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Introduction

1.1 Motivation

The origin of graph theory can be traced back to a Swiss Mathematician named

Leonhard Euler solving the Konigsberg seven bridges problem in the 18th century.

Euler’s solution for the seven bridges problem was a new type of geometry called

”Geometry of Position,” later renamed Graph Theory. In 1736, Euler was the first

Mathematician who published the first article on graph theory due to his efforts to

solve the Konigsberg bridge problem. A branch of graph theory in which algebraic

methods are applied to problems on graphs is algebraic graph theory. It involves the

use of group theory and the study of graph invariants. Using a graphical represen-

tation of a group, researchers have discovered new regular graphs with more nodes

for a given diameter and number of edges per node than were previously known.

This allows the construction of larger networks while meeting design criteria of a

fixed number of nearest neighbors and a fixed maximum communication time be-

tween arbitrary nodes. Some other motivating factors of this topic are, firstly, it
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provides a method of visualizing a group and also its implementation in a com-

puter; secondly, it gives important classes of graphs having applications in several

branches of science and engineering; thirdly, it connects two important branches of

modern mathematics-groups and graphs. In this context, the most well-known class

of graphs is the Cayley graph. Cayley graphs were first presented in 1878, are well

established, and are hugely considered to have numerous applications. In particular,

Cayley graphs of finite groups are used as routing networks in parallel computing

due to their basic properties such as regular and vertex-transitive. Recently, the

study of the graphical representation of an algebraic structure, especially a semi-

group or a group has become an energizing research topic over a couple of decades,

prompting many intriguing outcomes and questions. Some other well-studied al-

gebraic graphs are non-commuting graphs, conjugate graphs, zero divisor graphs,

divisibility graphs, and prime graphs, to name a few. The concept of power graphs

and superpower graphs of semi-groups and/or groups is a very recent development

in the domain of graphs from groups.

In this thesis, we mainly focus on analyzing the properties of graphs obtained from

groups namely the complement of a conjugate graph and superpower graph and

their application. Before that, we begin with some basic definitions and concepts

required for further reading this thesis.

1.2 Group-Theoretical Concepts

A non-empty set together with an associative binary operation defined on it is called

a semi-group. A group G is a nonempty set together with a binary operation ∗ on

G such that the following properties hold:
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� (i) ∗ is associative on G.

� (ii) there exists an element e ∈ G such that for any a ∈ G, a ∗ e = e ∗ a = a.

� (iii) for any a ∈ G, there exists b ∈ G such that a ∗ b = b ∗ a = e. This element

b is called the inverse of a and denoted by a−1.

A group G is called commutative or Abelian, if a∗ b = b∗a for all a, b ∈ G, otherwise

it is called non-commutative or non-Abelian. A subset H of a group G is called

a subgroup of G if H itself is a group under the same binary operation of G. A

group having finite number of elements in it is called a finite group. The number of

elements of a finite group G is called the order of G and is denoted by o(G). For

any a ∈ G the order of a, denoted by o(a) is the least positive integer r such that

ar = e. For a prime p, a finite group G is called a p−group if the order of each

element of G is a power of p. Further, it is well-known that a non-trivial finite group

G is a p−group if and only if o(G) = pr for some positive integer r. Let G be a finite

group with identity element e. A generating set S of the group G is a subset of G

such that every element of G can be expressed as a combination (under the group

operation) of elements of S and in this case we write G = ⟨S⟩. If S is a generating

set of a group G then the elements of S are called generators of G and we say that S

generates G. If a singleton set {a} is a generating set of a group G then G is called

a cyclic group and we write G = ⟨a⟩ = {am : m ∈ Z}. For each positive divisor d

of n, define wd(G) = {x ∈ G : o(x) = d}. The exponent exp(G) of G is the least

common multiple of the orders of the elements of G, in other words, the smallest

positive integer m such that xm = e for all x ∈ G. We say that G has an element

of exponent order if there exists x ∈ G with o(x) = exp(G). Let π(G) be the set of

orders of elements of G. Thus, G has an element of exponent order if and only if

π(G) is the set of all divisors of m, for some integer m.
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Throughout this thesis, we consider groups of finite order n, that is, a group G with

o(G) = n with identity e.

