
Chapter 3

Superpower Graphs of Finite

Abelian Groups

In this chapter and rest of the thesis, we will explore an interesting class of graphs

derived from groups, namely the Superpower graphs. Recall from Definition 1.4,

that for a finite group G, the superpower graph S(G) is an undirected simple graph

with vertex set G and any two distinct vertices are adjacent in S(G) if and only if

the order of one divides the order of the other in G. We first set the preliminaries

on Abelian groups required for proving our results.

Theorem 3.1 ([43], Theorem 8.2). Let G1 and G2 be two finite cyclic groups. Then

their external direct product G1 ×G2 is cyclic if and only if orders o(G1) and o(G2)

are relatively prime.

Theorem 3.2 ([43], Theorem 11.1). Every finite Abelian group is the direct product

of cyclic groups of prime-power order. Moreover, the number of terms in the direct

product and the orders of the cyclic groups are uniquely determined by the group.
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The above theorem actually gives for a finite Abelian group G, G ∼= Zp
α1
1

× Zp
α2
2

×

· · · × Zpαm
m

, where the cyclic groups Zp
α1
1
, Zp

α2
2

and Zpαm
m

are uniquely determined

by G. The following is a known characterization of finite Abelian groups through

elementary divisors of the same.

Theorem 3.3 ([43], Chapter 11). Let G be a finite Abelian group of order n =

pα1
1 .pα2

2 . · · · pαm
m , where each pi is prime and αi ∈ N. Then G ≃ Zn1 ×Zn2 ×· · ·×Znk

,

where n1 ≥ n2 ≥ · · · ≥ nk, nj|ni for each j ≥ i, 1 ≤ j ≤ k and n1n2 · · ·nk =

o(G).

Lemma 3.4 ([43], Chapter 11). Let G be a finite Abelian group having an element

x of maximum nontrivial order. Then o(g) divides o(x) ∀ g ∈ G.

In Section 3.1, we first understand the structure of a superpower graph defined on

any finite group. In Section 3.2, we identify the set of dominant vertices of S(G)

followed by results on vertex connectivity in Section 3.3. In Section 3.4, we study

the Hamiltonian-related properties for S(G) when defined on a finite Abelian group.

3.1 Structure of Superpower Graph of any Finite

Group

Asma Hamzeh et al.[15] proved that, for any group G of order n, the superpower

graph S(G) is complete if and only if n = pk for some prime number p and k ∈ N.

Theorem 3.5 ([15], Theorem 2.3). Let G be a finite group. The superpower graph

S(G) is complete if and only if G is a p-group.
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Recall that, it was proved in [22], [19] that S(G) can be considered as a join of

complete graphs as stated in Equation (1.1) of Chapter 1.

S(G) = ∆G[KΩr1
, KΩr2

, · · · , KΩrm
],

where Kn denote the complete graph on n vertices.

In view of this, we give the following lemma.

Lemma 3.6. Let G be a group and p be a prime number such that pα divides o(G)

for some α ∈ N. Then Kpα is an induced subgraph of the superpower graph S(G).

Proof. Let p be a prime number such that pα divides order ofG. By Sylow’s theorem,

G has a subgroup H of order pα. Note that any two elements of H are adjacent in

S(G), since their orders are some powers of p. Thus, the elements of H induces a

Kpα in S(G).

3.2 Dominant Set

It is a well known fact that dominant vertices play an important role in characteri-

zation of graphs. In fact, if a graph contains a dominant vertex, then it is connected

and diameter is at most two. Thus, it is interesting to find out the set of all dom-

inant vertices in S(G). Note that for any group G, the identity element, e, of G is

a dominant vertex in S(G). So, we say a graph S(G) is dominatable, if it contains

dominant vertices other than identity, that is | dom(S(G))| > 1. In the following

theorem, we find the number of dominant vertices in S(G) for any finite Abelian

non p-group G.
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Theorem 3.7. Let G be a finite Abelian non p-group of order n and dom(S(G)) be

the set of all dominant vertices in the superpower graph S(G) of G. Then the size of

dominant set, |dom(S(G))| = tϕ(n1)+1, where n1 is the largest order of an element

in the group and t is the number of distinct cyclic subgroups of order n1 in G.

