
Chapter 5

Characterizations of Continuous

Fractional Bessel Wavelet

Transform and its Applications

5.1 Introduction

The continuous and discrete Bessel wavelet transforms were investigated by Pathak

and Dixit [32] by using Haimo’s Hankel transform theory (see, for details, [17]).

Using the concept of the Bessel wavelet transform, Parseval relation, inversion for-

mula and other associated results were obtained by [32]. Taking the concepts of

Pathak and Dixit [32], many researchers wrote many papers on various functional

spaces associated with Bessel wavelet transform. More recently, Srivastava et al.

[16] studied a certain family of fractional wavelet transforms by applying the theory

of the fractional Hankel transform. In the present works of Pathak et al. [32, 41],

Upadhyay and Khatterwani [29] and Srivastava, Khatterwani and Upadhyay [16],
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our main objective in the present chapter, is to develop the fractional Bessel wavelet

transform and its various properties associated with the fractional Hankel transform

and the fractional Hankel convolution. In this chapter, the continuous and discrete

fractional Bessel wavelet transform are discussed and found the Parseval formula,

the inversion formula for the fractional Bessel wavelet transform, and its bounded-

ness properties. Some applications related to the fractional Bessel wavelet transform

in weighted Sobolev-type space were dealt by exploiting the theory of the fractional

Hankel transform. Lastly, it is shown that the fractional Bessel wavelet transform is

time-invariant linear filter and by using the aforesaid theory, the solution of integral

equation involving the fractional wavelet transform is also obtained.

The entire chapter is organized in the following manner:

Section 5.1 is introductory, in which we define the dilation D
a

1
α

function, the frac-

tional Bessel wavelet ψ
b,a

1
α

(x) and the fractional Bessel wavelet transform Bψf(b, a)

for 0 < α ≤ 1. In Section 5.2, many properties of the fractional Bessel wavelet trans-

form Bψf(b, a), like boundedness properties, Parseval-Goldstein formula, inversion

formula, Caldron reproducing formula, and the discrete fractional Bessel wavelet

transform were discussed. In Section 5.3, some applications of the fractional Bessel

wavelet transform in weighted Sobolev-type space are obtained by exploiting the

theory of the fractional Hankel transform. In the last Section 5.4, it is shown that

the fractional Bessel wavelet transform is in the form of time-invariant linear filter.

The solution of integral equation involving the fractional wavelet transform is given

by utilizing the theory of the fractional Hankel transform.

Definition 5.1.1. Let µ be a positive real number and 0 < α ≤ 1. Then for

φ ∈ Lpσ(I), 1 ≤ p <∞, the dilation D
a

1
α

is defined by

D
a

1
α
φα(x, y) := a−2µ− 1

αφα

(
x

a
1
α

,
y

a
1
α

)
, (5.1.1)
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where φα(x, y) is the fractional Hankel translation, which is given by (4.2.11).

Definition 5.1.2. Let the function φ ∈ Lpσ(I), be given for 1 ≤ p < ∞. If a > 0,

b = 0 and 0 < α ≤ 1, then the fractional Bessel wavelet ψ
b,a

1
α

(x) is defined by

ψ
b,a

1
α

(x) := D
a

1
α
ψα(b, x) (5.1.2)

= a−2µ− 1
α

∫ ∞
0

Dα

(
b

a
1
α

,
x

a
1
α

, z

)
ψ(z)dσ(z). (5.1.3)

Definition 5.1.3. By taking the function ψ ∈ L2
σ(I) and with the help of (5.1.2),

the fractional Bessel wavelet transform Bψf(b, a) is defined by

Bψf(b, a) := 〈f(t), ψ
b,a

1
α

(t)〉 =

∫ ∞
0

f(t) ψ
b,a

1
α

(t) dσ(t), (5.1.4)

for 0 < α ≤ 1.

From (5.1.3), we get

Bψf(b, a) = a−2µ− 1
α

∫ ∞
0

∫ ∞
0

f(t)Dα

(
b

a
1
α

,
t

a
1
α

, z

)
ψ(z)dσ(z)dσ(t). (5.1.5)

5.2 Properties of the fractional Bessel wavelet trans-

form

In this section, various properties of the fractional Bessel wavelet transform are given

by exploiting the theory of fractional Hankel transform.
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Theorem 5.2.1. If ψ, f ∈ L2
σ(I) and 0 < α ≤ 1 then the continuous fractional

wavelet transform can be expressed as

Bψf(b, a) =

∫ ∞
0

j
(
w

1
α b
)

(hµ,αf)(w)
(
hµ,αψ

)
(aw)

×

(
w

1
α
−1

α

)
dσ(w). (5.2.1)

Proof. Using (4.2.12), (5.1.5) becomes

Bψf(b, a) = a−2µ− 1
α

[∫ ∞
0

∫ ∞
0

f(t)

(∫ ∞
0

j

(
b

a
1
α

ξ
1
α

)
j

(
t

a
1
α

ξ
1
α

)

× j
(
ξ

1
α z
)(ξ 1

α
−1

α

)
dσ(ξ)

)
ψ(z) dσ(z) dσ(t)

]
.