For any subset X ⊆ G, X∗ = X \w1(G) = X \{e} and G = G∗ \wexp(G)(G). Center

of G is denoted by Z(G) = {u ∈ G | uv = vu,∀v ∈ G}. Let G1 × · · · × Gm denote

the direct products of finite groups G1, . . . , Gm.

Define a relation ∼ on G as follows: Two elements x, y ∈ G are related, if x and

y are of the same order in G. Clearly, this relation forms an equivalence relation

on G, and so it partitions G into disjoint equivalence classes. The corresponding

equivalence class containing x ∈ G is denoted by [x]. Similarly, another relation

∼ on G can be defined as follows: For u, v ∈ G, u ∼ v, if there exists an element

w ∈ G such that v = w−1uw forms an equivalence relation on G. This relation is

also known as the conjugate relation in [2]. The corresponding equivalence class

of conjugate relation on u ∈ G is denoted by cl(u), and is known as conjugacy

class(conjugate class) of u in G. Note that cl(u) = {u} ⇔ u ∈ Z(G). Let K(G)

represents the number of conjugacy classes in G. It is immediate that, if G is an

Abelian Group of order n, then, K(G) = n = o(G).The class equation of the group

G defined by o(G) =
∑

o(cl(u)), where summation is taken over the representative

member from each conjugacy class.

Let us recall that, for a positive integer n, ϕ(n) denotes the Euler’s phi function

which counts the positive integers up to n that are relatively prime to n. If n =

pα1
1 pαm

2 · · · pαm
m , is the prime decomposition of n, where pi is a prime number and

αi is a positive integer for every i(1 ≤ i ≤ m), then ϕ(n) =
m∏
i=1

(pαi
i − pαi−1

i ) =

n
m∏
i=1

(1 − 1

pi
). Also, for any positive integer n,

∑
d|n

ϕ(d) = n, [3]. Whenever, we

consider the prime factorization of a positive integer n = pα1
1 pα2

2 · · · pαm
m , it is assumed
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that m ≥ 2, p1 < p2 < · · · < pm are primes and αi ∈ N, ∀i, 1 ≤ i ≤ m, where N

denotes the set of all natural numbers.

We use the following standard groups:

� Zn = {0, 1, · · · , n− 1} = {an = e, a, a2, · · · , an−1} denotes the finite cyclic

group of order n.

� D2n = {⟨a, b⟩ | an = b2 = e, aba = b} denotes the dihedral group of order 2n;

� T4n = {⟨a, b⟩ | a2n = e, an = b2, ab = ba−1} denotes the dicyclic group of order

4n. If n is a power of 2, this group is the generalized quaternion group.

� Q8 = {⟨a, b⟩ | a4 = 1, b2 = a2, b−1ab = a−1} denotes the quaternion group.

� Sn and An denote the symmetric group and the alternating group on the set

of n symbols respectively.

1.3 Graph-Theoretical Concepts

A graph is denoted by Γ = (V (Γ), E(Γ)) consisting of a finite, non-empty set V (Γ)

of vertices, together with a set E(Γ) of unordered pairs of vertices called edges. If

V (Γ) has finite number of elements, then Γ is called a finite graph; otherwise, it is

called infinite graph. If V (Γ) has a single element, then Γ is called a trivial graph;

otherwise, nontrivial graph.

For ε ∈ E(Γ), if ε = uv, where u, v ∈ V (Γ), we say that u and v are adjacent

vertices, and ε is said to be incident with u and v, or we say that ε joins the vertex u

and v. If two or more edges join the same pair of vertices then these edges are called

multiple edges. An edge with identical ends ε = uv is called a loop. The degree of
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a vertex u in a simple graph is denoted by degΓ(u) is the number of edges incident

on u. A graph is said to be a simple graph if it has no multiple edges or loops. A

graph Γ is called planar if it can be drawn on a plane in such a way that no edges

cross each other. The complement of a graph Γ denoted by Γ, is the graph on the

same vertex set as Γ and two vertices are adjacent in Γ if and only if they are not

adjacent in Γ.

A graph Γ is called a complete graph if for any two distinct vertices u and v of Γ

there is an edge between them. A complete graph on n vertices is denoted by Kn.

A subgraph Γ1 of a graph Γ is called a clique if Γ1 induces a complete graph in Γ.

A vertex of a graph Γ is called a dominant vertex if it is adjacent to every other

vertex of Γ and dom(Γ) denote the set of all dominant vertices in Γ. An k-partite

graph Γ is a graph whose vertex set can be decomposed into k independent subsets.

