
Chapter 4

Superpower Graphs of Some

non-Abelian Finite Groups

In this chapter, we first explore the undirected superpower graphs S(D2n) and S(T4n)

of the dihedral group D2n and dicyclic group T4n. Among the class of non-Abelian

groups, these groups have their own importance as they hold a fundamental place

and that they also appear as a subgroup of many groups. Our motive is to explore

the structural properties of superpower graph of these groups and see how they differ

from its corresponding power graph. In Section 4.1 we delve into the superpower

graph of dihedral groups and determine the tight bounds for the vertex connectivity

of S(D2n) in Subsection 4.1.1. In addition, we also study the edge connectivity of

S(D2n) in Subsection 4.1.2, and compute their exact value with the help of minimum

degree for some special values of n. In Subsection 4.1.3, we give Hamiltonian-like

properties for S(D2n). Similarly, in Section 4.2, we examine the superpower graphs

of dicyclic groups and give bounds for the vertex connectivity and Hamiltonian-like

properties for S(T4n), respectively in Subsections 4.2.1 and 4.2.2.
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4.1 Superpower Graphs of Dihedral Groups

Before going further, observe that finding the size and number of equivalence classes

in arbitrary group G is difficult. With this in our mind, we consider the Dihedral

group D2n of order 2n (Recall that D2n = {⟨a, b⟩|an = b2 = e, aba = b}) and study

about the superpower graph of the same. To do this, we first identify the equivalence

classes of D2n with the following notation. Let wn(G) = [a] = {ai | gcd(i, n) =

1, 1 ≤ i ≤ n}, w2(G) = [b] = [a
n
2 ] =

n⋃
i=1

{aib} ∪ {an
2 }, w1(G) = [an] = {e} and

for each non-trivial divisor d( ̸= 2) of n, wd(G) = [a
n
d ] = {aid | ai ∈ [a]}. Note

that P = {[aj] | j is a divisor of n} forms a partition of D2n such that the induced

subgraph corresponding to each part [aj] in P forms a clique in S(D2n). If n is an

odd positive integer, then for each positive divisor d of n, [a
n
d ] is an equivalence class

in D2n of cardinality ϕ(d) and [b] is an equivalence class of cardinality n. Thus,

S(D2n) = ∆D2n [Kn, Kϕ(d1), . . . , Kϕ(dm)].

If n is an even integer, for every positive divisor d ̸= 2 of n, [a
n
d ] is an equivalence

class of cardinality ϕ(d) and [a
n
2 ] is an equivalence class of cardinality n+1. Hence,

for even integer n,

S(D2n) = ∆D2n [Kn+1, Kϕ(d1), . . . , Kϕ(dm)],

where d1, d2, . . . , dm (di ̸= 2 for each i, 1 ≤ i ≤ m) are all the positive divisors of n.

On the other hand, to understand the structure of S(D2n), Hamzeh and Ashrafi

[15] also described it as follows: Note that, in D2n, a
ib for every i, 1 ≤ i ≤ n, all

are involution of D2n which forms an n-vertex clique Kn in S(D2n). Thus, S(D2n)

contains two blocks, namely Kn and S(⟨a⟩). For an odd integer n, S(D2n) is formed
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by adding edges from every vertex of Kn to the identity element of D2n in the block

of S(⟨a⟩) and for even integer n ̸= 2k, S(D2n) can be obtained by joining every

vertex of Kn to every even order element of ⟨a⟩ and the identity element e in the

block S(⟨a⟩); see Figure 4.1. For n = 2k, S(D2n) forms a complete graph K2n.

In this chapter, we follow both the structural representations and use it wherever it

is convenient and/or applicable to achieve the goals. Also, we will use the notations

HD∗
2n

for the subgraph of S(D2n) induced by D∗
2n = D2n \ {e} and HD2n

for the

subgraph of S(D2n) induced by D2n = D∗
2n \ {x ∈ D2n : o(x) = n}.

a e

a3

a2

a5

a4

K6

(a) S(D12)

a a4

a2

e

a3

K5

(b) S(D10)

Figure 4.1: The superpower graphs of D12 and D10[bold line between a vertex
and a clique indicates that the vertex is adjacent to every vertex in the clique].

4.1.1 Vertex connectivity

Next, we state and prove a theorem on the vertex connectivity and minimum sepa-

rating set of S(D2n) where n ̸= 2k.

Theorem 4.1. Let n ≥ 3 be an integer and n is not a power of 2. Then the ver-

tex connectivity of the superpower graph S(D2n) of the Dihedral group D2n can be

determined from the following:

(i) κ(S(D2n)) = 1 if and only if n is an odd integer;

(ii) For even integer n ≥ 6, κ(S(D2n)) ≥ 1 + ϕ(n);
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(iii) Any minimum separating set T † for S(D2n) does not contain elements of order

2.

Proof. (i) Assume that n is an odd integer and recall the structure of S(D2n) for

an odd integer n, S(D2n) is formed by adding edges from every vertex of Kn to the

identity element of D2n in the block of S(⟨a⟩). Consider the graph HD∗
2n
, it can be

seen that there is no edge between the blocks Kn and S(⟨a⟩ \ {e}). Hence T † = {e}

is the minimum separating set of S(D2n) and so κ(S(D2n)) = 1.

Conversely, let κ(S(D2n)) = 1. Suppose n is even. Let x and y be two non-identity

arbitrary elements. Clearly, D2n contains an element e ̸= z of order n. Then

P := ⟨x, z, y⟩ is a path in the induced subgraph ⟨S(D∗
2n)⟩ of S(D2n) between x and

y. Thus, κ(S(D2n)) > 1, which is a contradiction.

(ii) Assume that n is even. Note that e and ak with gcd(n, k) = 1 are vertices of

degree 2n−1 in S(D2n) and so there are ϕ(n)+1 vertices are of degree 2n−1. Since

S(D2n) = ∆D2n [K1, Kϕ(n), HD2n
], we have κ(S(D2n)) = 1+ϕ(n)+κ(HD2n

) ≥ ϕ(n)+1.

(iii) Let T † be a minimum separating set of S(D2n). Assume that T † contains an

element of order 2. Then the equivalence class [b] ⊆ T †. Note that e ∈ T † and [b]

contains at least n elements. From this, κ(S(D2n)) = |T †| ≥ |[b]|+ 1 ≥ n+ 1. Since

κ(S(⟨a⟩)) ≤ n− 1, removing at most n from S(D2n) disconnects the same, which is

a contradiction to the minimality of T †.

Theorem 4.2. Let n ∈ N having the prime factorization n = 2α0pα1
1 pα2

2 · · · pαm
m ,

where m ∈ N and p1 < p2 < · · · < pm are odd primes, αi ∈ N, 0 ≤ i ≤ m. Then

there exists a minimal separating set T of S(D2n) with

|T | = n

2α0
+ ϕ(n) + ϕ(

n

2α0
)[2α0−1 − 2]. (4.1)
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and hence κ(S(D2n)) ≤ |T |. Also, this bound is tight.