Proof. Let G be a finite Abelian group of order n and let n1 be the largest order

of an element in G. For a divisor d of n, let wd = {x ∈ G : o(x) = d}. From

Lemma 3.4, vertices of wn1(G) ∪ w1(G) are adjacent to every other vertex of S(G)

and hence wn1(G) ∪ w1(G) ⊆ dom(S(G)). On the other hand, let x ̸∈ dom(S(G)).

This gives that 1 < o(x) < n1 ≤ o(G). Further by Lemma 3.4, o(x) | n1. Let y be

an element in G such that o(y) = n1

o(x)
. It is trivial that such an element y exists

always and x is not adjacent to y. So x is not an element of wn1(G) ∪ w1(G).

Hence dom(S(G) ⊆ wn1(G) ∪ w1(G). Thus wn1(G) ∪ w1(G) = dom(S(G)). Also,

|wn1(G) ∪ w1(G)| = tϕ(n1) + 1, where t is the number of distinct cyclic subgroups

of order n1 in G. Therefore |dom(S(G))| = tϕ(n1) + 1.

As mentioned in the proof of Theorem 3.7, S(G) always contains a dominant vertex

other than identity and hence we have the following corollary.

Corollary 3.8. For any finite Abelian group G, the superpower graph S(G) is dom-

inatable.

In view of the above theorem, we also define HG as the induced subgraph induced

by the subset G = G∗ \ wn1(G) = G \ ({e} ∪ wn1(G)) of G.
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3.3 Vertex Connectivity

In this section, we will study the connectivity of superpower graphs defined on

finite Abelian groups. We first begin by giving the tight lower bound for the vertex

connectivity of S(G) for any finite Abelian group G which extend the results [38,

Theorem 2.7] and [15, Theorems 2.11].

Theorem 3.9. Let G be a finite Abelian group. Then κ(S(G)) ≥ tϕ(n1) + 1, where

n1 is the largest order of an element in G and t is the number of cyclic subgroups of

order n1 in G. Further, κ(S(G)) = tϕ(n1) + 1 if and only if G = Zr
pq or Zr1

pq × Zs1
p

or Zr2
pq × Zs2

q where p and q are two distinct primes and r, r1, r2 ≥ 1 and s1, s2 ≥ 0

are integers.

Proof. Let G be a finite Abelian group. By Theorem 3.7, to disconnect S(G), we

need to remove at least all vertices of dom(S(G)). This implies that κ(S(G)) ≥

|dom(S(G))| = tϕ(n1) + 1.

Next we prove the second part of the statement. Assume that G = Zr
pq or Zr1

pq ×Zs1
p

or Zr2
pq × Zs2

q where p and q are two distinct primes and r, r1, r2 ≥ 1 and s1, s2 ≥ 0

are integers. Note that the largest order of elements in G is n1 = pq. Let G =

G \ ({e} ∪ wn1(G)). Since there is no path between elements of order p and q, the

induced subgraph HG is disconnected. Thus κ(S(G)) = tϕ(n1) + 1.

Conversely, assume that κ(S(G)) = tϕ(n1)+1. Suppose o(G) be such that the largest

order n1 of elements in G satisfies n1 = pα1qβ1 and α1, β1 are integers, α1, β1 ≥ 1

and either α1 > 1 or β1 > 1. We will prove that κ(S(G)) > tϕ(n1) + 1 by showing

that HG is connected. For u, v ∈ V (HG), take w, x, z ∈ V (HG) with o(w) is the

least prime divisor of o(u) and o(z) is the least prime divisor of o(v) and o(x) is the

product of least prime divisors of o(u) and o(v). Then P := ⟨u,w, x, z, v⟩ is a path
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between u and v. Also, by the same way it can be shown that o(G) has at most two

prime divisors with maximum order of an element as n1 = pq in G. Otherwise, HG

is connected. Similarly, HG is connected if o(G) has at least three prime divisors.

Now, only possible groups having two prime factors with largest order as n1 = pq

will be of the form Zr
pq or Zr1

pq × Zs1
p or Zr2

pq × Zs2
q where p and q are two distinct

primes and r, r1, r2 ≥ 1 and s1, s2 ≥ 0 are integers.