A k-partite graph Γ is called complete k-partite if and only if any two vertices in

different parts are adjacent.

In a graph Γ, let n and m denote the number of vertices and edges, respectively. A

walk is an alternating sequence of vertices and edges ⟨v0, ε0, v1, ε1, · · · , vk, εk⟩ such

that εi = vi−1vi ∀i, 1 ≤ i ≤ k, and the number k denotes the length of the walk. If all

the vertices and edges of a walk are distinct, we call it a path. A graph is connected

if there is a path between any two vertices. For k ≥ 3, a walk ⟨v0, ε0; v1, ε1 · · · vk, εk⟩

in which no vertices and edges are repeated is called a cycle if v0 = vk, it is denoted

by Ck where k is the length of the cycle.

If a graph Γ has a path P (or a cycle C) which contains all the vertices of Γ, then

P (or C) is called the Hamiltonian path (or Hamiltonian cycle). A Hamiltonian

graph Γ is a graph which contains a Hamiltonian cycle. A graph Γ is called randomly

Hamiltonian, if a Hamiltonian cycle is formed by starting at any vertex of Γ and then

consecutively moving to any adjacent vertex. A graph Γ is called 1-Hamiltonian if it
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is Hamiltonian and all of its 1-vertex-deleted subgraphs are Hamiltonian. A simple

graph Γ on n vertices is called pancyclic if for every l, 3 ≤ l ≤ n, there exists a cycle

of length l in Γ. If a graph Γ has a closed walk W which traverse every edge of Γ

exactly once, then W is called an Euler circuit and Γ is called an Eulerian graph.

A connected component of Γ is a maximal connected subgraph of Γ. A subset

S ⊂ V of a graph is called separating set for Γ if Γ \ S increases the number of

connected components of Γ. A separating set S of a connected graph Γ is said to

be a minimal separating set if Γ \X is connected for any proper subset X of S. A

minimal separating set of minimum cardinality is a minimum separating set, and

the cardinality κ(Γ) of this minimum separating set is called the vertex connectivity

of Γ. A subset F ⊂ E of a graph is called a disconnecting set for Γ if Γ\F increases

the number of connected components of Γ. If F ⊂ E is of minimum cardinality

κ
′
(Γ) such that Γ \ F is disconnected or trivial graph, then κ

′
(Γ) is called the

edge connectivity of the graph Γ. A graph Γ is called k-critically edge connected if

κ
′
(Γ) = k and κ

′
(Γ \ ε) = k − 1 for each edgeε ∈ Γ.

Given two graphs, the product of the graphs is a well-studied and interesting concept.

Studying the structural properties of the product graph with the help of the given

graphs have received wide attention among the researchers. In the literature, various

types of products are defined such as Cartesian product, strong product, tensor

product, complete product, corona product, to name a few. Among these, we will

be considering the tensor product of two graphs in this thesis. The tensor product,

Γ1 × Γ2, of the graphs Γ1 and Γ2 is a graph with vertex set V (Γ1)× V (Γ2) and any

two vertices (a1, b1) and (a2, b2) are adjacent in Γ1 × Γ2 if and only if a1a2 ∈ E(Γ1)

and b1b2 ∈ E(Γ2).



Chapter 1. Introduction 8

1.4 Graphs Associated With Groups

Graphs associated with groups and other algebraic structures have been actively

investigated, since they have valuable applications are related to automata theory

which can be seen in [4],[5] and the books [6],[7]. Some of the most popular graphs

in this area, Cayley graph [8], [9], [10], commuting graph [11] , conjugate graphs

[12], complement of conjugate graphs [13], power graph [14] and superpower graphs

[15] to name a few. Among these algebraic graphs, we introduce here a few which

are of interest and will be used in the thesis.

The conjugate graph associated to finite non-Abelian group G was introduced by

Erfanian and Tolue in [12] as follows:

Definition 1.1. [12] Let G be a finite non-Abelian group having center Z(G). Then

the conjugate graph Γc
G associated to G is a graph with vertex set G\Z(G) and two

vertices are adjacent in Γc
G if and only if they are conjugate in the group G.