Proof. Write Γ = HD2n
. Define

T =
⋃{

[a2
α0d] : d is a non-trivial divisor of

n

2α0

}⋃{
[a2

i

] : 1 ≤ i ≤ α0 − 1
}

It can be seen that T is a separating set of Γ, since no element of [a2
α0 ] is adjacent

to any element of D2n \ {T ∪ [a2
α0 ]}. Now we prove that T is a minimal separating

set of Γ by showing that Γ \X is connected for any proper subset X of T . Without

loss of generality assume that T \X = [a2
α0d] for some non trivial divisor d of n

2α0
.

Let x, y ∈ Γ \X be arbitrary. We have the following cases;

Case 1: When x ∈ [a
n

2id1 ] and y ∈ [a
n

2jd2 ], where d1, d2 are divisors of n
2α0

. Then

P =: ⟨x, an
2 , y⟩ is a path between x and y.

Case 2: When x ∈ [a2
α0 ], y ∈ [a

n

2id ], then P =: ⟨x, a2α0d, ad, a
n
2 , y⟩ is a path between x

and y.

Thus, T is a minimal separating set of Γ. Take T = T ∪ [a] ∪ [an], then T is a

minimal separating set of S(D2n) and

|T | =|T |+ |[a]|+ |[an]|

=
∑

d| n
2α0 ,d ̸=1, n

2α0

|[a2α0d]|+
α0−1∑
i=1

ϕ(
n

2α0−i
) + ϕ(n) + 1

=
n

2α0
+ ϕ(n) + ϕ(

n

2α0
)[2α0−1 − 2].

Finally, we show that this bound is tight when m = 2, α1 = α2 = 1. That is, when

n = 2p1p2.
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Let n = 2p1p2 where p1 < p2 are primes. Then the equivalence classes of D2n with

respect to ∼ are precisely [a2p1 ], [a2p2 ], [a2], [ap1p2 ], [ap1 ], [ap2 ] with cardinality p2−1,

p1 − 1, (p1 − 1)(p2 − 1), 2p1p2 + 1, p2 − 1 and p1 − 1 respectively, and each of these

equivalence classes is a clique in HD2n
. Thus,

Γ = ∆D2n
[K(p2−1), K(p1−1), K(p1−1)(p2−1), K2p1p2+1, K(p2−1), K(p1−1)],

as given in Figure 4.2. It is clear that deletion of any one of the cliques in Γ does

not disconnect Γ. However, deletion of any two cliques in Γ that are not adjacent

disconnect Γ. This along with Theorem 5.9 imply that a minimal separating set of

Γ is precisely the union of any two non adjacent cliques.

Also, we have the inequality |[ap1p2 ]| > |[a2]| > |[a2p1 ]| = |[ap1 ]| > |[a2p2 ]| = |[ap2 ]|.

Consequently, {[a2p2 ] ∪ [a2p1 ]} is a separating set with minimum cardinality among

all pairs of non adjacent of equivalence classes. Hence [a2p2 ] ∪ [a2p1 ] is a minimum

separating set of Γ and so κ(HD2n
) = (p1 − 1)(p2 − 1). Thus κ(S(D2n)) = ϕ(n) +

ϕ(p1) + ϕ(p2) + 1 = n
2
.

[ap1p2 ]

[ap2 ]

[a2p2 ]

[a2]

[a2p1 ]

[ap1 ]

Figure 4.2: Connectivity in HD2n
, for n = 2p1p2.

Theorem 4.3. For a positive integer n, κ(S(D2n)) = ϕ(n)+1 if and only if n = 2p,

where p is an odd prime number.
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Proof. Assume that n = 2p where p is an odd prime.

By Theorem 4.1 (ii), we have κ(S(D2n)) ≥ ϕ(n)+ 1. Since HD2n
is disconnected, we

get that we have κ(S(D2n)) ≤ ϕ(n) + 1 and hence we have κ(S(D2n)) = ϕ(n) + 1.

Conversely, assume that, for any integer n, κ(S(D2n)) = ϕ(n) + 1. For m ≥ 2, let

n = 2α0pα1
1 · · · pαm

m , where α0 ≥ 2 and α1, . . . , αm ≥ 1. Without loss of generality,

one can take that m = 2 and so n = 2α0pα1
1 pα2

2 .

Let x, y ∈ V (HD2n
) be two arbitrary vertices with o(x) = 2β0pβ1

1 pβ2

2 and o(y) =

2γ0pγ11 pγ22 where 1 ≤ βi, γj ≤ αi for each i, j, 1 ≤ i, j ≤ 2. Let z = a
n

lcm(p1,p2) ∈

V (HD2n
). Then gcd(o(x), o(z)) = pi and gcd(o(y), o(z)) = pj. Let u, v be ver-

tices in V (HD2n
) be elements of order pi and pj respectively. This gives that

P := ⟨x, u, z, v, y⟩ is a path between x and y which implies that HD2n
is connected.

Similarly, one can prove that HD2n
is connected when o(x) = 2β0 and o(y) = pγ11 pγ22 .

If n = 2kpℓ where ℓ, k > 0 are integers and either k ≥ 2 or l ≥ 2. Then one can

choose an element of order 2p and applying arguments as above, we can see that

HD2n
is connected.

In all the above cases, κ(S(D2p)) > ϕ(n) + 1, which is a contradiction.

If n = 2p1p2, then by Theorem 4.2, κ(S(D2n)) =
n
2
> ϕ(n)+1, again a contradiction.

Hence n = 2p where p is an odd prime integer.

Corollary 4.4. Let n ∈ N having the prime factorization n = 2α0pα1
1 pα2

2 · · · pαm
m ,

where m ∈ N and p1 < p2 < · · · < pm are odd primes, αi ∈ N, 0 ≤ i ≤ m. Then

ϕ(n) + 1 ≤ κ(S(D2n)) ≤ |T |.
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where |T | denotes the cardinality of minimal separating set of the minimal separating

set obtained in Theorem 4.2.

Proof. Result follows from Theorems 4.1, 4.2 and 4.3. Further, if n = 2pα1
1 pα2

2 · · · pαm
m ,

then for α0 = 1 in equation (4.1), we have

ϕ(n) + 1 ≤κ(S(D2n)) ≤ |T | ≤ n

2
.

Remark 4.5. For an even integer n, S(D2n) contains two blocks Hn and S(⟨a⟩),

where Hn is the clique containing all n involution in D2n. From this one may claim

that the connectivity of S(D2n) can be determined once the connectivity of S(⟨a⟩)

is known. In particular, one may claim that κ(S(D2n)) = κ(S(Zn)) for every even

integer n. However, this claim is not true. For consider the graph S(Z12). Then T =

{e, a, a5, a6, a7, a11} is a minimum separating set of S(Z12) and so, κ(S(Z12)) = 6.