Let G be a finite Abelian group of order n = pα1
1 pα2

2 · · · pαm
m ,m ≥ 2. Assume that

G ∼= Zn1 ×Zn2 × · · · ×Znk
, where ni for 1 ≤ i ≤ m are elementary divisors of G. As

stated in Theorem 3.3, nj|ni for each j ≥ i, ni ∈ N, 1 ≤ j ≤ k and n1n2 · · ·nk = n.

Let n1 = pβ1

1 pβ2

2 · · · pβs
s , 1 ≤ s ≤ m,βi ≥ 0, 1 ≤ i ≤ s be the prime decomposition of

n1. Let a0 = pβs
s , a1 = n1

a0
and π(G) = {a0, a1, a2, · · · , ar} be the set of all orders of

elements in G.

In the following theorem, we find the tight upper bound for the vertex connectivity

of S(G) using the notations defined above.

Theorem 3.10. Let G be a finite Abelian group of order n = pα1
1 pα2

2 · · · pαm
m ,m ≥ 2.

Then there exists a minimal separating set T of S(G) with

|T | =
∑

(ai|a1 or a1|ai,ai ̸=a1)

tiϕ(ai),

where ti is the number of cyclic subgroups of order ai in G. Also, this bound is tight.

Proof. Consider the graph S(G) and define a set T in S(G) as follows:

T = {wai(G)| ai|a1 or a1|ai, 2 ≤ i ≤ r},
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Clearly, T is a separating set of S(G), since there is no path between any vertices

of the cliques wa0(G) and wa1(G). Let A and B are two connected component of

S(G) \ T such that wa0(G) ∈ A and wa1(G) ∈ B. Now, we prove that this set is a

minimal separating set by showing that for any non empty subset T † of T , there is a

path, connecting u ∈ wa0(G) and v ∈ wa1(G) in S(G)\T †. Without loss of generality

assume that T \ T † = {x} with x ∈ war(G). Since either ar|a1 or a1|ar, there exists

a path P1(u, x), connecting u and x in A ∪ war(G). Similarly, let y ∈ B such that

o(y) = arp
βs
s , then there exists a path P2(y, v), connecting y to v in B. Now, consider

the path P =: ⟨P1(u, x), x, y, P2(y, v)⟩ which connect u to v in S(G) \ T †. Thus, T

is a minimal separating set of S(G). If ti, number of cyclic subgroups of order ai in

G, 1 ≤ i ≤ r. Then

|T | =
∑

(ai|a1 or a1|ai,ai ̸=a1)

tiϕ(ai).

Now, we show that the obtained bound is in fact tight. That is, the bound attained

above serves as the κ(S(G)) for the groups G ≃ Zpq, G ≃ Zpqr or G ≃ Zpqr × Zr ×

Zr × · · · × Zr, where p < q < r are primes. When G ≃ Zpq, then by Theorem 3.9,

we have that κ(S(G)) = ϕ(1) + ϕ(pq) = |T |. Let G ≃ Zpqr × Zr × · · · × Zr. By

Theorem 3.9, HG is connected. To get the vertex connectivity of S(G), it is enough

to find the vertex connectivity of HG, since if T is a minimum separating set of

HG, then T = T ∪ dom(S(G)) is a minimum separating set of S(G). Notice that

the equivalence classes of G with respect to ∼ are precisely wp(G), wq(G), wr(G),

wpq(G), wpr(G), wqr(G) and each of these equivalence classes is a clique in HG. Thus,

HG = ∆G[Kwp(G), Kwq(G), Kwr(G), Kwpq(G), Kwpr(G), Kwqr(G)],

as given in Figure 3.1. It is clear that deletion of any one of the cliques in HG

does not disconnect HG. However, deletion of any two cliques in HG that are not

adjacent can disconnect the same. This imply that a minimal separating set of HG
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is precisely the union of any two non adjacent cliques. Also, we have the inequality

|wp(G)| < |wq(G)| < |wr(G)| and |wpq(G)| < |wpr(G)| < |wqr(G)|. Heuristically,

we first add the smallest clique namely wp(G) into the minimum separating set T ,

we find that next best possible non adjacent clique having minimum cardinality is

wq(G). Thus, T = wp(G)∪wq(G) is a minimum separating set of HG implying that

T = wp(G) ∪wq(G) ∪wpqr(G) ∪w1(G) is a minimum separating set of S(G) having

the cardinality ϕ(pqr) + ϕ(p) + ϕ(q) + ϕ(1).