From (4.2.8) and (4.2.10), above yields

Bψf(b, a) = a−2µ− 1
α

∫ ∞
0

j

(
b

a
1
α

ξ
1
α

)
(hµ,αψ)(ξ) (hµ,αf)

(
ξ

a

)
×

(
ξ

1
α
−1

α

)
dσ(ξ). (5.2.2)

Finally, setting ξ = aw, (5.2.2) becomes

Bψf(b, a) =

∫ ∞
0

j
(
w

1
α b
)

(hµ,αf)(w)
(
hµ,αψ

)
(aw)

×

(
w

1
α
−1

α

)
dσ(w).
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Theorem 5.2.2. For a function ψ ∈ L2
σ(I) and for any signal f ∈ L2

σ(I), the

following relation holds true:

hµ,α

(
Bψf(b, a)

)
(w) = (hµ,αf)(w)

(
hµ,αψ

)
(aw), (5.2.3)

for 0 < α ≤ 1.

Proof. From (5.2.1), we have

Bψf(b, a) =

∫ ∞
0

j
(
w

1
α b
)

(hµ,αf)(w)
(
hµ,αψ

)
(aw)

×

(
w

1
α
−1

α

)
dσ(w).

In view of (4.2.10), we get

Bψf(b, a) = h−1
µ,α

[
(hµ,αf)(w)

(
hµ,αψ

)
(aw)

]
(b). (5.2.4)

Now, by using (4.2.8), (5.2.4) can be written as

hµ,α

(
Bψf(b, a)

)
(w) = (hµ,αf)(w)

(
hµ,αψ

)
(aw).

Hence the proof of Theorem 5.2.2 is completed.

Theorem 5.2.3. If f, ψ ∈ L2
σ(I), then the continuous fractional wavelet transform

Bψf(b, a) can be expressed by

Bψf(b, a) = (f#ψ̄a)(b). (5.2.5)
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Proof. From (5.2.1), (5.2.4) and Theorem 4.3.6, we obtain

Bψf(b, a) = h−1
µ,α[(hµ,α(f#ψ̄a)](b),

where ψ̄a(x) = 1
a
ψ̄(x

a
), a > 0.

Therefore, we have

Bψf(b, a) = (f#ψ̄a)(b).

Theorem 5.2.4. Let f ∈ Lpσ(I) and ψ ∈ Lqσ(I), then

||Bψf(b, a)||r,σ ≤ ||f ||p,σ||ψa||q,σ, where
1

r
=

1

p
+

1

q
− 1. (5.2.6)

Proof. For f ∈ Lpσ(I), ψ ∈ Lqσ(I) and from (5.2.5) and (4.2.13), we have

Bψf(b, a) = (f#ψ̄a)(b)

=

∫ ∞
0

fα(b, y)ψ̄a(y)dσ(y).

Therefore, by using the Young’s inequality, we get

|Bψf(b, a)| ≤
(∫ ∞

0

|fα(b, y)|p|ψa(y)|qdσ(y)
) 1
r

×
(∫ ∞

0

fα(b, y)|pdσ(y)
)1− 1

q

×
(∫ ∞

0

|ψa(y)|qdσ(y)
)1− 1

q
.

Then above implies that

∫ ∞
0

|Bψf(b, a)|rd(b) ≤
∫ ∞

0

(∫ ∞
0

|fα(b, y)|p|ψa(y)|qdσ(y)
)



Chapter 5. Characterizations of Continuous FrBWT and its Applications 91

×
(∫ ∞

0

|fα(b, y)|pdσ(y)
)r− r

q

×
(∫ ∞

0

|ψa(y)|qdσ(y)
)r− r

p
dσ(b).

Applying the Fubini’s theorem and translation symmetry (i.e., fα(b, y) = fα(y, b)),

then we get

(∫ ∞
0

|Bψf(b, a)|rdσ(b)
) 1
r ≤

(∫ ∞
0

|fα(b, y)|pdσ(b)
) 1
r

(1+r− r
q

)

×
(∫ ∞

0

|ψa(y)|qdσ(y)
) 1
r

(1+r− r
q

)

= ||fα(b, y)||p,σ||ψa||q,σ.

From (4.3.2), we have

||Bψf(b, a)||r,σ ≤ ||f ||p,σ||ψa||q,σ.

Theorem 5.2.5. Let f ∈ Lpσ(I) and ψ ∈ Lqσ(I) then,

||Bψf(b, a)||∞,σ ≤ ||f ||p,σ||ψa||q,σ, 0 < α ≤ 1. (5.2.7)

Proof. Taking (5.2.5) and (4.2.13), we have

|Bψf(b, a)| ≤
∫ ∞

0

|fα(b, y)||ψa(y)|dσ(y).

From Holder’s inequality, we get

|Bψf(b, a)| ≤
(∫ ∞

0

|fα(b, y)|pdσ(y)

) 1
p
(∫ ∞

0

|ψa(y)|qdσ(y)

) 1
q

≤ ||fα(b, y)||p,σ||ψa||q,σ.
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By using (4.3.2), we find that

||Bψf(b, a)||∞,σ ≤ ||f ||p,σ||ψa||q,σ.