Note that the set T
′
= {e, a, a5, a7, a11, a4, a8} is a minimum separating set of the

graph S(D24) and so κ(S(D24)) = 7 ̸= κ(S(Z12)).

In Theorems 4.2 and 4.3, while calculating the vertex connectivity of S(D2n) for

various values of n = 2α0pα1
1 pα2

2 · · · pαm
m , we noticed that the class [a2

α0 ] is not fully

contained in any minimal separating set of S(D2n). However, this is not the case

always. Motivated by this, we present the next two theorems where we find bounds

for the connectivity depending on the presence of the class [a2] in the minimal

separating set.

Theorem 4.6. Let n = 2pα1
1 pα2

2 · · · pαm
m , where m ∈ N and p1 < p2 < · · · < pm are

odd primes, αi ∈ N, 1 ≤ i ≤ m. If T is a minimal separating set of S(D2n) such

that [a2] ⊈ T, then |T | ≥ n
2
.
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Proof. Let T be a minimal separating set of S(D2n). By Theorem 4.1 (ii), we have

T = T ∪ [a] ∪ [an] where T is a minimal separating set of HD2n
. Hence it is enough

to consider a minimal separating set T of HD2n
.

Case 1. If [a
n
2 ] ⊂ T , then we have |T | ≥ |[an

2 ]| = n+ 1 > n
2
.

Case 2. Assume that [a
n
2 ] ⊈ T . We claim that, for every non-trivial divisor d of

n

2
= pα1

1 pα2
2 · · · pαm

m either [a
n
d ] ⊆ T or [a

n
2d ] ⊆ T . Suppose not assume that [a

n
d ] ⊈ T

and [a
n
2d ] ⊈ T for a non-trivial divisor d of

n

2
. Let x, y ∈ V (HD2n

) \ T .

Case 2.1. If x ∈ [a
n
d1 ], y ∈ [a

n
d2 ] for some non-trivial divisors d1, d2 of n

2
, then

P := ⟨x, a2, y⟩ is a path between x and y in HD2n
which is a contradiction to T is a

separating set of HD2n
.

Case 2.2. If x ∈ [a
n

2d1 ], y ∈ [a
n

2d2 ], then P := ⟨x, an
2 , y⟩ is a path between x and y,

again a contradiction.

Case 2.3. If x ∈ [a
n
d1 ], y ∈ [a

n
2d2 ], then P := ⟨x, a2, an

d , a
n
2d , a

n
2 , y⟩ is a path between

x and y, again a contradiction.

Thus, for every non-trivial divisor d of
n

2
= pα1

1 pα2
2 · · · pαm

m either [a
n
d ] ⊆ T or [a

n
2d ] ⊆

T which implies that |T | ≥
∑

d|n
2
,d ̸=1,n

2

ϕ(d) =
n

2
− ϕ(n)− 1 and so |T | ≥ n

2
.

Corollary 4.7. Let n ∈ N having the prime factorization n = 2pα1
1 pα2

2 · · · pαm
m , where

m ∈ N and p1 < p2 < · · · < pm are odd primes, αi ∈ N, 1 ≤ i ≤ m. If T † is a

minimum separating set of S(D2n) such that [a2] ⊈ T , then

κ(S(D2n)) =
n

2
.

Proof. Result follows from Corollary 4.2 and Theorem 4.6.

Theorem 4.8. Let n = 2pα1
1 pα2

2 · · · pαm
m where αi ∈ N and 2 < p1 < p2 · · · < pm are

primes. For each i, 1 ≤ i ≤ m, there exists a minimal separating set Ti of S(D2n)

such that [a2] ⊂ Ti with |Ti| =
∑
d| n

2p
αi
i

ϕ(d) + 2ϕ(n) and κ(S(D2n)) ≤ |Tm|.
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Proof. Consider the graph HD2n
.

Let Ti =
⋃{

[a2d] : d is a non-trivial divisor of
n

2pαi
i

}
∪ [a2] ∪ [ap

αi
i ]. Observe that

there is no path between the vertices a2p
αj
j and a2p

αk
k , for j ̸= k and 1 ≤ j, k ≤ m in

HD2n
\ Ti. Hence, for each i, Ti is a separating set of HD2n

and |Ti| =
∑

d| n

2p
αi
i

ϕ(d) +

ϕ(n
2
) − 1. Next we show the minimality of Ti. Let x, y be any two vertices from

HD2n
\X where X = Ti \ {z}, where z ∈ [a2d

′
] for d

′
is a non-trivial divisor of

n

2pαi
i

.

We show that x and y are connected in HD2n
\ X. The following cases arises: Let

d1 and d2 be the divisors of
n

2
.

Case 1. If x ∈ [a2p
αi
i ] and y ∈ [ad1 ], then P := ⟨x, a

n

d
′ , a

n

2d
′ , a

n
2 , y⟩ is a required path

between x and y.

Case 2. If x ∈ [a2p
αi
i ] and y ∈ [a2d1 ], then P := ⟨x, a

n

d
′ , a

n

2d
′ , a

n
2 , ad1 , y⟩.

Case 3. If x ∈ [ad1 ], y ∈ [ad2 ],then P := ⟨x, an
2 , y⟩.

Case 4. If x ∈ [ad1 ], y ∈ [a2d2 ], then P := ⟨x, an
2 , ad2 , y⟩.

Case 5. If x ∈ [a2d1 ], y ∈ [a2d2 ], then P := ⟨x, ad1 , an
2 , ad2 , y⟩.

Similarly, we can show that HD2n
\ {Ti \ {z ∈ [a2]}} and HD2n

\ {Ti \ {z ∈ [ap
αi
i ]}}

is connected. Finally, take Ti = Ti ∪ [a] ∪ [an], then for each i, 1 ≤ i ≤ m, Ti

is minimal separating set of S(D2n) such that [a2] ⊂ Ti with |Ti| =
∑

d| n

2p
αi
i

ϕ(d) +

ϕ(n
2
) + ϕ(n) =

∑
d| n

2p
αi
i

ϕ(d) + 2ϕ(n). Further, |Tm| ≤ |Tm−1| ≤ · · · ≤ |T1|. Hence

κ(S(D2n)) ≤ |Tm|.
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4.1.2 Edge connectivity

In [44], it is shown that κ
′
(Γ) = δ(Γ) for any graph Γ whose diameter is at most 2.

For any finite group G, the vertex e is adjacent to all the other vertices in S(G) and

so diam(S(G)) ≤ 2. From this, we have κ
′
(S(G)) = δ(S(G)) for any group G. Hence,

to find the edge connectivity of S(D2n), it is enough to find its minimum degree.

