Chapter 3

Superpower Graphs of Finite

Abelian Groups

In this chapter and rest of the thesis, we will explore an interesting class of graphs
derived from groups, namely the Superpower graphs. Recall from Definition 1.4,
that for a finite group G, the superpower graph S(G) is an undirected simple graph
with vertex set G and any two distinct vertices are adjacent in S(G) if and only if
the order of one divides the order of the other in G. We first set the preliminaries

on Abelian groups required for proving our results.

Theorem 3.1 ([43], Theorem 8.2). Let Gy and G2 be two finite cyclic groups. Then
their external direct product G1 x G is cyclic if and only if orders o(G1) and o(G3)

are relatively prime. [

Theorem 3.2 ([43], Theorem 11.1). Every finite Abelian group is the direct product
of cyclic groups of prime-power order. Moreover, the number of terms in the direct

product and the orders of the cyclic groups are uniquely determined by the group. [

31



Chapter 3. Superpower Graphs of Finite Abelian Groups 32

The above theorem actually gives for a finite Abelian group G, G = prlxl X Zpgcz X
- X ZLipem , where the cyclic groups szln, Zpgg and Z,em are uniquely determined
by G. The following is a known characterization of finite Abelian groups through

elementary divisors of the same.

Theorem 3.3 ([43], Chapter 11). Let G be a finite Abelian group of order n =
pItps?. -l where each p; is prime and o; € N. Then G =~ Zy,, X Lipy X -+ - X L,
where ny > ng > -+ > ng,njln; for each j > 4,1 < j < k and ning---ny =

o(G). O
Lemma 3.4 ([43], Chapter 11). Let G be a finite Abelian group having an element

x of mazimum nontrivial order. Then o(g) divides o(z) ¥ g € G. O

In Section 3.1, we first understand the structure of a superpower graph defined on
any finite group. In Section 3.2, we identify the set of dominant vertices of S(G)
followed by results on vertex connectivity in Section 3.3. In Section 3.4, we study

the Hamiltonian-related properties for S(G) when defined on a finite Abelian group.

3.1 Structure of Superpower Graph of any Finite
Group

Asma Hamzeh et al.[15] proved that, for any group G of order n, the superpower

graph S(G) is complete if and only if n = p* for some prime number p and k € N.

Theorem 3.5 ([15], Theorem 2.3). Let G be a finite group. The superpower graph

S(G) is complete if and only if G is a p-group. O
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Recall that, it was proved in [22], [19] that S(G) can be considered as a join of

complete graphs as stated in Equation (1.1) of Chapter 1.

S(G) = AG[KQ“;KQ»Q: e 7KQrm];

where K, denote the complete graph on n vertices.
In view of this, we give the following lemma.

Lemma 3.6. Let G be a group and p be a prime number such that p® divides o(Q)

for some a € N. Then Kpa is an induced subgraph of the superpower graph S(G).

Proof. Let p be a prime number such that p® divides order of G. By Sylow’s theorem,
G has a subgroup H of order p®. Note that any two elements of H are adjacent in

S(G), since their orders are some powers of p. Thus, the elements of H induces a

Kpa n S(G) O

3.2 Dominant Set

It is a well known fact that dominant vertices play an important role in characteri-
zation of graphs. In fact, if a graph contains a dominant vertex, then it is connected
and diameter is at most two. Thus, it is interesting to find out the set of all dom-
inant vertices in S(G). Note that for any group G, the identity element, e, of G is
a dominant vertex in S(G). So, we say a graph S(G) is dominatable, if it contains
dominant vertices other than identity, that is |dom(S(G))| > 1. In the following
theorem, we find the number of dominant vertices in S(G) for any finite Abelian

non p-group G.
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Theorem 3.7. Let G be a finite Abelian non p-group of order n and dom(S(G)) be
the set of all dominant vertices in the superpower graph S(G) of G. Then the size of
dominant set, |dom(S(QG))| = tp(n1)+ 1, where ny is the largest order of an element

in the group and t is the number of distinct cyclic subgroups of order ny in G.