Theorem 5.2.6. Let ψ ∈ L2
σ(I). Then, for any f, g ∈ L2

σ(I), the following Parseval-

Goldstein formula holds true for the fractional Bessel wavelet transform given by

Definition 5.1.3:

∫ ∞
0

∫ ∞
0

Bψf(b, a) Bψg(b, a) a−2µ−1 dσ(b) dσ(a)

= Cψ,α〈f, g〉, (5.2.8)

where

Cψ,α :=

∫ ∞
0

|(hµ,αψ)(aw)|2 a−2µ−1 dσ(a) <∞. (5.2.9)

Proof. From [32, p. 245], in conjunction with Theorem 5.2.2 and (5.2.11), we have

∫ ∞
0

∫ ∞
0

Bψf(b, a) Bψg(b, a) a−2µ−1 dσ(b) dσ(a)

=

∫ ∞
0

(∫ ∞
0

Bψf(b, a)Bψg(b, a)dσ(b)

)
a−2µ−1 dσ(a)

=

∫ ∞
0

(∫ ∞
0

h−1
µ,α

[
(hµ,αf)(w)

(
hµ,αψ

)
(aw)

]
(b)

× h−1
µ,α

[(
hµ,αg

)
(w) (hµ,αψ)(aw)

]
(b)dσ(b)

)
a−2µ−1 dσ(a). (5.2.10)

Now, by using the Parseval-Goldstein formula (4.3.1) for the fractional Hankel trans-

form in the L2
σ(I) sense, we find from (5.2.10) that

∫ ∞
0

∫ ∞
0

Bψf(b, a) Bψg(b, a) a−2µ−1 dσ(b) dσ(a)
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=

∫ ∞
0

(∫ ∞
0

(hµ,αf)(w)
(
hµ,αψ

)
(aw)

(
hµ,αg

)
(w) (hµ,αψ)(w)

×
(w 1

α
−1

α

)
dσ(w)

)
a−2µ−1 dσ(a)

=

∫ ∞
0

(∫ ∞
0

|(hµ,αψ)(aw)|2 a−2µ−1 dσ(a)

)
(hµ,αf)(w)

(
hµ,αg

)
(w)

×

(
w

1
α
−1

α

)
dσ(w)

= Cψ,α

〈
w

1
α
−1

α
(hµ,αf)(w),

(
hµ,αg

)
(w)

〉
,

which, by applying (4.3.1) in the L2
σ(I) sense, we get

∫ ∞
0

∫ ∞
0

Bψf(b, a) Bψg(b, a) a−2µ−1 dσ(b) dσ(a)

= Cψ,α〈f, g〉. (5.2.11)

Theorem 5.2.7. Let ψ ∈ L2
σ(I). Then a signal f ∈ L2

σ(I) can be reconstructed by

means of the following inversion formula:

f(t) =
1

Cψ,α

∫ ∞
0

∫ ∞
0

Bψf(b, a) ψ
b,a

1
α

(t) a−2µ−1 dσ(b) dσ(a), (5.2.12)

where Cψ,α is given by (5.2.9) and 0 < α ≤ 1.

Proof. Let f, g ∈ L2
σ(I), then from the Parseval-Goldstein formula (5.2.11) for the

fractional Bessel wavelet transform, we have

Cψ,α〈f, g〉 = 〈Bψf(b, a), Bψg(b, a)〉

=

∫ ∞
0

∫ ∞
0

Bψf(b, a)Bψg(b, a)
dσ(b)dσ(a)

a2µ+1
.
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We obtain the following expression after using (5.1.4)

Cψ,α〈f, g〉 =

∫ ∞
0

∫ ∞
0

Bψf(b, a)
(∫ ∞

0

g(t)ψ
b,a

1
α

(t)dσ(t)
)dσ(b)dσ(a)

a2µ+1

=

∫ ∞
0

(∫ ∞
0

∫ ∞
0

Bψf(b, a)ψ
b,a

1
α

(t)
dσ(b)dσ(a)

a2µ+1

)
g(t)dσ(t).

By the definition of inner product, we get

Cψ,α〈f, g〉 =
〈∫ ∞

0

∫ ∞
0

Bψf(b, a)ψ
b,a

1
α

(t)
dσ(b)dσ(a)

a2µ+1
, g

〉
,

for all g ∈ L2
σ(I). Then, we have

f(t) =
1

Cψ,α

∫ ∞
0

∫ ∞
0

Bψf(b, a)ψ
b,a

1
α

(t)
dσ(b)dσ(a)

a2µ+1
.

Theorem 5.2.8. Let f, ψ ∈ L2
σ(I), then the following Calderon reproducing formula

is obtained

f(x) =
1

Cψ,α

∫ ∞
0

(f#ψ̄a#ψa)(x)
dσ(a)

a2µ+1
, (5.2.13)

where Cψ,α is given by (5.2.9).