With this observation, let us find the minimum degree for special values of n. Note

that any two elements of the group G having same order has the same degree in the

corresponding graph S(G). However, converse is not true. For example, when n is

even, degS(D2n)(e) = degS(D2n)(a) = 2n − 1 in S(D2n) where as e, a ∈ D2n are not

of the same order. In the following theorem, we obtain sharp upper bounds for the

minimum degree of S(D2n) for some special values of n.

Theorem 4.9. Let n be a positive integer and n ̸= 2k, k ∈ N. Then δ(S(D2n)) ≤

n− 1. Also, equality holds if and only if n = pk for some odd prime p and k ∈ N.

Proof. Since n ̸= 2k, there exists a non-negative integer ℓ and an odd integer m such

that n = 2ℓm. Let x = a2
ℓ
. Then o(x) = m and so degS(D2n)(x) ≤ n − 1 in S(D2n)

and so δ(S(D2n)) ≤ degS(D2n)(x) ≤ n− 1.

To prove the other part of the statement, let n = pk for some odd prime p and

k ∈ N. Then degS(D2n)(a
n
r ) = n − 1 for every positive divisor r(1 < r < n) of n

and so δ(S(D2n)) = n − 1. Conversely, assume that δ(S(D2n)) = n − 1. Suppose

n has at least two odd distinct prime divisors say p1 and p2. Then n = pα1
1 pα2

2 m

where m ≥ 1 is an integer and relatively prime to both p1 and p2. Let n1 = pα2
2 m,

n2 = pα1
1 m, x = an1 and y = an2 are non-adjacent vertices in S(D2n) having odd

orders, implying that δ(S(D2n)) < n − 1, a contradiction. Thus n has at most one

odd prime divisor.
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If n = 2kpl and p is an odd prime, then it should be noted that degS(D2n)(x) ≤

n − 1 for every element x ̸= e of odd order and for every element y of even order,

degS(D2n)(y) ≥ n in S(D2n). Consequently, δ(S(D2n)) is attained by the vertex of

odd order. Thus, it is enough to show that degS(D2n)(x
2kpl−α

)−degS(D2n)(x
2kpl−β

) ≥ 0

for any α ≤ β, 0 ≤ α, β ≤ l.

degS(D2n)(x
2kpl−α

)− degS(D2n)(x
2kpl−β

)

=

(
l∑

i=1

ϕ(pi) +
k∑

i=1

∑
j≥α

ϕ(2ipj)

)
−

(
l∑

i=1

ϕ(pi) +
k∑

i=1

∑
j≥β

ϕ(2ipj)

)

=
k∑

i=1

β−1∑
j=α

ϕ(2ipj) ≥ 0.

Hence x2k is of minimum degree among all the vertices of S(D2n) and

degS(D2n)(x
2k) = δ(S(D2n)) =

l∑
i=1

ϕ(pi) +
k∑

i=1

ϕ(2ipl) = 2kϕ(pl) + pl−1 − 1 ̸= n− 1,

a contradiction. Hence n is a power of odd prime.

In the following theorem, we present a lower bound for the edge connectivity of

S(D2n) for any integer n ∈ N.

Theorem 4.10. Let n ∈ N and p be the largest prime divisor of n. Then

κ′(S(D2n)) = δ(S(D2n)) ≥
n

p
.

Proof. Let x ∈ S(D2n) be a non-identity element of odd order m. Then degS(D2n)(x)

in S(D2n) is given by
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degS(D2n)(x) = m+
∑

km|n,k ̸=1

ϕ(km)− 1

Thus, we have,

degS(D2n)(x) ≥ m+ ϕ(n)− 1.

Recall that, if n is a natural number and p is the greatest prime divisor of n, then

ϕ(n) ≥ n

p
[45, Lemma C]. Hence degS(D2n)(x) ≥ m − 1 +

n

p
. Since m − 1 > 0, this

gives δ(S(D2n)) ≥
n

p
.

Now we find an exact expression for δ(S(D2n)), for some special values of n.

Theorem 4.11. Let n = 2kpα1
1 pα2

2 where p1 < p2 are odd prime numbers and the

integers k, α1 > 0 and α2 ≥ 0. Then δ(S(D2n)) = pα1−1
1 (1 − 2kpα2

2 ) + 2kpα1
1 pα2

2 − 1

and it is attained by degS(D2n)(a
2kp

α2
2 ).

Proof. We will make the four claims about the degree of the vertices based on the

order of the element in D2n.

Claim 1. Among all vertices of the form a2
kp

α1−β1
1 p

α2
2 , for 0 ≤ β1 ≤ α1, the vertex

a2
kp

α2
2 has the minimum degree.

For 0 ≤ γ1 ≤ β1 ≤ α1,

degS(D2n)(a
2kp

α1−γ1
1 p

α2
2 )− degS(D2n)(a

2kp
α1−β1
1 p

α2
2 )

=

{
pα1
1 − 1 +

α1∑
i≥γ1

α2∑
j=1

ϕ(pi1p
j
2) +

α1∑
i≥γ1

α2∑
j=1

k∑
r=1

ϕ(2rpi1p
j
2) +

k∑
r=1

α1∑
i≥γ1

ϕ(2rpi1)

}

−

{
pα1
1 − 1 +

α1∑
i≥β1

α2∑
j=1

ϕ(pi1p
j
2) +

α1∑
i≥β1

α2∑
j=1

k∑
r=1

ϕ(2rpi1p
j
2) +

k∑
r=1

α1∑
i≥β1

ϕ(2rpi1)

}
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=

β1−1∑
i=γ1

ϕ(pi1)

α2∑
j=1

ϕ(pj2) +

β1−1∑
i=γ1

ϕ(pi1)
k∑

r=1

ϕ(2r) +

β1−1∑
i=γ1

ϕ(pi1)

α2∑
j=1

ϕ(pj2)
k∑

r=1

ϕ(2r)

=

β1−1∑
i=γ1

ϕ(pi1)[(p
α2
2 − 1) + (2k − 1) + (pα2

2 − 1)(2k − 1)]

≥ 0.

Thus, among all vertices of the form a2
kp

α1−β1
1 p

α2
2 , we find that a2

kp
α2
2 has the minimum

degree.

Claim 2. Similar to proof of Claim 1, one can show that degS(D2n)(a
2kp

α1
1 p

α2−γ2
2 ) ≥

degS(D2n)(a
2kp

α1
1 p

α2−β2
2 ), for 0 ≤ γ2 ≤ β2 ≤ α2 and hence among all the vertices of the

form a2
kp

α1
1 p

α2−β2
2 , for 0 ≤ β2 ≤ α2, the vertex a2

kp
α1
1 has the minimum degree.

Now let us compare the minimum degree obtained for vertices in Claims 1 and 2.

Claim 3. degS(D2n)(a
2kp

α1
1 ) ≥ degS(D2n)(a

2kp
α2
2 ).