A similar proof holds when G ≃ Zpqr.

wqr(G)

wr(G)

wpr(G)

wp(G)

wpq(G)

wq(G)

Figure 3.1: Connectivity in HG.

3.4 Hamiltonian-Like Properties

In [18], it was proved that the power graph P(G) of any cyclic group of order at least

three is Hamiltonian [see Theorem 4.13]. In [15], it was proved that S(G) = P(G) if

and only if G is a finite cyclic group. Thus S(G) is Hamiltonian for any cyclic group

of order at least three. Natural question arises that can we extend this result for

finite Abelian groups? Unfortunately, the same question has got a negative answer

in the case of P(G). For example, P(Z2 × Z2) is not Hamiltonian. However, we

can extend this result to S(G) and the same is proved in the following theorem.
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Theorem 3.11. For any finite Abelian group G of order at least three, the super-

power graph S(G) is Hamiltonian.

Proof. Let G be a finite Abelian group of order n and n1 be the largest order of an

element in the group G. Let {d1, d2, . . . , dℓ, n1} be the divisors of n such that 1 <

d1 < · · · < dℓ < n1 ≤ n. By Lemma 3.4, di|n1 ∀ i(1 ≤ i ≤ ℓ). For any divisor d of n,

the induced subgraph Hd induced by the vertex subset wd(G) = {x ∈ G : o(x) = d}

is a clique in S(G). Now let us see a Hamiltonian cycle in S(G) as follows:

Start from the vertex v1 ∈ dom(S(G)). From v1, go to any vertex of the clique

Hd1 and traverse all vertices of Hd1 . Now we have a Hamilton path containing all

the vertices in Hd1 ∪ {v1}. Note that the terminal vertex of this Hamiltonian path

is adjacent to a vertex v2 ∈ dom(S(G)) and v2 ̸= v1. From v2, go to any vertex

of the clique Hd2 and traverse all vertices of Hd2 . Now the terminating vertex of

the resulting Hamiltonian path is adjacent to a vertex vertex v3 ∈ dom(S(G)) and

v3 ̸∈ {v1, v2}. Repeat this until all the cliques Hdi(G), 1 ≤ i ≤ ℓ are covered. Since

ℓ < |dom(S(G))|, there are sufficient number of vertices in dom(S(G)) to connect

all disjoint cliques. Finally, complete the cycle by joining all the uncovered vertices

of dom(S(G)) by path to v1. The entire process of identifying a Hamiltonian cycle

is given in Figure 3.2.

e
vs

v3
v2

v1

f1

fw

b1

by cz

c1

a1

ax

Hdℓ(G)Hd1(G)

Hdℓ−1(G)Hd2(G)

dom(S(G))

Figure 3.2: Hamiltonian cycle in S(G)
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Recall that a graph Γ is called 1-Hamiltonian if it is Hamiltonian and all of its

1-vertex-deleted subgraphs are Hamiltonian. Now, we prove that the superpower

graph S(G) is 1-Hamiltonian.

Corollary 3.12. For any finite Abelian group G with o(G) ≥ 4, the superpower

graph S(G) is 1-Hamiltonian.

Proof. Let n1 be the largest order of an element in the group G and let g ∈ G. If

o(g) = d < n1, then g is a vertex in the clique induced by wd for the divisor d of

o(G). Further Hd \ {g} remains as a clique and so it has a spanning path whose

initial and terminal vertices can be joined by two different vertices of dom(S(G)).

Now, the proof can be completed as in the case of Theorem 3.11.

If o(g) = n1, then g ∈ dom(S(G)). As seen in the proof of Theorem 3.11, there are

sufficient number of vertices in dom(S(G)) \ {g} to connect all the disjoint cliques

corresponding to all proper divisors of o(G). Hence the required Hamiltonian cycle

can be obtained as in Theorem 3.11. Thus, S(G)\{g} contains a Hamiltonian cycle

implying that S(G) is 1-Hamiltonian.