V1 V2

Figure 1.1: Conjugate graph Γc
S3

Following this, the complement of conjugate graph was defined by Abdussakir et al.

in [13] as follows:

Definition 1.2. [13] The complement of conjugate graph of a group G, denoted by

C(G) is a graph with vertex set G and any two vertices are adjacent in C(G) if and

only if they are not conjugate in the group G.
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V3

V1

V2

Figure 1.2: Complement of conjugate graph C(S3)

The concept of directed power graph
−→
P(G) of a group G, introduced by Kelarev and

Quinn[16], is a digraph with vertex set G and for any a, b ∈ G, there is a directed

edge from a to b in
−→
P(G) if and only if ak = b, where k ∈ N. For a semi-group, it was

first considered in [14] and further studied in [17]. All of these papers used the brief

term ‘power graph’ to refer to the directed power graph, with the understanding

that the undirected power graph is the underlying undirected graph of the directed

power graph. Motivated by this, Chakrabarty et al. [18] introduced the concept of

an undirected power graph P(G) of a group G, which was defined as follows:

Definition 1.3. Given a group G, the power graph P(G) of G is the simple undi-

rected graph with vertex set G and two vertices a, b ∈ G are adjacent in P(G) if

and only if b ̸= a and bk = a or ak = b, k ∈ N.
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Figure 1.3: The power graph of Q8

Recently, undirected superpower graph S(G) of a finite group G, was first presented

by Hamzeh and Ashrafi [19] (which they call it as ‘order super graph of the power

graph of a finite group’), and defined as given below:
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Definition 1.4. Let G be a finite group. Then superpower S(G) is a graph with

the vertex set G and two distinct vertices a, b ∈ G are adjacent in S(G) if and only

if either o(a)|o(b) or o(b)|o(a) in the group G.

a e

a3

a2

a5

a4

K6

Figure 1.4: The superpower graph S(D12) [bold line between a vertex and a
clique indicates that the vertex is adjacent to every vertex in the clique].

1.5 Literature Review

The investigation of graphs associated with algebraic structures are very important,

as graphs like these enrich both algebra and graph theory. Also, these graphs have

practical applications and are related to automata theory which can be seen in

[4, 5, 6, 7]. The study of graphical representation of semi-group and group has

become an energizing research topic over a recent couple of decades, prompting

many intriguing outcomes and questions. In this context, some of the most studied

graphs are the Cayley graph [8, 9, 10], conjugate graph [12] and power graph [20, 21]

superpower graph [15, 19, 22].

Conjugate Graphs: In [12], Erfanian and Tolue introduced the conjugate graph

Γc
G associated to a non-Abelian group with vertex set G\Z(G) such that two distinct

vertices join by an edge if they are conjugate. They proved that if Γc
G = Γc

S, where

S is a finite non-Abelian simple group which satisfy Thompson’s conjecture, then

G ∼ S. Further, if central factors of two non-Abelian groupsH andG are isomorphic

and |Z(G)| = |Z(H)|, then H and G have isomorphic conjugate graphs. Following
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this, Abdussakir et al. [13], studied the spectrum and energy of detour matrix

of complement of conjugate graph of dihedral groups. They denoted conjugate

graph and complement of conjugate graph of a finite group G by C(G) and C(G)

respectively.

Power Graphs: The concept of directed power graph
−→
P(G) of a group G, intro-

duced by Kelarev and Quinn[16], it was first considered in [14] and further studied

in [17]. All of these papers used the brief term ‘power graph’ to refer to the directed

power graph, with the understanding that the undirected power graph is the under-

lying undirected graph of the directed power graph. Motivated by this, Chakrabarty

et al. [18] introduced the concept of an undirected power graph P(G) of a group G,.

After that, the undirected power graph became the main focus of study by several

authors in [16, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31]. While on the other side, many

researchers have modified and generalized the concept of power graphs in several

ways, such as proper power graph [32], reduced power graph [33] and quotient graph

[34]. In order to find the relationship between power graph and commuting graph

[35], Aalipour et al.[36], introduced enhanced power graph of a group and found that

this graph lies between these two graphs. In 2021, we wrote an extensive survey on

power graph which contains recent development in this area [21]. For more details

on power graph, reader can consider the survey paper [20].