For,

degS(D2n)(a
2kp

α1
1 )− degS(D2n)(a

2kp
α2
2 )

=

{
pα2
2 − 1 +

α1∑
i=1

ϕ(pi1p
α2
2 ) +

k∑
r=1

ϕ(2rpα2
2 ) +

k∑
r=1

α1∑
i=1

ϕ(2rpi1p
α2
2 )

}

−

{
pα1
1 − 1 +

α2∑
j=1

ϕ(pα1
1 pj2) +

k∑
r=1

ϕ(2rpα1
1 ) +

k∑
r=1

α2∑
j=1

ϕ(2rpα1
1 pj2)

}

=pα2
2 − pα1

1 + ϕ(pα2
2 )[2k(pα1

1 − 1) + 2k − 1]− ϕ(pα1
1 )[2k(pα2

2 − 1) + 2k − 1]

={2kpα1−1
1 pα2−1

2 (p2 − p1) + pα2−1
2 − pα1−1

1 } ≥ 0.

Thus, among all the vertices of the form a2
kp

α1
1 and a2

kp
α2
2 , we get the minimum

degree is attained by degS(D2n)(a
2kp

α2
2 ).
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Finally, now we shall an any arbitrary element of the form a2
kp

α1−α
1 p

α2−β
2 with elements

of the form a2
kp

α2
2 for 0 ≤ α ≤ α1, 0 ≤ β ≤ α2.

Claim 4. degS(D2n)(a
2kp

α1−α
1 p

α2−β
2 ) ≥ degS(D2n)(a

2kp
α2
2 ) for 0 ≤ α ≤ α1, 0 ≤ β ≤ α2.

For,

degS(D2n)(a
2kp

α1−α
1 p

α2−β
2 )− degS(D2n)(a

2kp
α2
2 )

=

{
pα1p

β
2 − 1 +

α1∑
i≥α

α2∑
j≥β

ϕ(pi1p
j
2) +

k∑
r=1

α1∑
i≥α

α2∑
j≥β

ϕ(2rpi1p
j
2)− ϕ(pα1p

β
2 )

}

−

{
pα1
1 − 1 +

α2∑
j=1

ϕ(pα1
1 pj2) +

k∑
r=1

ϕ(2rpα1
1 ) +

k∑
r=1

α2∑
j=1

ϕ(2rpα1
1 pj2)

}

=

{
2k(pα1

1 −
α−1∑
i=0

ϕ(pi1))(p
α2
2 −

β−1∑
j=0

ϕ(pj2)) + pα−1
1 pβ2 + pα1p

β−1
2 − pα−1

1 pβ−1
2

}

−
{
2kpα1

1 pα2
2 − 2kpα1−1

1 pα2
2 + pα−1

1

}
=
{
2k(pα1

1 − pα−1
1 )(pα2

2 − pβ−1
2 ) + pα−1

1 pβ2 + pα1p
β−1
2 − pα−1

1 pβ−1
2

}
−
{
2kpα1

1 pα2
2 − 2kpα1−1

1 pα2
2 + pα−1

1

}
=
{
2kpα1−1

1 pβ−1
2 (1− p2) + 2kpα1−1

1 pβ−1
2 (pα2−β+1

2 − 1) + pα1−1
1 pβ2

+pα1p
β−1
2 − pα−1

1 pβ−1
2 − pα1−1

1

}
≥ pα1−1

1 pβ2 + pα1p
β−1
2 − pα−1

1 pβ−1
2 − pα1−1

1

= pα1−1
1 (pβ2 − 1) + pα−1

1 pβ−1
2 (p1 − 1) ≥ 0.

From all the above claims, we find that the element a2
kp

α2
2 has the minimum degree.

δ(S(D2n) =degS(D2n)(a
2kp

α2
2 )

={pα1
1 − 1 +

α2∑
j=1

ϕ(pα1
1 pj2) +

k∑
r=1

ϕ(2rpα1
1 ) +

k∑
r=1

α2∑
j=1

ϕ(2rpα1
1 pj2)}.

Hence the proof.
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Note that in the above theorem we considered n as an even integer. In the following,

we present a similar result for n is an odd integer. In fact we consider n is either a

product of three distinct primes or product of powers of two distinct primes. Since

the proof is similar to the proof of Theorem 4.11, we omit the proof for brevity.

Theorem 4.12. Let n ∈ N and p1 < p2 < p3 be prime numbers.

(i) If n = p1p2p3, then δ(S(D2n)) = ϕ(n) + p1p2 − 1 and it is attained through the

element ap1p2.

(ii) Let n = pα1
1 pα2

2 and α1, α2 ∈ N. Then δ(S(D2n)) = pα1
1 +pα1−1

1 (p1−1)(pα2
2 −1)−1

and it is attained through the element ap
α2
2 .

Theorem 4.13. The superpower graph S(D2n) is critically edge connected if and

only if n = 2k.

Proof. If n ̸= 2k, then there exists an edge ε in S(D2n) which is incident to vertices

b and ab. By Theorem 4.9, κ
′
(S(D2n)) = κ

′
(S(D2n \ {ε})), hence S(D2n) is not

critically edge connected. If n = 2k then S(D2n) = K2n and hence S(D2n) is

critically edge connected .

4.1.3 Hamiltonian property and its variations

In this section, we explore the Hamiltonian-like properties of S(D2n).

To check whether S(D2n) is Hamiltonian, we would like to first identify the elements

of D2n which will go in a specific equivalence class. Then combining with the fact

that each equivalence class of S(D2n) induces a clique, which will help us to construct

the required Hamiltonian cycle in S(D2n).

Theorem 4.14. Let n ≥ 3 be any integer. Then the following are equivalent:
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(i) The superpower graph S(D2n) is Hamiltonian;

(ii) n is an even integer;

(iii) The superpower graph S(D2n) is 1-Hamiltonian.

Proof. (i) ⇒ (ii). Assume that S(D2n) is Hamiltonian. If n is an odd integer, then

HD∗
2n

is disconnected and number of components of HD∗
2n

is 2 which is more than the

number of vertices in a minimum separating set. Hence S(D2n) is not Hamiltonian

when n is odd, a contradiction.

(ii) ⇒ (i). Assume that n is an even integer. If t denotes the total number of

non-trivial divisors of n, then we have t disjoint cliques in HD2n
. One can check

that t < ϕ(n) + 1. Since each of t cliques has a spanning path whose initial and

terminating vertices are adjacent to every vertex of [a] ∪ [an], we get a Hamiltonian

cycle in S(D2n) as follows (see Figure 2).

Let d1 < d2 < · · · < dt be the ordering of the non-trivial divisors of n. Start from

any vertex v1 of [a] ∪ [an], go to any vertex of [ad1 ] and traverse along the spanning

path in [ad1 ] and come back to another unused vertex v2 of [a]∪ [an]. From v2 go to

any vertex of [ad2 ] and repeat the process until all the cliques [ad] are covered. Since

t < ϕ(n) + 1, there are sufficient number of vertices in [a] ∪ [an] to connect each of

disjoint cliques. Finally, complete the cycle by using the remaining unused vertices

of [a] ∪ [an] and reach back to v1.