Corollary 3.13. For any finite Abelian group G of order at least three, the super-

power graph S(G) is pancyclic.

Proof. Let o(G) = n ≥ 3 and n1 be the largest order of an element in the group G.

Let {d1, d2, . . . , dℓ, } be the set of all nontrivial divisors of n1 with d1 < d2 < · · · <

dℓ < n1 ≤ n. By Theorem 3.7, the subgraph induced by dom(S(G)) is a clique of

size tϕ(n1) + 1 and so we have cycles of lengths from 3 to tϕ(n1) + 1 in S(G). Also,

from Theorem 3.11 we know that S(G) contains a cycle of length n.

For any g1 ∈ V (S(G)), by Corollary 3.12, S(G)\{g1} is Hamiltonian and thus S(G)

contains a cycle of length n − 1. Note that, in the proof of Corollary 3.12, we see
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that as long as we keep choosing a vertex g ∈ wd1 ⊂ V (G) \ dom(S(G)), obtaining

a cycle containing remaining vertices is immediate. Choose g2 ∈ wd1(G) (if exists),

otherwise choose {g2} ∈ wd2(G) for some non-trivial divisor d2 ̸= d1 of n and we

immediately get that S(G) \ {g1, g2} is Hamiltonian. So S(G) contains a cycle of

length n − 2. Recursively deleting the vertices of wdi for each i, 1 ≤ i ≤ l, we can

get cycles of length n − 2 to tϕ(n1) + 2. Thus S(G) contains cycles of all length ℓ

for 3 ≤ ℓ ≤ n and hence S(G) is pancyclic.

It is not always true that there exists a Hamiltonian path between any pair of

vertices in a graph even if it a Hamiltonian. However, this happens in the case of

the superpower graph S(G) of any finite Abelian group G and hence we have the

following result.

Corollary 3.14. For any finite Abelian group G, the superpower graph S(G) is

Hamiltonian connected.

Proof. Let u, v ∈ V (S(G)) be two distinct vertices in S(G). Without loss of gen-

erality, one can take u = v1 ∈ wd1(G) and v = v2 ∈ wd2(G) where d1 and d2 are

two non-trivial distinct divisors of o(G). Start from the vertex v1 and traverse along

the spanning path in Hd1(G) and join it with a vertex v3 of dom(S(G)). From v3

go to any vertex of Hd3(G) and repeat the process until all vertices of the cliques

Hdi(G)∪dom(S(G)), 3 ≤ i ≤ ℓ belongs to the path such that vℓ ∈ dom(S(G)) is the

last vertex of this path. Now, join vℓ to a vertex x ̸= v2 of Hd2(G). Upon completing

the path from x to v2 in Hd2(G), we obtain the required Hamiltonian path between

u and v in S(G).

Corollary 3.15. For any finite Abelian group G, the superpower graph S(G) is pan

connected.



Chapter 3. Superpower Graphs of Finite Abelian Groups 42

Proof. Let u, v ∈ V (S(G)) be two distinct non-adjacent vertices in S(G). Then

there always exists a path of every length from 2 to n. Now the required path

can be obtained by inserting the vertices from Hdi ∪ dom(S(G)), 1 ≤ i ≤ ℓ in such

a way that any two vertices of cliques Hdi , Hdj can be joined through a vertex of

dom(S(G)).

Now a natural question arises that what will be the effect on Hamiltonian of the

graph S(G), if we remove all dominant vertices from it? In the following theorem,

we are giving the answer to this question.

Theorem 3.16. Let G be a finite Abelian non p-group and n1 be the largest order

of an element in the group G. Let wn1(G) = {x ∈ G : o(x) = n1}. Then the induced

subgraph HG of the superpower graph S(G) induced by G = G \ ({e} ∪ wn1(G)) is

Hamiltonian if and only if n1 is not a product of two distinct primes.

Proof. Assume that HG is Hamiltonian. If n1 = pq for two distinct primes p and q,

then HG = Hp ∪ Hq is disconnected as there is no path connecting the vertices of

Hp and Hq, a contradiction.