Proof. Let G be a finite Abelian group of order n and let n; be the largest order
of an element in G. For a divisor d of n, let wy = {z € G : o(zr) = d}. From
Lemma 3.4, vertices of w,, (G) Uw;(G) are adjacent to every other vertex of S(G)
and hence w,, (G) Uw;(G) C dom(S(G)). On the other hand, let € dom(S(G)).
This gives that 1 < o(z) < n; < o(G). Further by Lemma 3.4, o(z) | ny. Let y be
an element in G such that o(y) = o0y It is trivial that such an element y exists
always and z is not adjacent to y. So x is not an element of w,, (G) U w,(G).
Hence dom(S(G) C wy, (G) U wy(G). Thus wy, (G) U wi(G) = dom(S(G)). Also,
|wn, (G) Uwy (G)| = tp(ny) + 1, where ¢ is the number of distinct cyclic subgroups
of order ny in G. Therefore |dom(S(G))| = to(ny1) + 1. O

As mentioned in the proof of Theorem 3.7, S(G) always contains a dominant vertex
other than identity and hence we have the following corollary.
Corollary 3.8. For any finite Abelian group G, the superpower graph S(G) is dom-

matable.

In view of the above theorem, we also define Hg as the induced subgraph induced

by the subset G = G* \ w,, (G) = G\ ({e} Uw,, (Q)) of G.
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3.3 Vertex Connectivity

In this section, we will study the connectivity of superpower graphs defined on
finite Abelian groups. We first begin by giving the tight lower bound for the vertex
connectivity of S(G) for any finite Abelian group G which extend the results [38,
Theorem 2.7] and [15, Theorems 2.11].

Theorem 3.9. Let G be a finite Abelian group. Then k(S(G)) > té(ny) + 1, where
ny is the largest order of an element in G and t is the number of cyclic subgroups of
order ny in G. Further, x(S(GQ)) = to(n1) + 1 if and only if G = Z;,, or Z;, X L3}
or Ly X ZLg? where p and q are two distinct primes and r,r1,72 > 1 and s1,52 > 0

are integers.

Proof. Let G be a finite Abelian group. By Theorem 3.7, to disconnect S(G), we
need to remove at least all vertices of dom(S(G)). This implies that x(S(G)) >

|dom(S(G))| = to(n1) + 1.

Next we prove the second part of the statement. Assume that G = Z,, or Z;} X Z!
or Z,;2 x Z;* where p and g are two distinct primes and r, 71,7y > 1 and s1,52 > 0
are integers. Note that the largest order of elements in G is ny = pq. Let G =
G\ ({e} Uw,, (G)). Since there is no path between elements of order p and ¢, the
induced subgraph Hg is disconnected. Thus x(S(G)) = tp(nq) + 1.

Conversely, assume that £(S(G)) = tp(ny)+1. Suppose o(G) be such that the largest
order n; of elements in G satisfies n; = p*1 ¢ and a4, 81 are integers, oy, 51 > 1
and either a; > 1 or #; > 1. We will prove that x(S(G)) > t¢(ny) + 1 by showing
that Hg is connected. For u,v € V(Hg), take w,z,z € V(Hg) with o(w) is the
least prime divisor of o(u) and o(z) is the least prime divisor of o(v) and o(x) is the

product of least prime divisors of o(u) and o(v). Then P := (u,w,z, z,v) is a path
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between u and v. Also, by the same way it can be shown that o(G) has at most two
prime divisors with maximum order of an element as n; = pg in G. Otherwise, Hg
is connected. Similarly, Hg is connected if o(G) has at least three prime divisors.
Now, only possible groups having two prime factors with largest order as n; = pq
will be of the form Z; or Z;\ X Z;' or Z;2 X Z3;* where p and ¢ are two distinct

primes and r, 71,79 > 1 and s1, so > 0 are integers. O

Let G be a finite Abelian group of order n = pi*p5* - --pim m > 2. Assume that
G = Ly X Ly X -+ X Ly,,, where n; for 1 <i < m are elementary divisors of G. As
stated in Theorem 3.3, nj|n; for each j > i,n; € N,1 < j < k and nyny---ng = n.
Let n; = p’flp§2 . -pfS, 1<s<m,B; >0,1 <i<s bethe prime decomposition of
ny. Let ag = p%,a; = ot and m(G) = {ag,a1, a9, - ,a,} be the set of all orders of

elements in G.

In the following theorem, we find the tight upper bound for the vertex connectivity

of S(G) using the notations defined above.