(ii) ⇒ (iii). Assume that n is an even integer. As discussed earlier, D2n can be

expressed as the disjoint union of [ad] for every divisor d of n. Let g ∈ V (S(D2n)),

if g ∈ [ad] for some non-trivial divisor d of n, then S([ad]) \ {g} remains a clique and

so it has a spanning path whose initial and terminal vertices can be joined by two

different vertices of [a]∪ [an]. Now, the proof follows along the same lines discussed
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a
a5

a7
a11
e

a2

a10

a4

a8 a9

a3

aib

a6
[a2][a6]

[a3][a4]

[a] ∪ [a12]

Figure 4.3: Hamiltonian cycle in S(D24)

above. If g ∈ [a] ∪ [an], then t, total number of non-trivial divisors of n is less than

ϕ(n) + 1. Thus, S(D2n) \ {g} contains a Hamiltonian cycle implying that S(D2n) is

1-Hamiltonian.

(iii) ⇒ (ii). Follows from the fact that S(D2n) fails to be Hamiltonian when n is an

odd integer.

Corollary 4.15. For any integer n ≥ 3, the superpower graph S(D2n) contains a

subgraph isomorphic to a wheel W2n−1 on 2n− 1 vertices if and only if n is an even

integer.

We have seen that when n is an even integer, S(D2n) contains cycles of length 2n

and 2n − 1. On the other hand, S(D2n) contains cycles of each length from 3 to

ϕ(n)+1, since [a]∪ [an] is a clique. Now the question is does S(D2n) contains cycles

each of length from ϕ(n) + 2 to 2n − 2. In the following theorem, we answer this

question in affirmative.

Theorem 4.16. For any integer n ≥ 3, the superpower graph S(D2n) is pancyclic

if and only if n is an even integer.

Proof. Let d1 be a non-trivial divisor of n. By Theorem 4.14, for any x1 ∈ [ad1 ],

S(D2n) \ {x1} is Hamiltonian. This further implies that S(D2n) contains a cycle of
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length 2n − 1. Again, choose {x2} ∈ [ad1 ] (if exists), otherwise choose {x2} ∈ [ad2 ]

for some non-trivial divisor d2 ̸= d1 of n. It is immediate that S(D2n) \ {x1, x2} is

Hamiltonian, and so S(D2n) contains a cycle of length 2n − 2. By continuing this

way one can cycles of length ϕ(n) + 2 to 2n − 2. Thus S(Dn) contains cycles of

length ℓ for each ℓ, 1 ≤ ℓ ≤ 2n and hence S(D2n) is pancyclic.

Theorem 4.17. For any edge ε in the superpower graph S(D2n), there exists a

Hamiltonian cycle in S(D2n) containing ε if and only if n is an even integer.

Proof. Assume that n is an even integer and ε = uv ∈ E(S(D2n)) be an arbitrary

edge. By making four possible cases depending on the partite sets containing u and

v and by following similar lines of proof of the Theorem 4.14, we obtain the required

result.

Even though S(D2n) is not Hamiltonian, when n is odd, we prove below that S(D2n)

contains a Hamiltonian path.

Theorem 4.18. For any odd integer n, S(D2n) contains a Hamiltonian path.

Proof. Let n be an odd integer. Then the identity element is a cut vertex of S(D2n).

Now, by considering a Hamiltonian path in S(⟨a⟩) ending at e and joining this with

the spanning path of the clique corresponding to [b], one can obtain the required

Hamiltonian path.

4.2 Superpower Graphs of Dicyclic Groups

Recall that T4n = {⟨a, b⟩ | a2n = e, an = b2, ab = ba−1} denotes the dicyclic group

of order 4n. In this section, we use the notations HT ∗
4n

for the subgraph of S(T4n)
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induced by T ∗
4n = T4n \ {e} and HT 4n

for the subgraph of S(T4n) induced by T 4n =

T ∗
4n \ {x ∈ T4n : o(x) = 2n}. By the representation in Equation (1.1), it can be seen

that the superpower graph of dicyclic group is given by

S(T4n) = ∆T4n [K2n, Kϕ(d1), . . . , Kϕ(dm)] = ∆T4n [K1, Kϕ(2n), HT 4n
],

where d1, d2, · · · , dm are all positive divisors of 2n. It is also important to note that

when n is an odd integer, then the equivalence class [b] which contains all elements

of order 4 of the group T4n is of cardinality 2n and for even integer n, [b] = [a
n
2 ]

contains 2n+ 2 elements. See the superpower graphs of dicyclic graphs when n = 5

and n = 6 as shown in Figure 4.4.

[a] [e] [b]

[a2]

[a5]

(a) S(T20)

[e]

[a]

[a2][a4]

[a6][a3] = [b]

(b) S(T24)

Figure 4.4: Superpower graphs of T20 and T24. [Every circled node is an equiva-
lence class which represents a complete graph. Bold lines between two equivalence
classes indicates that every vertex in one class is joined to every vertex in the

other.]
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4.2.1 Vertex connectivity

In this section, we give the sharp bounds for the vertex connectivity of superpower

graph S(T4n).

First, let us compare the connectivity of super power graph of dicyclic graph and the

cyclic group. Is it true that κ(S(T4n)) = κ(S(Z2n))? The answer to this question is

not in affirmative as can be seen from the following example.

Example 4.1. Consider the graph S(Z24) and the set T = {e, a, a5, a6, a7, a11, a12,

a13, a17, a18, a19, a23}. It can be verified that T is a minimum separating set of S(Z24)

and so κ(S(Z24)) = 12. However, the set T
′
= {e, a, a2, a4, a5, a7, a10, a11, a13, a14,

a17, a19, a20, a22, a23} is a minimum separating set of the graph S(T48) implying that

κ(S(T48)) = 15.

Motivated by this, we study the parameter κ(S(T4n)). We begin with a result that

shows the equivalence class [b] ⊂ T4n cannot be a part of a minimum separating set

of S(T4n).

Theorem 4.19. If T † is a minimum separating set of S(T4n), then the equivalence

class [b] ⊈ T †.

Proof. Let T † be a minimum separating set of S(T4n) and the equivalence class

[b] ⊆ T †. Then κ(S(T4n)) = |T †| ≥ 2n+ 1, since the identity element e ∈ T † and [b]

contains 2n elements. But, κ(HT 4n
) < 2n − ϕ(2n) − 2. That is, removing at most

2n− ϕ(2n)− 2 + (ϕ(2n) + 1) = 2n− 1 elements from S(T4n) disconnects the same,

which is a contradiction to the minimality of T †.