Conversely, assume that n1 is not a product of two distinct primes. i.e., n1 =

pβ1

1 pβ2

2 · · · pβm
m and βi ∈ N,m ≥ 2 and p1 < · · · < pm are distinct primes. Since G is

not a p-group, m ≥ 2. By the assumption on n1, we have either β1 > 1 or β2 > 1 or

m ≥ 3. Since G is not a p-group and by the assumption on n1, the largest order of

an element in the set G = G \ ({e} ∪ wn1(G)) will be
n1

p1
(= n1, say).

Let wn1(G) = {b1, · · · , bs} be the set of all elements of order n1. Let {d1, . . . , dℓ} be

the set of all non trivial divisors of n1 with 1 < d1 < d2 < · · · < dℓ < n1. Let wdi
(G)

be the set of all elements of order di in G and let Hdi
be the subgraph induced

by wdi
(G). For each i, 1 ≤ i ≤ ℓ, let PHdi

= ⟨vi, ui · · · , xi⟩ be the Hamiltonian
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path in Hdi
. Then the induced subgraph H of HG on the vertices of

⋃
1≤i≤ℓ

wdi
∪

wn1 is Hamiltonian, since C = ⟨b1, PHd1
, b2, PHd2

, b3, · · · , bℓ, PHdℓ
, bℓ+1, · · · , bs⟩ is a

Hamiltonian cycle in H.

It remains for us to include remaining vertices from HG \ H into C appropriately

to get Hamiltonian cycle in HG. Based on the condition on n1, we observe that the

only possible subsets of different orders in G \ {
⋃

1≤i≤ℓ

wdi
(G) ∪ wn1(G)} are of the

form wp1β1 (G) and w
p
β1
1 r

(G), where r = di, for some i, 1 < i ≤ ℓ. If cliques H
p
β1
1
,

Hp1β1dj
exists in HG \H, then the spanning paths P (v

′
1, u

′
1) of Hp

α1
1

and P (v
′
j, u

′
j) for

1 < j ≤ ℓ of Hp1α1dj are inserted into the spanning path of Hd1
and Hdj

respectively,

as shown in Figure 3.3. That is, the required Hamiltonian cycle CHG
inHG is given by

⟨b1, P1, b2, P2, · · · , bℓ, Pl, bℓ+1, · · · , bs⟩, where Pj = ⟨vj, v
′
j, P (v

′
j, u

′
j), uj, P (uj, xj)⟩(if it

exists).

bs...
bk+1b3 · · ·

b2

b1

u
′

ℓ

v
′

ℓ

v2
x2

vk

xk

v1 H
p
β1
1 dℓ

Hd2

H
p
β1
1

x1

Hdk
u2

Hn1

u1

u′
2

v′1

H
p
β1
1 d2

u′
1

v′2

Hd1

Hdℓ

vℓ

uℓ

xℓ

Figure 3.3: Hamiltonian cycle in HG

Corollary 3.17. For any positive integer n, HZn
is Hamiltonian if and only if n is

neither a power of prime number nor a product of two primes.
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In [15], it was proved that S(Zn) = P(Zn) for every positive integer n. Now,

observe that the dom(S(Zn)) = dom(P(Zn)), since the dominant vertices of both

these graphs are the only generators of Zn. This observation gives us the following

interesting property of P (Zn) from HZn
.

Corollary 3.18. For any positive integer n, HZn
= P(Zn) is Hamiltonian if and

only if n is neither a power of prime number nor a product of two distinct primes,

where P (Zn) is induced subgraph of P(Zn) by removing dom(P(Zn)) from it.

Corollary 3.19. Let G be a finite Abelian non p-group such that maximum order

of an element is not a product of two primes. Then HG is 2-connected.

In view of the above corollary, we also give an improved lower bound for vertex

connectivity of S(G) combining all the results proved so far.

Corollary 3.20. Let G be an finite Abelian non p-group of order n. If largest order

n1 of an element in G is not a product of two distinct primes, then

tϕ(n1) + 3 ≤ κ(S(G)) ≤ |T |,

where t denotes the number of cyclic subgroups of order n1 in G and T is the minimal

separating set of S(G).

Proof. Note that the required lower bound follows from Corollary 3.19 and Theorem

3.9 while the upper bound follows from Theorem 3.10.

***********