Theorem 3.10. Let G be a finite Abelian group of order n = pi*p5* - - pSm m > 2.

m

Then there ezists a minimal separating set T of S(G) with

(ailar or aila;,a;#a1)

where t; is the number of cyclic subgroups of order a; in G. Also, this bound is tight.
Proof. Consider the graph S(G) and define a set T in S(G) as follows:

T = {w,, (G| alar or aila;, 2<i<r},
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Clearly, T is a separating set of S(G), since there is no path between any vertices
of the cliques w,,(G) and w,, (G). Let A and B are two connected component of
S(G) \ T such that w,,(G) € A and w,,(G) € B. Now, we prove that this set is a
minimal separating set by showing that for any non empty subset 77 of T', there is a
path, connecting u € w,,(G) and v € w,, (G) in S(G)\TT. Without loss of generality
assume that T\ TT = {z} with x € w,, (G). Since either a,|a; or ai|a,, there exists
a path Pj(u,x), connecting v and = in AU w,, (G). Similarly, let y € B such that
o(y) = a,p%, then there exists a path Py(y,v), connecting y to v in B. Now, consider
the path P =: (P (u,z),x,y, Py(y,v)) which connect u to v in S(G)\ TT. Thus, T
is a minimal separating set of S(G). If ¢;, number of cyclic subgroups of order a; in

G,1<1i<r. Then

T| = Z tip(a;).

(ailar or ailas,aitar)
Now, we show that the obtained bound is in fact tight. That is, the bound attained
above serves as the x(S(G)) for the groups G ~ Z,,, G =~ Zyg or G =~ Zygy X Ly X
Ly X -+ X Ly, where p < ¢ < r are primes. When G ~ Z,,, then by Theorem 3.9,
we have that x(S(G)) = ¢(1) + ¢(pq) = |T|. Let G ~ Zpyr X Zyp X -+ X Z,. By
Theorem 3.9, Hg is connected. To get the vertex connectivity of S(G), it is enough
to find the vertex connectivity of Hg, since if T is a minimum separating set of
Hg, then T = T U dom(S(G)) is a minimum separating set of S(G). Notice that
the equivalence classes of G with respect to ~ are precisely w,(G), w,(G), w,(G),

Wpe(G), Wy, (G), wy-(G) and each of these equivalence classes is a clique in Hg. Thus,

He = Ag[Kou, @) Ko, (@) Ko@) Kpg(@)s Koy (6 Kwgo ()]

as given in Figure 3.1. It is clear that deletion of any one of the cliques in Hg
does not disconnect Hg. However, deletion of any two cliques in Hg that are not

adjacent can disconnect the same. This imply that a minimal separating set of Hg
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is precisely the union of any two non adjacent cliques. Also, we have the inequality
lw,(Q)| < |wy(Q)] < |w,(G)] and |wye(G)| < |wp(G)] < |wyr(G)|. Heuristically,
we first add the smallest clique namely w,(G) into the minimum separating set T,
we find that next best possible non adjacent clique having minimum cardinality is
wy(G). Thus, T = w,(G) Uw,(G) is a minimum separating set of Hg implying that
T = wy(G) Uwy(G) Uwyy (G) Uw; (G) is a minimum separating set of S(G) having
the cardinality ¢(pqr) + ¢(p) + ¢(q) + ¢(1).

A similar proof holds when G' ~ Z,,,. m

FIGURE 3.1: Connectivity in He.

3.4 Hamiltonian-Like Properties

In [18], it was proved that the power graph Z(G) of any cyclic group of order at least
three is Hamiltonian [see Theorem 4.13]. In [15], it was proved that S(G) = Z(G) if
and only if G is a finite cyclic group. Thus S(G) is Hamiltonian for any cyclic group
of order at least three. Natural question arises that can we extend this result for
finite Abelian groups? Unfortunately, the same question has got a negative answer
in the case of Z(G). For example, H(Zy X Zs) is not Hamiltonian. However, we

can extend this result to S(G) and the same is proved in the following theorem.
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Theorem 3.11. For any finite Abelian group G of order at least three, the super-

power graph S(G) is Hamiltonian.

Proof. Let G be a finite Abelian group of order n and n; be the largest order of an
element in the group G. Let {d;,ds,...,ds,n1} be the divisors of n such that 1 <
dy < -+ <dy <ny <n.ByLemma 3.4, d;|n; V i(1 < i </{). For any divisor d of n,
the induced subgraph H, induced by the vertex subset wq(G) = {x € G : o(x) = d}

is a clique in S(G). Now let us see a Hamiltonian cycle in S(G) as follows:

Start from the vertex v; € dom(S(G)). From vy, go to any vertex of the clique
Hg, and traverse all vertices of Hy,. Now we have a Hamilton path containing all
the vertices in Hy U {v;}. Note that the terminal vertex of this Hamiltonian path
is adjacent to a vertex vy € dom(S(G)) and vy # v;. From vs, go to any vertex
of the clique H,, and traverse all vertices of H;,. Now the terminating vertex of
the resulting Hamiltonian path is adjacent to a vertex vertex vz € dom(S(G)) and
vg & {v1,v2}. Repeat this until all the cliques Hy, (G),1 < i < ¢ are covered. Since
¢ < |dom(S(G))|, there are sufficient number of vertices in dom(S(G)) to connect
all disjoint cliques. Finally, complete the cycle by joining all the uncovered vertices

of dom(S(G)) by path to v;. The entire process of identifying a Hamiltonian cycle

is given in Figure 3.2. [
Hay(c) Hayc)
\\ L/ Ei/c;m(S(G))
Hi,(c) i | Ha,_y (@)

FIGURE 3.2: Hamiltonian cycle in S(G)
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Recall that a graph I' is called I1-Hamiltonian if it is Hamiltonian and all of its
1-vertex-deleted subgraphs are Hamiltonian. Now, we prove that the superpower

graph S(G) is 1-Hamiltonian.

Corollary 3.12. For any finite Abelian group G with o(G) > 4, the superpower

graph S(G) is 1-Hamiltonian.

Proof. Let n; be the largest order of an element in the group G and let g € G. If
o(g) = d < nq, then g is a vertex in the clique induced by wy for the divisor d of
o(G). Further H; \ {g} remains as a clique and so it has a spanning path whose
initial and terminal vertices can be joined by two different vertices of dom(S(G)).

Now, the proof can be completed as in the case of Theorem 3.11.

If o(g) = nq, then g € dom(S(G)). As seen in the proof of Theorem 3.11, there are
sufficient number of vertices in dom(S(G)) \ {g} to connect all the disjoint cliques
corresponding to all proper divisors of o(G). Hence the required Hamiltonian cycle
can be obtained as in Theorem 3.11. Thus, S(G)\ {g} contains a Hamiltonian cycle

implying that S(G) is 1-Hamiltonian. O

Corollary 3.13. For any finite Abelian group G of order at least three, the super-

power graph S(G) is pancyclic.

Proof. Let o(G) =n > 3 and n; be the largest order of an element in the group G.
Let {dy,ds,...,ds, } be the set of all nontrivial divisors of ny with dy < dy < --- <
dy < ny; < n. By Theorem 3.7, the subgraph induced by dom(S(G)) is a clique of
size t¢(n1) + 1 and so we have cycles of lengths from 3 to t¢(n;) + 1 in S(G). Also,

from Theorem 3.11 we know that S(G) contains a cycle of length n.

For any g; € V(S(G)), by Corollary 3.12, S(G) \ {¢1} is Hamiltonian and thus S(G)

contains a cycle of length n — 1. Note that, in the proof of Corollary 3.12, we see
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that as long as we keep choosing a vertex g € wg, C V(G) \ dom(S(G)), obtaining
a cycle containing remaining vertices is immediate. Choose go € wy, (G) (if exists),
otherwise choose {g2} € wg,(G) for some non-trivial divisor dy # d; of n and we
immediately get that S(G) \ {¢1, 92} is Hamiltonian. So S(G) contains a cycle of
length n — 2. Recursively deleting the vertices of wy, for each i, 1 < i <[, we can
get cycles of length n — 2 to t¢(ny) + 2. Thus S(G) contains cycles of all length ¢

for 3 < ¢ < n and hence S(G) is pancyclic. O

It is not always true that there exists a Hamiltonian path between any pair of
vertices in a graph even if it a Hamiltonian. However, this happens in the case of
the superpower graph S(G) of any finite Abelian group G and hence we have the

following result.

Corollary 3.14. For any finite Abelian group G, the superpower graph S(G) is

Hamiltonian connected.

Proof. Let u,v € V(S(G)) be two distinct vertices in S(G). Without loss of gen-
erality, one can take u = v; € wy, (G) and v = vy € wy,(G) where d; and dy are
two non-trivial distinct divisors of o(G). Start from the vertex v, and traverse along
the spanning path in Hy, (G) and join it with a vertex vz of dom(S(G)). From wvs
go to any vertex of Hy,(G) and repeat the process until all vertices of the cliques
Hy (G)Udom(S(G)),3 < i < ¢ belongs to the path such that v, € dom(S(G)) is the
last vertex of this path. Now, join v to a vertex x # v, of Hy, (). Upon completing

the path from z to vy in Hg,(G), we obtain the required Hamiltonian path between

uw and v in S(G). O

Corollary 3.15. For any finite Abelian group G, the superpower graph S(G) is pan

connected.
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Proof. Let u,v € V(S(G)) be two distinct non-adjacent vertices in S(G). Then
there always exists a path of every length from 2 to n. Now the required path
can be obtained by inserting the vertices from Hy, U dom(S(G)),1 < i < £ in such

a way that any two vertices of cliques Hy,, Hy; can be joined through a vertex of

dom(S(G)). O

Now a natural question arises that what will be the effect on Hamiltonian of the
graph S(G), if we remove all dominant vertices from it? In the following theorem,

we are giving the answer to this question.