Next, we give the exact value of the connectivity of S(T4n), when n is an odd integer.
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Theorem 4.20. For any positive integer n > 1, κ(S(T4n)) = 2 if and only if n is

an odd integer.

Proof. Let n > 1 be an odd integer. Recall that S(T4n) = ∆T4n [K2n, Kϕ(d1), . . . ,

Kϕ(dm)], where d1, d2, . . . , dm are all positive divisors of 2n. Clearly, the identity

element e must be in a minimum separating set, since e is adjacent to all other

vertices of S(T4n). Take T † = {an, e}, then S(T4n) \ T † is disconnected, since there

is no path between the vertices a and a
n
2 . Hence κ(S(T4n)) = 2.

Conversely, if n is an even integer, then all vertices corresponding to the class [a] ∪

[a2n] are adjacent to all other vertices of the graph S(T4n). Also, |[a] ∪ [a2n]| =

ϕ(2n) + 1 > 2. Consequently, κ(S(T4n)) > 2 and hence n is an odd integer.

To find the upper bound of connectivity of the superpower graph of dicyclic group

for an even integer n, we partition the set of even integers into two collections,

namely (i) when n is twice an odd integer and (ii) when n is any arbitrary even

integer not in (i). In the following theorem, we first present the tight upper bound

for the vertex connectivity of S(T4n) when n is two times an odd integer.

Theorem 4.21. Let n ∈ N having the prime factorization n = 2pα1
1 pα2

2 · · · pαm
m ,

where m ∈ N and p1 < p2 < · · · < pm are odd primes, αi ∈ N, 1 ≤ i ≤ m. Then

there exists a minimal separating set T of S(T4n) with |T | = n, and κ(S(T4n)) ≤ n

and equality is attained when n = 2p1p2.

Proof. Consider the graph Γ = HT 4n
. Define

T =
⋃

{[ap
α1−β1
1 ···pαm−βm

m ]| 0 ≤ βi ≤ αi, βi ∈ N ∪ {0} and not all βi zero} ∪ {[an]}.

It can be seen that T is a separating set of Γ, since no element [a
n
2 ] is adjacent to

any element of T4n \ {T ∪ [a
n
2 ]}. That is, T divides Γ into two components namely
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S([a
n
2 ]) and S(T4n \ {T ∪ [a

n
2 ]}). Now we prove that T is a minimal separating set

of Γ by showing that Γ \ X is connected for any proper subset X of T . Without

loss of generality assume that T \X = [ad] for some non trivial divisor d of n
2
. Let

x, y ∈ Γ \X be arbitrary and d1, d2 are divisors of n
2
. We have the following cases:

Case 1: When x ∈ [a2d1 ] and y ∈ [a2d2 ]. Then ⟨x, x2, a4, y2, y⟩ is a path connecting x

and y.

Case 2: When x ∈ [a2d1 ] and y ∈ [a4d2 ]. Then ⟨x, x2, a4, y⟩ is a path connecting x and

y.

Case 3: When x ∈ [a4d1 ] and y ∈ [a4d2 ]. Then ⟨x, a4, y⟩ is a path connecting x and y.

Case 4: When x ∈ [a
n
2 ], y ∈ [a2

id1 ], i ∈ {1, 2}. Then ⟨x, ad, a2d, a4d, a4, a4d1 , y⟩ is a path

connecting x and y.

Take T = T ∪ [a] ∪ [a2n]. Then T is a minimal separating set of S(T4n). Further,

|T | =|T |+ |[a]|+ |[a2n]|

=
∑

d|n
2
,d ̸=1,n

2

|[ad]|+ 1 + ϕ(2n) + 1

=ϕ(4)
[n
2
− ϕ(

n

2
)− 1

]
+ 1 + ϕ(2n) + 1

=n.

Now, we claim that this bound coincides with κ(S(T4n)) when m = 2, α1 = α2 = 1,

that is, when n = 2p1p2.

Notice that the equivalence classes of T4n with respect to ∼ are precisely [a2p1p2 ],

[ap1p2 ], [ap1 ], [ap2 ], [a2p1 ], [a2p2 ], [a2], [a4p1 ], [a4p2 ] and [a4] with cardinalities 1, 2n+2,

2(p2 − 1), 2(p1 − 1), (p2 − 1), (p1 − 1), (p1 − 1)(p2 − 1), (p2 − 1), (p1 − 1) and
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(p1 − 1)(p2 − 1), respectively, and forms cliques in Γ; See Figure 4.5. Thus,

Γ = ∆T 4n
[K1,K2n+2, K2(p2−1), K2(p1−1), K(p2−1), K(p1−1), K(p1−1)(p2−1), K(p2−1),

K(p1−1), K(p1−1)(p2−1)].

It is clear from Figure 4.5 that deletion of at most two cliques in Γ does not dis-

connect it. However, deletion of three or more cliques in Γ can disconnect the

same. Hence a minimal separating set of Γ is precisely the union of any three or

more equivalence classes. Also, there are only two ways in which we can remove

exactly three equivalence classes to disconnect Γ, namely {[ap2 ] ∪ [ap1 ] ∪ [a2p1p2 ]}

and {[a4p2 ] ∪ [a4p1 ] ∪ [a2]}. In the rest of the cases, we need to remove at least four

equivalence classes. Consequently, T = {[ap2 ] ∪ [ap1 ] ∪ [a2p1p2 ]} is the set of classes

having minimum cardinality. Thus, T is a minimum separating set of HT 4n
and

|T | = 2p1 + 2p2 − 3. Finally, by letting T = T ∪ [a] ∪ [a2n], we get that T is a

minimum separating set for S(T4n) and |T | = n.

Note that we can not extend the above result obtained for n = 22 × 3× 5 = 60, as

the size of minimal separating set will be 6(3 − 1)(5 − 1) + 6(3 + 5) − 10 = 86 >

n. However, using another technique, we obtain a minimal separating set of size

n
22

+ ϕ( n
22
)(22+1 − 2) = 63 < 86 in the following theorem.

Theorem 4.22. Let n ∈ N having the prime factorization n = 2α0pα1
1 pα2

2 · · · pαm
m ,

where p1 < p2 < · · · < pm are odd primes and α0 > 1, αi ∈ N, 1 ≤ i ≤ m. Then

there exists a minimal separating set T of S(T4n) with |T | = n
2α0

+ ϕ( n
2α0

)(2α0+1 − 2)

and the vertex connectivity

κ(S(T4n)) ≤
n

2α0
+ ϕ(

n

2α0
)(2α0+1 − 2). (4.2)
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[a2]

[a4]

[a2p1p2 ]

[ap1p2 ]

[a2p2 ][a2p1 ]

[ap2 ][ap1 ]

[a4p1 ] [a4p2 ]

Figure 4.5: Connectivity in HT 4n

Proof. Write Γ = HT 4n
. Then it can be seen that Γ is connected, since for x, y ∈

V (Γ), if x ∈ [a
n
d1 ], y ∈ [a

n
d2 ], then ⟨x, a

n
2d1 , an, a

n
2d2 , y⟩ is a path between x and y,

where d1, d2 are non trivial divisors of n. Let

T =
⋃

{[a2α0+1d]|d is a non trivial divisor of
n

2α0
} ∪

(
α0⋃
i=0

{[a2i ]}

)
.