Proof. For f, ψ ∈ L2
σ(I), then in view of (5.1.1) and (5.1.2), we get

∫ ∞
0

∫ ∞
0

Bψf(b, a)ψ
b,a

1
α

(x)
dσ(b)dσ(a)

a2µ+1
=

∫ ∞
0

∫ ∞
0

Bψf(b, a)a−2µ− 1
α

× ψα
(
x

a
1
α

,
b

a
1
α

)
dσ(b)dσ(a)

a2µ+1
.
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Again taking (5.1.3), we find

∫ ∞
0

∫ ∞
0

Bψf(b, a)ψ
b,a

1
α

(x)
dσ(b)dσ(a)

a2µ+1
=

∫ ∞
0

∫ ∞
0

Bψf(b, a)a−2µ− 1
α

×
(∫ ∞

0

ψ(z)Dα(
x

a
1
α

,
b

a
1
α

, z)dσ(z)
)

× dσ(b)dσ(a)

a2µ+1
.

By using (4.2.12), we get

∫ ∞
0

∫ ∞
0

Bψf(b, a)ψ
b,a

1
α

(x)
dσ(b)dσ(a)

a2µ+1
=

∫ ∞
0

∫ ∞
0

Bψf(b, a)a−2µ− 1
α

(∫ ∞
0

ψ(z)

×
(∫ ∞

0

j(w
1
α
x

a
1
α

)j(w
1
α
b

a
1
α

)j(w
1
α z)

× w
1
α
−1

α
dσ(w)

)
dσ(z)

)dσ(b)dσ(a)

a2µ+1
.

From the Fubini’s theorem, we get

∫ ∞
0

∫ ∞
0

Bψf(b, a)ψ
b,a

1
α

(x)
dσ(b)dσ(a)

a2µ+1
=

∫ ∞
0

∫ ∞
0

Bψf(b, a)a−2µ− 1
α

(∫ ∞
0

j(w
1
α
x

a
1
α

)

× j(w
1
α
b

a
1
α

)
(∫ ∞

0

ψ(z)j(w
1
α z)dσ(z)

)
× w

1
α
−1

α
dσ(w)

)dσ(b)dσ(a)

a2µ+1
.

By the definition of the fractional Hankel transform (4.2.8), we find

∫ ∞
0

∫ ∞
0

Bψf(b, a)ψ
b,a

1
α

(x)
dσ(b)dσ(a)

a2µ+1
=

∫ ∞
0

∫ ∞
0

Bψf(b, a)a−2µ− 1
α

×
(∫ ∞

0

j(w
1
α
x

a
1
α

)j(w
1
α
b

a
1
α

)(hµ,αψ)(w)

× w
1
α
−1

α
dσ(w)

)dσ(b)dσ(a)

a2µ+1

=

∫ ∞
0

∫ ∞
0

j(w
1
α
x

a
1
α

)(hµ,αψ)(w)
(∫ ∞

0

j(w
1
α
b

a
1
α

)
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×Bψf(b, a)dσ(b)
)w 1

α
−1

α
dσ(w)a−2µ− 1

α
dσ(a)

a2µ+1

=

∫ ∞
0

∫ ∞
0

j(w
1
α
x

a
1
α

)(hµ,αψ)(w)

× hµ,α(Bψf(b, a))(
w

a
)
w

1
α
−1

α
dσ(w)a−2µ− 1

α
dσ(a)

a2µ+1
.

Substituting w
a

= u, we get

∫ ∞
0

∫ ∞
0

Bψf(b, a)ψ
b,a

1
α

(x)
dσ(b)dσ(a)

a2µ+1
=

∫ ∞
0

∫ ∞
0

j(u
1
αx)(hµ,αψ)(au)

× hµ,α(Bψf(b, a))(u)
u

1
α
−1

α
dσ(u)

dσ(a)

a2µ+1
.

From the Theorem 5.2.3, we get

∫ ∞
0

∫ ∞
0

Bψf(b, a)ψ
b,a

1
α

(x)
dσ(b)dσ(a)

a2µ+1
=

∫ ∞
0

∫ ∞
0

j(u
1
αx)hµ,α(f#ψ̄a)(u)

× (hµ,αψa)(u)
u

1
α
−1

α
dσ(u)

dσ(a)

a2µ+1
.

Using (4.3.6), the above expression yields

∫ ∞
0

∫ ∞
0

Bψf(b, a)ψ
b,a

1
α

(x)
dσ(b)dσ(a)

a2µ+1
=

∫ ∞
0

(∫ ∞
0

j(u
1
αx)hµ,α(f#ψ̄a#ψa)(u)

× u
1
α
−1

α
dσ(u)

)dσ(a)

a2µ+1
.

Next, with the help of (4.2.10), we obtain

∫ ∞
0

∫ ∞
0

Bψf(b, a)ψ
b,a

1
α

(x)
dσ(b)dσ(a)

a2µ+1
=

∫ ∞
0

(f#ψ̄a#ψa)(x)
dσ(a)

a2µ+1
.

From the Theorem 5.2.7, we get

f(x) =
1

Cψ,α

∫ ∞
0

(f#ψ̄a#ψa)(x)
dσ(a)

a2µ+1
.
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This completes the proof.

