

−kSteζi(
√
sn2 + 1 − sn)

h2sn
Un
P−1 <

2(
√
sn2 + 1 − sn)k

h2sn2

+
Pe

2hsn

√
k

n
− kζiSte(

√
sn2 + 1 − sn)

h2sn
Un
P−1 ⩽ ani .

The coefficient ani > 0 if

Un
P−1 <

2

Ste
. (2.48)

Now, assuming that s0 ̸= 0 and taking s0 < sn, n ⩾ 1, in Eq.(2.28), we get bni > 0

if

k <
h2s0(

√
s02 + 1 + s0)

4
. (2.49)

From Eqs.(2.29), (2.47) and by considering that 0 ⩽ ζi < 1, we have

2(
√
sn2 + 1 − sn)k

h2sn
− Pe

2hsn

√
k <

2(
√
sn2 + 1 − sn)k

h2sn
− Pe

2hsn

√
k

n

<
2(
√
sn2 + 1 − sn)k

h2sn
− Pe

2hsn

√
k

n
+
kζiSte(

√
sn2 + 1 − sn)

h2sn
Un
P−1 ⩽ cni , n ⩾ 1,

Now, the coefficient cni > 0 if

Pe <
2
√
k

hs0
, (2.50)

where s0 is a non-zero positive real number and s0 < sn, n ⩾ 1.

Under the conditions (2.48)-(2.50), all the entries of matrix A are positive and the
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norm infinity of matrix A is equal to 1. Therefore, the proposed numerical solution

is conditionally stable.

2.6 Convergence

In this section, the convergence of the numerical scheme is discussed.

Theorem 2.1. The finite difference scheme (2.21) for the problem (2.14)-(2.18) is

convergent if ||A||∞ ⩽ 1.

Proof Let Un
i = Yn

i − eni

where Un
i is the approximate solution, Yn

i = Y(ζi, t
n), Sn = S(tn) and eni is the

error.

From (2.21), we have

(Yn+1
i − Yn

i ) − (en+1
i − eni )

k
− ζi

Sn

(Sn+1 − Sn

k

)((Yn
i+1 − Yn

i−1) − (eni+1 − eni−1)

2h

)
+

Pe

Sn
√
nk

((Yn
i+1 − Yn

i−1) − (eni+1 − eni−1)

2h

)
=

2(
√

Sn2 + 1 − Sn)

Sn

(Yn
i+1 − 2Yn

i + Yn
i−1) − (eni+1 − 2eni + eni−1)

h2
, n ⩾ 0, 1 ⩽ i ⩽ P − 1, (2.51)

According to the Taylor’s series expansion, the Eq. (2.51) gives

(∂Y(ζi, t
n)

∂t
+ O(k) − (en+1

i − eni )

k

)
− ζi

Sn

(dS(tn)

dt
+ O(k)

)(∂Y(ζi, t
n)

∂ζ
+ O(h2)

−
(eni+1 − eni−1)

2h

)
+

Pe

Sn
√
nk

(∂Y(ζi, t
n)

∂ζ
+ O(h2) −

(eni+1 − eni−1)

2h

)
=

2(
√

Sn2 + 1 − Sn)

Sn(∂2Y(ζi, t
n)

∂ζ2
+ O(h2) −

(eni+1 − 2eni + eni−1)

h2

)
, n ⩾ 0, 1 ⩽ i ⩽ P − 1, (2.52)
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Thus, we have

(en+1
i − eni )

k
− ζi

Sn

dS(tn)

dt

(eni+1 − eni−1)

2h
+

Pe

Sn
√
nk

(eni+1 − eni−1)

2h
=

2(
√
Sn2 + 1 − Sn)

Sn

(eni+1 − 2eni + eni−1)

h2
+ O(k + h2), n ⩾ 0, 1 ⩽ i ⩽ P − 1, (2.53)

With the help of boundary condition (2.23), the matrix form of Eq. (2.53) can be

written as

En+1 = AEn + B, n ⩾ 0, (2.54)

where

En+1 =



en+1
1

en+1
2

en+1
3

...

en+1
P−1


, En =



en1

en2

en3
...

enP−1


, B = kO(k + h2)



1

1

1

...