Superpower Graphs: The notion of the superpower graph S(G) of finite group G

is a very recent development in the domain of graphs obtained from groups, and it

was firstly introduced by Hamzeh and Ashrafi [15] in 2018, where they refer to it as

the order super graph S(G) of the power graph P(G) of a finite group. They first

explore the relationship between the power graph P(G), and the superpower graph

S(G), wherein they compute some of the structural properties of superpower graph

and see how much they differ from power graphs. In fact, they proved that S(G) and
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P(G) are identical if and only if G is a finite cyclic group. Further they posed the

question that what is the structure of G when |π(G)| = α(S(G)) where π(G) is the

set of all orders of elements in G and α(S(G)) is the independence number of S(G).

Following this, Ma and Su [37], studied the independence number α(S(G)) and an-

swered this question. Having defined the superpower graph of a group, Hamzeh and

Ashrafi [19] studied about the groups that can be represented as the automorphism

group of the graphs P(G) and S(G). They also proved that the automorphism group

of this graph could be written as a combination of Cartesian and wreath products

of some symmetric groups. In the same article, the authors compute the automor-

phism group of the superpower graph of the dihedral group D2n, dicyclic group T4n.

Also, Hamzeh and Ashrafi [22] have obtained the characteristic polynomial of the

power graph and the superpower graph of certain finite groups. Consequently, the

spectrum and Laplacian spectrum of these graph for dihedral, semi-dihedral, cyclic,

and dicyclic groups were computed. In [38], the authors have proved some results

on 2-connectivity, Eulerian and Hamiltonian properties of the superpower graph for

some special classes of groups. Recall that PSL(2, p) and PGL(2, p) are the spo-

radic quotient groups of the simple linear and general linear groups respectively. In

[39], Asboei and Salehi proved that the the groups PSL(2, p), PGL(2, p) and spo-

radic simple groups uniquely determine their superpower graphs. That is, for any

finite group G, if S(G) ≃ S(PSL(2, p)) or S(PGL(2, p)), then G ≃ PSL(2, p) or

PGL(2, p) respectively. They also proved that if M is a sporadic simple group, then

G ≃ M if S(M) ≃ S(G).

Quotient Graph of Superpower Graphs: Another interesting notion that will

be used in this thesis is the concept of quotient graph. Let P be a partition of

the vertex set V of the graph Γ(V,E). The quotient graph Γq of Γ is the graph

with vertex set is P and two vertices A,B ∈ P are adjacent in Γq if and only
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if there exist vertices u ∈ A and v ∈ B such that u and v are adjacent in Γ.

The notion of order graph O(G) of G was introduced by Bubboloni et al. [34],

whose vertex set is V (O(G)) = {o(a) | a ∈ G} and the edge set is E(O(G)) =

{rs|r, s ∈ V (O(G)) and either r|s or s|r}. Now, recall the definition of undirected

superpower graph S(G) of a finite group G and the equivalence relation defined on

the group G, it can be seen that the vertex set V (S(G)) can be partitioned into

disjoint equivalence classes which are precisely the elements of same order and the

induced subgraph corresponding to each equivalence class forms a clique in S(G).

Thus, O(G) is isomorphic to a quotient graph of S(G) in which the set V (S(G)) is

partitioned into elements with the same order.

Suppose A is a simple graph and Γ = {Γa}a∈A is a set of graphs labeled by vertices

of A. Following Sabidussi [40], the A-join of Γ is the graph ∆ with the following

vertex and edge sets: V (∆) = {(x, y)|x ∈ V (A) and y ∈ V (Γx)} and E(∆) =

{(x, y)(x′
, y

′
)| xx′ ∈ E(A) or else x = x

′
and yy

′ ∈ E(Γx)}. If A is a p-vertex

labeled graph then the A-join of ∆1,∆2, · · ·∆p is denoted by A[∆1,∆2, · · · ,∆p]. Let

π(G) = {r1, r2, · · · , rm} be the set of all order elements of the group G and Eri(G) be

the set(or equivalence class) of all elements of order ri in G with Ωri = |Eri |. Define a

graph ∆G with vertex set π(G) and edge set E(∆G) = {xy| x, y ∈ π(G), x|y or y|x}.