Theorem 5.2.9. Let f, ψ ∈ L1
σ(I) ∩ L2

σ(I) and hµ,αf, hµ,αψ ∈ L1
σ(I), then by

assuming Cψ,α = 1, we have following expression

f(x) =

∫ ∞
0

(f#ψ̄a#ψa)(x)
dσ(a)

a2µ+1
. (5.2.14)

Proof.

hµ,α

(∫ ∞
0

(f#ψ̄a#ψa)(x)
dσ(a)

a2µ+1

)
(w) =

∫ ∞
0

j(w
1
αx)
(∫ ∞

0

(f#ψ̄a#ψa)(x)
dσ(a)

a2µ+1

)
dσ(x)

=

∫ ∞
0

(∫ ∞
0

j(w
1
αx)(f#ψ̄a#ψa)(x)dσ(x)

)dσ(a)

a2µ+1

=

∫ ∞
0

hµ,α

(
(f#ψ̄a#ψa)(x)

)
(w)

dσ(a)

a2µ+1

=

∫ ∞
0

(hµ,αf)(w)(hµ,αψa)(w)(hµ,αψa)(w)
dσ(a)

a2µ+1

= (hµ,αf)(w)

∫ ∞
0

(hµ,αψ)(aw)(hµ,αψ)(aw)
dσ(a)

a2µ+1

= (hµ,αf)(w)

∫ ∞
0

|(hµ,αψ)(aw)|2dσ(a)

a2µ+1
.

Since

Cψ,α =

∫ ∞
0

|(hµ,αψ)(aw)|2 a−2µ−1 dσ(a) = 1,

therefore by using the inversion formula for the fractional Hankel transform (4.2.10),

we have

f(x) =

∫ ∞
0

(f#ψ̄a#ψa)(x)
dσ(a)

a2µ+1
.
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Theorem 5.2.10. Let ψ ∈ L2
σ(I). Then the discrete fractional Bessel wavelet trans-

form of a signal f ∈ L2
σ(I) is given by

Bψf(m,n) =

∫ ∞
0

f(t) ψα,m,n(t) dσ(t), (0 < α ≤ 1), (5.2.15)

where

ψα,m,n(t) = a
−m
(

2µ+ 1
α

)
0 ψα

(
a
−m
α

0 t, nb0

)
. (5.2.16)

Proof. From (5.1.4), the continuous fractional Bessel wavelet transform is given by

Bψf(b, a) =

∫ ∞
0

f(t) ψ
b,a

1
α

(t) dσ(t),

where

ψ
b,a

1
α

(t) = a−2µ− 1
αψα

(
t

a
1
α

,
b

a
1
α

)
.

For discretizing the parameters a and b, we set

a = am0 and b = a
m
α
0 nb0, (m,n ∈ Z) a0 > 1 and b0 > 0.

Then above expressions becomes

Bψf(m,n) =

∫ ∞
0

f(t) ψα,m,n(t) dσ(t),

where

ψα,m,n(t) = (am0 )−2µ− 1
αψα

(
t

a
m
α
0

,
a
m
α
0 nb0

a
m
α
0

)

= a
−m
(

2µ+ 1
α

)
0 ψα

(
a
−m
α

0 t, nb0

)
.
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5.3 Application of the fractional Bessel wavelet

transform in Weighted Sobolev type space

In this section, with the help of [36], we are giving applications of the fractional

Bessel wavelet transform in weighted Sobolev type space by exploiting the theory of

the fractional Hankel transform.

Definition 5.3.1. The convolution product for the fractional Bessel wavelet trans-

form is formally defined by

Bψ(f ⊗ g)(b, a) = (Bψf)(b, a)(Bψg)(b, a). (5.3.1)

Now, the relation between the convolution product for the fractional Bessel wavelet

transform (5.3.1) and the fractional Hankel convolution (4.2.13) is given below:

Lemma 5.3.2. Let f, g, ψ ∈ L1
σ(I), then

(
hµ,αψ

)
(aw)(hµ,α(f ⊗ g))(w) =( (

hµ,αψ
)

(a.)(hµ,αf)(.)#
(
hµ,αψ

)
(a.)(hµ,αg)(.)

)
(w). (5.3.2)

Proof. In order to prove Lemma 5.3.2, we find from (5.2.3) that

hµ,α

(
Bψ(f ⊗ g)(b, a)

)
(w) =

(
hµ,αψ

)
(aw)(hµ,α(f ⊗ g))(w),

which by virtue of (5.3.1), leads us that

(
hµ,αψ

)
(aw)(hµ,α(f ⊗ g))(w) = hµ,α

(
(Bψf)(b, a)(Bψg)(b, a)

)
(w).
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Now, from (5.2.4), we find that

(
hµ,αψ

)
(aw)(hµ,α(f ⊗ g))(w) = hµ,α

(
h−1
µ,α

( (
hµ,αψ

)
(aw)(hµ,αf)(w)

)
(b)

× h−1
µ,α

( (
hµ,αψ

)
(aw)(hµ,αg)(w)

)
(b)
)
(w)

Finally, by applying (4.3.6), we find

(
hµ,αψ

)
(aw)(hµ,α(f ⊗ g))(w) =

( (
hµ,αψ

)
(a.)(hµ,αf)(.)#

(
hµ,αψ

)
(a.)