Theorem 3.16. Let G be a finite Abelian non p-group and ny be the largest order
of an element in the group G. Let w,, (G) = {z € G : o(x) = n1}. Then the induced
subgraph Hg of the superpower graph S(G) induced by G = G\ ({e} U w,, (GQ)) is

Hamiltonian if and only if ny is not a product of two distinct primes.

Proof. Assume that Hg is Hamiltonian. If n; = pg for two distinct primes p and g,
then Hz = H, U H, is disconnected as there is no path connecting the vertices of

H, and H,, a contradiction.

Conversely, assume that n; is not a product of two distinct primes. ie., ny =
pflpSQ coopPmand B; € Nym > 2 and p; < - -+ < p,, are distinet primes. Since G is
not a p-group, m > 2. By the assumption on ny, we have either 5; > 1 or f3 > 1 or
m > 3. Since G is not a p-group and by the assumption on nq, the largest order of

an element in the set G = G\ ({e} Uw,, (G)) will be ﬂ(: 1, say).
b1

Let wpr(G) = {by,--- , b} be the set of all elements of order 7. Let {d;,...,d;} be
the set of all non trivial divisors of iy with 1 < dy < dy < - -+ < d; < 7i7. Let wd—i(é)
be the set of all elements of order d; in G and let Hg be the subgraph induced

by wdfb_(@). For each 4,1 < i < {, let Py = (vj,u;--+ ;) be the Hamiltonian
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path in Hgz. Then the induced subgraph H of Hg on the vertices of [J gwdj U
1<i<
wyr is Hamiltonian, since C' = (bl,PHH, bQ,PH@, bs, - - ,bg,PH@,bg_,_l, < bs) 18 a

Hamiltonian cycle in H.

It remains for us to include remaining vertices from Hg \ H into C' appropriately
to get Hamiltonian cycle in Hs. Based on the condition on 7y, we observe that the
only possible subsets of different orders in G \ { U wg(G) U wyr(G)} are of the
form w,, s (G) and wpflr(a), where r = d;, for Séflzliéi,l < i < /£, If cliques Hp?l,
H, s g exists in Hg \ H, then the spanning paths P(vy,u)) of H o1 and P(v;, u;) for
1 < j <l of Hpe g are inserted into the spanning path of Hg- and de]_ respectively,
as shown in Figure 3.3. That is, the required Hamiltonian cycle Cy_ in Hg is given by
(b1, P1, by, Pa, -+ by, P byyy, -+, by), where Py = (v, v;, P(v),u), uj, P(uj, z;)) (if it

exists). O

FIGURE 3.3: Hamiltonian cycle in Hg

Corollary 3.17. For any positive integer n, Hz— is Hamiltonian if and only if n is

neither a power of prime number nor a product of two primes.
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In [15], it was proved that S(Z,) = P (Z,) for every positive integer n. Now,
observe that the dom(S(Z,)) = dom(Z(Z,)), since the dominant vertices of both
these graphs are the only generators of Z,. This observation gives us the following

interesting property of P(Z,) from Hy—.

Corollary 3.18. For any positive integer n, Hz— = P(Zy) is Hamiltonian if and
only if n is neither a power of prime number nor a product of two distinct primes,

where P(Zy,) is induced subgraph of 2 (Z,) by removing dom(P(Z,)) from it.

Corollary 3.19. Let G be a finite Abelian non p-group such that mazimum order

of an element is not a product of two primes. Then Hg is 2-connected.

In view of the above corollary, we also give an improved lower bound for vertex

connectivity of S(G) combining all the results proved so far.

Corollary 3.20. Let G be an finite Abelian non p-group of order n. If largest order

ny of an element in G is not a product of two distinct primes, then

to(ny) +3 < k(S(G)) < |1,

where t denotes the number of cyclic subgroups of order ny in G and T is the minimal

separating set of S(G).

Proof. Note that the required lower bound follows from Corollary 3.19 and Theorem

3.9 while the upper bound follows from Theorem 3.10. O
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