1


,

and A is the square matrix given in Eq. (2.46).

||En+1||∞ ⩽ ||An+1||∞||E0||∞ + (||An||∞ + ||An−1||∞ + ...+ ||I||∞)||B||∞, n ⩾ 0,

(2.55)

As E0 = 0 and ||A||∞ ⩽ 1, hence, Eq. (2.55) becomes

||En+1||∞ ⩽ (n+ 1)k|O(k + h2)|.

Consequently, |en+1
i | → 0 as h → 0 and k → 0 which proves that U converges to Y

when ||A||∞ ⩽ 1.



Chapter 2. A Stefan problem with moving phase change material, variable thermal
conductivity and periodic boundary condition 29

2.7 Results and Discussions

As per our knowledge, the exact solution of the problem (2.8)-(2.12) is not available

in the literature for the non-zero ϵ. Since, 2s(
√
s2 + 1 − s) converges to 1 when s is

sufficiently large (s ⩾ 2). Therefore, approximating 2s(
√
s2 + 1− s) ≈ 1 and taking

ϵ = 0 in the Eqs. (2.8)-(2.12), the exact solution of this particular case [110] of the

problem (2.8)-(2.12) becomes

T (x, t) =
e(Pe−λ)2

√
πλ(erf(Pe− x

2
√
t
) − erf(Pe− λ))

Ste
, (2.56)

s(t) = 2λ
√
t, (2.57)

where erf(.) denotes the error function and the value of the constant λ can be found

by the following transcendental equation:

e(Pe−λ)2
√
πλ(erf(Pe− x

2
√
t
) − erf(Pe− λ))

Ste
= 1. (2.58)

To show the existence of the solution of the problem (2.8)-(2.12), let us define a

function

g(λ) =
e(Pe−λ)2

√
πλ(erf(Pe− x

2
√
t
) − erf(Pe− λ))

Ste
− 1 (2.59)

Clearly, the function g(λ) is continuous and differentiable in the interval (0,∞).

Also, Limλ→0+ g(λ) is a negative real number and Limλ→∞g(λ) is positive real

number which shows that there exists atleast one root of g(λ) in the interval (0,∞).

Besides this, the derivative of the function g(λ) is always positive in the interval

(0.∞) under the condition Pe ⩽
√

2 which shows that the function g(λ) has unique

root in the interval (0,∞).
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To initiate the numerical procedures and to avoid the singularity at time 0, i.e s(0) =

0, the exact solutions of the temperature and moving phase given by Eqs.(2.56)-

(2.57) are used for a short time t = 0.1. The similar procedure has been already used

for initial guess in the numerical solutions of some moving boundary problems([114],

[66] and [121]).

In order to achieve the stability of the scheme, all the computations have been made

by taking the initial time t = 0.1, grid size h = 0.1 (P = 10 or ∆ζ = 1
10

) and the

time step k = 0.0001.

For a particular case (2s(
√
s2 + 1−s) = 1 and ϵ= 0), the validation of the accuracy of

the solution is shown through Tables 2.1-2.2. In Table 2.1, the relative error between

exact and obtain numerical solution of the temperature profile at time t = 10 are

presented for three different cases, i.e. (Pe = 0.5, Ste = 0.1), (Pe = 0.25, Ste = 0.25)

and (Pe = 0.1, Ste = 0.5). Table 2.2 depicts the comparison of the exact and

numerical solutions of the position of the moving interface at different times for the

same earlier three cases. From Tables 2.1-2.2, it is seen that the solution obtained

by numerical scheme is nearly equal to the exact.

The dependence of temperature profile and tracking of moving boundary on various

parameters are shown in Figs. 2.1 - 2.8. Figs. 2.1 and 2.2 represent the tracking of

melting phase front for three different Stefan numbers (Ste = 0.2, 0.5, 0.8) with the

fixed Peclet number (Pe = 0.5) and frequency (ω = π/2) for amplitudes 0.5 and 0.75,

respectively. From these two figures, it is obtained that the evolution of the moving

interface increases rapidly with the increment of the Stefan number which is similar

to the result of Savovic and Caldwell [66]. The effects of Peclet numbers on tracking

of the moving melting front are shown in Figs. 2.3 and 2.4 at the fixed value of

Ste = 0.5, ω = π/2 for two oscillating amplitudes ϵ = 0.5 and ϵ = 0.75, respectively.