× (hµ,αg)(.)
)
(w),

which evidently completes our demonstration of Lemma 5.3.2.

Next, motivated by the developments in the earlier work [37, p.142], Equation (1.5),

we give the following definition of a weighted Sobolev space.

Definition 5.3.3. Let k(w) be an arbitrary weight function and suppose that H
′
µ(I)

is the dual of the Zemanian space Hµ(I) for I = (0,∞). Then a function φ ∈ H ′µ(I)

is said to belong to the weighted Sobolev space Gp
µ,k(I), for µ ∈ R and 1 ≤ p <∞,

if its fractional Hankel transform hµ,αφ corresponding to locally integrable function

φ over I = (0,∞) satisfies the following norm:

||φ||p,µ,σ,k =
(∫ ∞

0

|k(w)(hµ,αφ)(w)|pdσ(w)
) 1
p
<∞. (5.3.3)

In what follows, we first set

k(w) =
(
hµ,αψ

)
(aw),

for fixed a > 0, and we then establish the following result.
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Theorem 5.3.4. Let f ∈ G1
µ,k(I), g ∈ Gp

µ,k(I) and 1 ≤ p <∞. Then

||f ⊗ g||p,µ,σ,k ≤ ||f ||1,µ,σ,k||g||p,µ,σ,k. (5.3.4)

Proof. In view of (5.3.1) and (5.3.3), we have

||f ⊗ g||p,µ,σ,k =
(∫ ∞

0

|k(w)(hµ,α(f ⊗ g))(w)|pdσ(w)
) 1
p

=
(∫ ∞

0

|
(
hµ,αψ

)
(aw)(hµ,α(f ⊗ g))(w)|pdσ(w)

) 1
p
. (5.3.5)

Now, by using (5.3.2), (5.3.5) becomes

||f ⊗ g||p,µ,σ,k =
(∫ ∞

0

|
( (
hµ,αψ

)
(a.)(hµ,αf)(.)

#
(
hµ,αψ

)
(a.)(hµ,αg)(.)

)
(w)|pdσ(w)

) 1
p
,

and, in view of (4.3.3), we find that

||f ⊗ g||p,µ,σ,k ≤ ||
(
hµ,αψ

)
(a.)(hµ,αf)(.)||1,σ

× ||
(
hµ,αψ

)
(a.)(hµ,αg)(.)||p,σ.

Finally, by making use of (5.3.3), we obtain

||f ⊗ g||p,µ,σ,k ≤ ||f ||1,µ,σ,k||g||p,µ,σ,k,

which proves Theorem 5.3.4.

Theorem 5.3.5. Let f ∈ Gp
µ,k(I) and g ∈ Gq

µ,k(I), 1 ≤ p, q <∞ and

1

r
=

1

p
+

1

q
− 1.
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Then

||f ⊗ g||r,µ,σ,k ≤ ||f ||p,µ,σ,k||g||q,µ,σ,k. (5.3.6)

Proof. The proof of Theorem 5.3.5 follows from (5.3.3) and (4.3.4).

5.4 Application of the fractional Bessel wavelet

transform in integral equation related to time-

invariant linear filter

Motivated from the results of [34] and [35], in this section we give applications of

the fractional Bessel wavelet transform in time-invariant linear filter and integral

equation by exploiting the technique of the fractional Hankel transform.

Definition 5.4.1. Let f, f̄ : R → C be signals which are piecewise continuous.

Then a filter is a transformation L which maps a signal f into another signal f̄ .

Filter L is said to be linear if it must satisfy the following properties for any signals

f, g and c ∈ C,

(i) Additivity: L[f + g] = L[f ] + L[g].

(ii) Homogeneity: L[cf ] = cL[f ].

A filter L is said to be time-invariant if for any signal f and non-negative real number

a such that

L[τaf ](t) = [τa(Lf)](t), (5.4.1)
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where τaf is the fractional Hankel translation of f (defined in (4.2.11)) and is given

by

(τaf)(t) ≡ fα(t, a) =

∫ ∞
0

f(z)Dα(t, a, z)dσ(z)

and

Dα(x, y, z) =

∫ ∞
0

j(w
1
αx)j(w

1
αy)j(w

1
α z)

w
1
α
−1

α
dσ(w).

Theorem 5.4.2. Suppose L be a time-invariant linear transformation and w be any

fixed non- negative real number, then there exists a function g ∈ L1
σ(I) such that

L
(
j(w

1
αx)
)

= (hµ,αg)(w)j(w
1
αx). (5.4.2)

Proof. Let

gwα (x) = L(j(w
1
αx)). (5.4.3)

Since L is time-invariant, then for any non-negative real number a such that

L(j(w
1
αx)j(w

1
αa)) = gwα (x, a). (5.4.4)

If w is fixed non-negative real number then by using the linearity property of L, we

obtain

L(j(w
1
αx)j(w

1
αa)) = j(w

1
αa)L(j(w

1
αx)). (5.4.5)

From (5.4.3), (5.4.4) and (5.4.5), we get

gwα (x, a) = j(w
1
αa)gwα (x). (5.4.6)
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Let x = 0, (5.4.6) becomes

gwα (0, a) = j(w
1
αa)gwα (0).