It can be seen that an element of [a2
α0+1

] must be of order n
2α0

, while an element of

V (Γ) \ (T ∪ [a2
α0+1

]) will be of the order
n

2γ0pγ11 · · · pγmm
, 1 < γ0 < α0 +1, 0 ≤ γi < αi.

Thus, no element of the class [a2
α0+1

] is adjacent to an element of V (Γ)\(T ∪[a2α0+1
])

implying that T is a separating set of Γ. Now, we show that T is a minimal separating

set by showing that Γ \ X is connected for any non empty proper subset X of T .

Without loss of generality assume that T \X = {[a2α0+1p
γ1
1 ···pγmm ]}. For x, y ∈ Γ \X,

following cases arise:
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Case 1: For x ∈ [a2
α0+1

] and y ∈ [a2
id], 0 ≤ i ≤ α0.

Then P := ⟨x, a2α0+1p
γ1
1 ···pγmm , a2

α0p
γ1
1 ···pγmm , an, y⟩ is a path between x and y.

Case 2: For x ∈ [a2
id1 ], y ∈ [a2

jd2 ], where d1, d2 are non trivial divisors of n
2α0+1 and

i ̸= j, 0 ≤ i, j ≤ α0. Then P := ⟨x, an, y⟩ is a path between x and y.

Letting T = T ∪ [a] ∪ [a2n], we then have T is a minimal separating set of S(T4n)

whose cardinality is given by

|T | =|T |+ ϕ(2n) + 1

=
∑

d| n
2α0 ,d ̸=1, n

2α0

|[a2α0+1d]|+
α0∑
i=1

|[a2i ]|+ ϕ(2n) + 1.

=
n

2α0
− 1 + ϕ(

n

2α0
)

α0∑
i=2

ϕ(2i) + ϕ(2n) + 1

=
n

2α0
+ ϕ(

n

2α0
)(2α0+1 − 2).

In the next theorem, we present the sharp lower bound for the vertex connectivity

of S(T4n) and also prove it is tight.

Theorem 4.23. For even integer n, κ(S(T4n)) ≥ ϕ(2n) + 2 and equality holds if

and only if n = 2p, where p is an odd prime number.

Proof. It is important to note that S(T4n) has ϕ(2n) + 1 vertices of degree 4n − 1

corresponding to the classes of elements [a]∪ [a2n] in the group T4n. Also, for x, y ∈

HT 4n
, if x ∈ [a

n
d1 ], y ∈ [a

n
d2 ], then P := ⟨x, a

n
2d1 , an, a

n
2d2 , y⟩ is a path between x and

y, where d1, d2 are non trivial divisors of n. Thus, to disconnect the graph S(T4n),

we need to remove at least ϕ(2n)+2 vertices. Consequently, κ(S(T4n)) ≥ ϕ(2n)+2.
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When n = 2p, we have HT 4n
\ [an] is disconnected, since there is no path between

the vertices a4 and ap. Thus, κ(S(T4n)) = ϕ(2n) + 2.

Conversely, assume that n is not a square free even number with at least three

prime divisors, that is, n = 2α0pα1
1 · · · pαm

m , m ≥ 2. We will show that HT 4n
\ [an]

is connected. Let x, y ∈ V (HT 4n
\ [an]) be arbitrary with o(x) = 2β0pβ1

1 · · · pβm
m and

o(y) = 2γ0pγ11 · · · pγmm where 0 ≤ βi, γi ≤ αi for each i, 0 ≤ i ≤ m. Choose an

element z = a
2n

lcm(pi,pj) ∈ V (HT 4n
\ [an]), where pi, pj are the least odd prime divisors

of o(x), o(y) respectively for which βi ̸= 0, γj ̸= 0. Two cases arises:

Case 1: When pi = pj Then gcd(o(x), o(z)) = pi and gcd(o(y), o(z)) = pi. Then,

there is an x, y-path P := ⟨x, z, y⟩ between x and y which implies that HT 4n
\

[an] is connected.

Case 2: When pi ̸= pj. Then gcd(o(x), o(z)) = pi and gcd(o(y), o(z)) = pj.

Choose u = a
2n
pi , v = a

2n
pj ∈ V (HT 4n

\ [an])). Then, there is an x, y-path

P := ⟨x, u, z, v, y⟩ between x and y which implies that HT 4n
\ [an] is connected.

Similarly, one can prove that HT 4n
is connected when o(x) = 2β0 , β0 > 1 and

o(y) = pγ11 · · · pγmm .

When n = 2p1p2, then by Theorem 4.21, κ(S(T4n)) = n > ϕ(2n)+ 2. So, we are left

with the case when n = 2kpl, where l, k > 0 are integers and either k ≥ 2 or l ≥ 2.

Then, choose an element a
n
2p and applying similar argument given above, we can see

that HT 4n
\ [an] is connected. Hence n = 2p.

Corollary 4.24. Let n ∈ N having the prime factorization n = 2pα1
1 pα2

2 · · · pαm
m ,

where p1 < p2 < · · · < pm are odd primes and αi ∈ N, 1 ≤ i ≤ m. Then

ϕ(2n) + 2 ≤ κ(S(T4n)) ≤ n.
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Proof. Result follows from Theorem 4.21 and Theorem 4.23.

Corollary 4.25. Let n ∈ N having the prime factorization n = 2α0pα1
1 pα2

2 · · · pαm
m ,

where p1 < p2 < · · · < pm are odd primes and α0 > 1, αi ∈ N, 0 ≤ i ≤ m, m ∈ N.

Then

ϕ(2n) + 2 <κ(S(T4n)) ≤
n

2α0
+ ϕ(

n

2α0
)(2α0+1 − 2).

Proof. Results follows from Theorem 4.22 and Theorem 4.23.

4.2.2 Hamiltonian property and its variations

It can be observe that all the results in the Subsection 4.1.3 which we have proved

for S(D2n) can be obtained with the same technique for S(T4n). So we are stating

them without proof.

Theorem 4.26. Let n be any positive integer. Then

(i) S(T4n) is Hamiltonian for any n ≥ 3.

(ii) S(T4n) is 1-Hamiltonian for any n ≥ 4.

(iii) S(T4n) is pancyclic for every integer n ≥ 3.

(iv) For any edge ε in the superpower graph S(T4n), there exists a Hamiltonian

cycle in S(T4n) containing ε, n ≥ 3.

(v) S(T4n) contains a Hamiltonian path.

***********