Figs. 2.3-2.4 depict that the movement of the moving interface becomes faster with
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the increment of Peclet number. Hence, the melting process becomes fast when we

increase either Stefan number or Peclet number or both. However, the effect of the

Peclet number on the movement of moving melting front is lesser than the Stefan

number. From Figs. 2.1 - 2.4, it is also seen that the moving boundary periodically

moves with larger oscillating amplitudes for larger value of ϵ.

Figs.2.5 and 2.6 represent the temperature distribution for different times (t = 20,

t = 21, t = 22, t = 23) at the fixed parameters Ste = 0.2, Pe = 0.5, ω = π/2 for

two different oscillation amplitudes ϵ = 0.5 and ϵ = 0.75, respectively. From the

Figs. 2.5 and 2.6, the effect of the oscillating amplitude on temperature profile at

the first boundary, i.e. ζ = 0 can be clearly observed and it is seen that the change

of temperature profile in the whole domain is more effective for larger oscillating am-

plitude. In Figs. 2.7 and 2.8, the trajectory of moving meting front and temperature

profile are shown for the Stefan problem with periodic boundary condition for three

different cases, i.e., Stefan problem with constant thermal conductivity (Standard

problem), Stefan problem with moving phase change material and constant thermal

conductivity (κ = 1), and Stefan problem with moving phase change material and

size dependent thermal conductivity (κ(s(t))). Form Fig. 2.7, it is observed that the

speed of moving melting front becomes faster in case of Stefan problem with moving

PCM than the standard problem. For the Stefan problem with moving PCM, it is

also seen that the moving melting front becomes slower in the case of size depen-

dent thermal conductivity than the constant thermal conductivity. In Fig.2.8, the

deviation of temperature profile is observed if we compare the problem with mov-

ing PCM and standard problem (problem without moving PCM). For the Stefan

problem with moving PCM, it is also observed from the Fig. 2.8 that the variable

thermal conductivity κ(s(t)) does not produce much effect on temperature profile

of the problem in comparison to the problem with constant thermal conductivity
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(κ = 1).
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Figure 2.1: Dependence of moving melting front on Stefan number at ϵ = 0.5.
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Figure 2.2: Dependence of moving melting front on Stefan number at ϵ = 0.75.
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Table 2.1: Temperature distribution at t = 10 for different parameters.