Therefore

gwα (a) = j(w
1
αa)gwα (0). (5.4.7)

Since a is arbitrary, so we take a = x in (5.4.7), we get

gwα (x) = j(w
1
αx)gwα (0). (5.4.8)

If we take gwα (0) = hµ,αg ∈ L1
σ(I) and g ∈ L1

σ(I), then (5.4.8) becomes

L(j(w
1
αx)) = (hµ,αg)(w)j(w

1
αx).

Theorem 5.4.3. Let X be the space of piecewise continuous signals and L be a

time-invariant linear transformation on X. Then there exists an integrable function

g ∈ L1
σ(I) such that

L(f) = f#g, (5.4.9)

for all f ∈ X ∩ L1
σ(I).

Proof. Using (4.2.10), we can write

f(x) =

∫ ∞
0

j(w
1
αx)(hµ,αf)(w)

w
1
α
−1

α
dσ(x).
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Then by definition of linear filter, we have

(Lf)(x) = L
(∫ ∞

0

j(w
1
αx)(hµ,αf)(w)

w
1
α
−1

α
dσ(w)

)
. (5.4.10)

The integral of the right side of (5.4.10) can be approximated by the Riemann sum

L
(∫ ∞

0

j(w
1
αx)(hµ,αf)(w)

w
1
α
−1

α
dσ(w)

)
≈ L

(∑
k

j(w
1
α
k x)(hµ,αf)(wk)

w
1
α
−1

k

α
∆w
)
.

Therefore right-hand side of the above expression yields

L
(∑

k

j(w
1
α
k x)(hµ,αf)(wk)

w
1
α
−1

k

α
∆w
)

=
∑
k

L
(
j(w

1
α
k x)

)
(hµ,αf)(wk)

w
1
α
−1

k

α
∆w.

By the definition of the Riemann sum, the right-hand side of the above expression

can be written in form of integral

(Lf)(x) =

∫ ∞
0

(hµ,αf)(w)L
(
j(w

1
αx)
)w 1

α
−1

α
dσ(w).

By using the Theorem 5.4.2, we get

(Lf)(x) =

∫ ∞
0

(hµ,αf)(w)(hµ,αg)(w)j(w
1
αx)

w
1
α
−1

α
dσ(w).

Taking (4.3.6), we have

(Lf)(x) =

∫ ∞
0

(hµ,α(f#g))(w)j(w
1
αx)

w
1
α
−1

α
dσ(w).

Therefore, finally from (4.2.10), we obtain

(Lf)(x) = (f#g))(x).
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Example 5.1. Let φ(x) be a function of compact support. For a signal f , let

(Lf)(t) = (f#φ)(t) =

∫ ∞
0

fα(t, y)φ(y)dσ(y). (5.4.11)

Then the linear operator L is time-invariant.

Proof. By using (4.2.11) and (4.2.13), we get

[τa(Lf)](t) =

∫ ∞
0

(Lf)(z)Dα(t, a, z)dσ(z)

=

∫ ∞
0

(∫ ∞
0

φα(z, x)f(x)dσ(x)
)
Dα(t, a, z)dσ(z)

=

∫ ∞
0

(∫ ∞
0

(∫ ∞
0

φ(y)Dα(z, x, y)dσ(y)
)
f(x)dσ(x)

)
×Dα(t, a, z)dσ(z).

With the help of the Fubini’s theorem, we have

[τa(Lf)](t) =

∫ ∞
0

(∫ ∞
0

(∫ ∞
0

f(x)Dα(z, x, y)dσ(x)
)
φ(y)dσ(y)

)
×Dα(t, a, z)dσ(z).

Again, by using (4.2.11), we get

[τa(Lf)](t) =

∫ ∞
0

(∫ ∞
0

fα(z, y)φ(y)dσ(y)
)
Dα(t, a, z)dσ(z).

Next, from the Fubini’s theorem, above yields

[τa(Lf)](t) =

∫ ∞
0

(∫ ∞
0

fα(z, y)Dα(t, a, z)dσ(z)
)
φ(y)dσ(y).
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Now, in view of (4.2.11), we have

[τa(Lf)](t) =

∫ ∞
0

fα(t, a, y)φ(y)dσ(y)

=

∫ ∞
0

(τaf)(t, y)φ(y)dσ(y).

From (4.2.13) and (5.4.11), we get

[τa(Lf)](t) = (τaf#φ)(t)

= [L(τaf)](t).

This proves that L is time-invariant.

Physical interpretation. Assuming that g(t)(given in Theorem 5.4.3) is continu-

ous and integrable function on I = (0,∞) and ε is a small positive real number. We

define the impulse signal

fε(t) =


2µ−1/2Γ(µ+1/2)(2µ+1)

ε2µ+1 , t ≤ ε, µ > −1/2,

0, otherwise.
(5.4.12)

Then, we have
∫ ε

0
fε(t)dσ(t) = 1. For ε is small, fε represents a strong signal but

only lasts a short period of time (such as sound signal generated by hammer blow).