It was proved in [22], [19] that

S(G) = ∆G[KΩr1
, KΩr2

, · · · , KΩrm
], (1.1)

where Kn denote the complete graph on n vertices.
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1.6 Objective and Scope

This thesis aims to study the structural properties, especially the connectivity and

Hamiltonian properties of graphs obtained from finite groups. It is well known that

multi-partite graphs have significance in the field of graph theory. In 2017, Joseph

Varghese proved that a complete multi-partite graph is Hamiltonian if and only if

the cardinality of each partite set is less than or equal to the sum of the cardinality

of all other partite sets. A natural question that arises as an extension of his work

is that, can we decompose the given set of vertices into k independent sets in such

a manner the graph obtained from this partition will be complete multi-partite and

Hamiltonian? We explore the structural properties of the complement of conjugate

graph C(G) of a finite group G and answer the above question in the affirmative.

In [15], Hamzeh and Ashrafi computed the sharp bound for the vertex connectivity

for S(Zn) of a finite cyclic group. Later on, they proved that the power graph and

superpower graph are identical for finite cyclic groups. Motivated by this, we studied

the connectivity properties and computed the sharp bound of S(D2n) and S(T4n)

to see how they differ from their corresponding power graph. In [38, Theorem 2.7],

authors showed that S(G) is 2-connected for any finite Abelian group. A natural

extension is to find the size of the minimum separating set required to disconnect

S(G). Motivated by this, we give sharp lower and upper bounds for the superpower

graph S(G) of an Abelian group. We identify the dominant set and prove that after

removing all dominant vertices from S(G), the remaining graph is still Hamiltonian

and hence 2-connected. We have extended all the results proved earlier for S(G)

to graphs defined on finite groups having an element of exponent order. We also

compute the edge connectivity and Hamiltonian-like properties for S(D2n) of non-

Abelian non-simple group D2n.
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1.7 Outline of the Thesis

In this thesis, we highlight the rich interplay between the two topics viz groups

and graphs obtained from finite groups, particularly the Complement of conjugate

graphs and Superpower graphs.

As a first work, in Chapter 2 , we extend Joseph Varghese’s results by studying the

Hamiltonian and Eulerian properties of graphs generated with the group-theoretic

concept of conjugacy relation on a finite group, referred to as the complement of

a conjugate graph C(G). We also explore the other variations of the Hamiltonian

property, namely, 1-Hamiltonian, pancyclicity, to name a few. Further, we present

several structural characterizations of the considered graph class.

Next, we focus on the superpower graphs, S(G), defined on finite Abelian groups

in Chapter 3 . We begin by first characterizing the structure of such graphs. We

study the relation between the superpower graph of direct product of Abelian groups

and the tensor product of their respective superpower graphs. Further, we identify

the dominant vertices in the graph and use that to find the tight bounds for the

vertex connectivity of S(G). In addition, we also identify those groups for which

the bounds are attained by their superpower graphs. Further, we also establish the

conditions for this class of graphs to be Hamiltonian along with other structural

properties such as maximal dominating set, 1-Hamiltonian, Hamiltonian-connected,

pancyclic and panconnected to name a few.

Next in Chapter 4 , we target the class of the dihedral and dicyclic groups among

the class of non-Abelian groups and explore the properties of their superpower graphs

namely S(D2n) and S(T4n). It is well-known that these groups hold a fundamental

place in group theory and they also appear as a subgroup of many groups. Our mo-

tive is to study the structural properties of the superpower graph of these groups and
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see how they differ from their corresponding power graphs. In this process, we com-

pute sharp bounds for the vertex connectivity of S(D2n) and S(T4n) and identify the

value of n for which the superpower graphs of respective groups attains the bound.

In another attempt, we also obtain bounds for the edge connectivity of S(D2n)

and compute the edge connectivity of S(D2n) for some special values of n through

the minimum degree S(D2n). We also investigate and characterize Hamiltonian-like

properties for the groups and their superpower graphs under consideration.

Chapter 5 is of two-fold: Firstly, we study the structural characterizations of super-

power graph defined on any finite group. Here, we establish some of the properties

such as perfectness, Eulerian, relation between comparability graph and super power

graph, identify the separating sets and discuss the connection between the underly-

ing quotient graph and superpower graph. Secondly, we extend our results on the

properties such as dominant sets, connectivity in superpower graphs for arbitrary

finite groups which were not considered before. To this end, we focus on superpower

graphs defined on any finite non-Abelian groups, particularly, those groups having

an element of exponent order. We first begin by structurally characterizing this col-

lection of superpower graphs and establishing tight bounds for vertex connectivity.

In addition, we identify graphs that attain the obtained bounds. Further, we also

explore various Hamiltonian-like properties for this collection of superpower graphs.