S.No. Parameters ζ Uexact Unumerical Relative Error

1 0.0 1.000000 1.000000 0.000000
0.1 0.908439 0.90851 7.83×10−5

0.2 0.81482 0.814952 1.62×10−4

0.3 0.719207 0.719383 2.44×10−4

0.4 0.62166 0.621864 3.28×10−4

Pe = 0.5 0.5 0.522249 0.522464 4.12×10−4

Ste = 0.1 0.6 0.421048 0.421257 5.07×10−4

0.7 0.318136 0.31832 5.78×10−4

0.8 0.213597 0.213739 6.62×10−4

0.9 0.107521 0.107601 7.4×10−4

1.0 0.000000 0.000000 0.000000

2 0.0 1.000000 1.000000 0.000000
0.1 0.90377 0.903823 5.85×10−5

0.2 0.806067 0.80616 1.15×10−4

0.3 0.707115 0.707237 1.72×10−4

0.4 0.60715 0.607289 2.29×10−4

Pe = 0.25 0.5 0.506416 0.50656 2.83×10−4

Ste = 0.25 0.6 0.405161 0.405297 3.37×10−4

0.7 0.303637 0.303755 3.89×10−4

0.8 0.2021 0.202188 4.37×10−4

0.9 0.100803 0.100852 4.87×10−4

1.0 0.000000 0.000000 0.000000

3 0.0 1.000000 1.000000 0.000000
0.1 0.896872 0.896889 1.9×10−6

0.2 0.793227 0.793255 3.75×10−5

0.3 0.689532 0.689569 5.41×10−5

0.4 0.586254 0.586294 6.78×10−5

Pe = 0.1 0.5 0.483854 0.483892 7.78×10−5

Ste = 0.5 0.6 0.38278 0.382813 8.59×10−5

0.7 0.283464 0.28349 9.07×10−5

0.8 0.186314 0.186331 9.27×10−5

0.9 0.0917102 0.0917185 9.10×10−5

1.0 0.000000 0.000000 0.000000
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Table 2.2: Positions of the moving boundary for different time with different
parameters.

Sr.No. Parameters t sexact snumerical Relative Error

1 1 0.46521 0.494588 6.31×10−2

2 0.65791 0.679843 3.33×10−2

3 0.80577 0.824251 2.29×10−2

4 0.93042 0.946729 1.75×10−2

Ste = 0.1 5 1.04024 1.05506 1.42×10−2

Pe = 0.5 6 1.13953 1.15324 1.20×10−2

7 1.23083 1.24367 1.04×10−2

8 1.31581 1.32794 9.21×10−3

9 1.39563 1.40717 8.26×10−3

10 1.47112 1.48216 7.5×10−3

2 1 0.70878 0.75095 5.95×10−2

2 1.00236 1.03365 3.12×10−2

3 1.22764 1.25393 2.14×10−2

4 1.41755 1.44079 1.64×10−2

Ste = 0.25 5 1.58487 1.60599 1.33×10−2

Pe = 0.25 6 1.73614 1.75571 1.12×10−2

7 1.87525 1.89360 9.78×10−3

8 2.00472 2.02210 8.67×10−3

9 2.12633 2.14289 7.79×10−3

10 2.24135 2.25721 7.07 ×10−3

3 1 0.949508 1.0013 5.54×10−2

2 1.34281 1.38082 2.41×10−2

3 1.6446 1.67631 1.92×10−2

4 1.89902 1.92695 1.47×10−2

Ste = 0.5 5 2.12316 2.14854 1.19×10−2

Pe = 0.1 6 2.32581 2.34927 1.01×10−2

7 2.51216 2.53415 8.75×10−3

8 2.68561 2.70642 7.75×10−3

9 2.84852 2.86835 6.96×10−3

10 3.00261 3.02163 6.33×10−3
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Figure 2.3: Evolution of moving melting front for different Peclet number at
ϵ = 0.5.
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Figure 2.4: Evolution of moving melting front for different Peclet number at
ϵ = 0.75.
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Figure 2.5: Temperature profile for different times at ϵ = 0.5.
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Figure 2.6: Temperature profile for different times at ϵ = 0.75.
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Figure 2.7: Comparison of moving melting front at Pe = 1, Ste = 0.2, ϵ = 0.5
and ω = π/2.
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Figure 2.8: Comparison of temperature profile at Pe = 1, Ste = 0.2, ϵ = 0.5,
ω = π/2 and t = 22.
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2.8 Conclusion

In this chapter, a finite difference scheme is successfully applied to present a nu-

merical solution of a melting problem with moving phase change material and size-

dependent thermal conductivity. From this study, it is observed that the numerical

approach is simple and sufficiently accurate for the solution of wide class of the Ste-

fan problems. It is found that the moving melting front and temperature profile are

affected by the Stefan number (Ste), Peclet number (Pe) and size-dependent thermal

conductivity (κ(s(t))). But, the effect of Stefan number is more pronounced than

the Peclet number and size-dependent thermal conductivity. For a Stefan problem

with moving PCM, it is seen that the melting process becomes slower in the case

of size-dependent thermal conductivity than that of constant thermal conductivity.

However, the melting process becomes fast for large values of Peclet numbers or/and

Stefan number. It is also observed that the presence of moving PCM increases the

melting process or the movement of melting interface. For 2s(
√
s2 + 1 − s) ≈ 1

and ϵ = 0, the problem reduces to a special case of [111] and the solution of the

moving melting front becomes proportional to
√
t which is similar to classical Stefan

problem [100].

***********
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