Next, we apply L to fε and using (5.4.9), we obtain the following expression

(Lfε)(x) =

∫ ∞
0

gα(x, y)fε(y)dσ(y)

=

∫ ε

0

gα(x, y)fε(y)dσ(y).
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Since g is continuous, gα(x, y) is approximately equal to g(x) for y ≤ ε. Therefore

(Lfε)(x) ≈ g(x)

∫ ε

0

fε(y)dσ(y) = g(x).

Thus, g(x) is the approximate response from applying L to an input signal fε that

is an impulse on half-plane. For that reason, g(x) is called the impulse response

function.

In Theorem 5.4.2, (hµ,αg)(w) is the amplitude of the response to a ”pure frequency”

signal j(w
1
αx), so (hµ,αg) is called the system function.

Theorem 5.4.4. Let f, ψa ∈ L1
σ(I) and L be a time-invariant linear transformation,

then the fractional Bessel wavelet transform can be expressed as

(Bψf)(t, a) = (Lf)(t). (5.4.13)

Proof. By using (5.2.5), we have

Bψf(t, a) = (f#ψ̄a)(t).

With the help of (5.2.1) and (5.4.2), we get

Bψf(t, a) =

∫ ∞
0

(hµ,αf)(w)(hµ,αψ̄a)(w)j(w
1
α t)

w
1
α
−1

α
dσ(w)

=

∫ ∞
0

(hµ,αf)(w)L(j(w
1
α t))

w
1
α
−1

α
dσ(w).

Using the tool of Riemann sum, we get

Bψf(t, a) ≈
∑
k

(hµ,αf)(wk)L(j(w
1
α
k t))

w
1
α
−1

k

α
∆w

≈ L
(∑

k

(hµ,αf)(wk)j(w
1
α
k t)

w
1
α
−1

k

α
∆w
)
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= L
(∫ ∞

0

(hµ,αf)(w)j(w
1
α t)

w
1
α
−1

α
dσ(w)

)

By using the definition of inverse fractional Hankel transform (4.2.10), above ex-

pression becomes

Bψf(t, a) = (Lf)(t),

which evidently completes the proof of Theorem 5.4.4.

Theorem 5.4.5. The Fredholm integral equation is given by

∫ ∞
0

f(t)g
( t

a
1
α

,
b

a
1
α

)
dσ(t) + Λf(b) = v(b), (5.4.14)

can be written in the form of linear time-invariant filter

(Lf)(b) + Λf(b) = v(b). (5.4.15)

Proof. Let

g
( t

a
1
α

,
b

a
1
α

)
= a−2µ− 1

αφα

(
t

a
1
α

,
b

a
1
α

)
,

then (5.4.14) becomes

a−2µ− 1
α

∫ ∞
0

f(t)φα

(
t

a
1
α

,
b

a
1
α

)
dσ(t) + Λf(b) = v(b).

By using (5.1.4), we have

(Bψf)(b, a) + Λf(b) = v(b).
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From Theorem 5.4.4, we get

(Lf)(b) + Λf(b) = v(b).

Theorem 5.4.6. Let f ∈ L1
σ(I), then the solution of (5.4.15) can be obtained by

f(x) =

∫ ∞
0

j(w
1
αx)

(
(hµ,αv)(w)

(hµ,αψ̄)(aw) + Λ

)
w

1
α
−1

α
dσ(w). (5.4.16)

Proof. Taking the fractional Hankel transform of (5.4.15), we have

hµ,α((Lf)(b))(w) + Λhµ,α(f(b))(w) = hµ,α(v(b))(w).

By using Theorem 5.4.4 and Theorem 5.2.1, the above yields

(hµ,αf)(w)(hµ,αψ̄)(aw) + Λ(hµ,αf)(w) = (hµ,αv)(w).

Therefore

(hµ,αf)(w) =

(
(hµ,αv)(w)

(hµ,αψ̄)(aw) + Λ

)
. (5.4.17)

Taking the inverse fractional Hankel transform on both sides of (5.4.17), we get

f(x) =

∫ ∞
0

j(w
1
αx)

(
(hµ,αv)(w)

(hµ,αψ̄)(aw) + Λ

)
w

1
α
−1

α
dσ(w).
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5.5 Conclusions

In the present chapter, the theory of fractional Bessel wavelet transform is intro-

duced, and discussed its boundedness properties by taking the theory of the frac-

tional Hankel transform. Time-invariant linear filter and its various properties are

discussed in the present chapter by using the concepts of the fractional Hankel trans-

form. Author also showed that time-invariant linear filter can be written in the form

of the fractional Bessel wavelet transform. An application of the fractional Bessel

wavelet transform related to linear time-invariant filter, in integral equation is given.

Various properties of the fractional Bessel wavelet transform associated with certain

weighted Sobolev-type space are done by using by using the technique of the frac-

tional Hankel transform. This theory is useful to study the various properties of

Riemann-Liouville fractional derivatives and integral operators and other problems

of fractional calculus.

***
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