Chapter 4

The Fractional Hankel Transform

and its Properties

4.1 Introduction

Recently, the fractional Fourier transform of the real order o was introduced and
studied by Luchko et al. [3]. This transform plays the same role for the fractional
derivatives as the Fourier transform does for the ordinary derivatives. Moreover,
in the case when o = 1, the fractional Fourier transform reduces to the Fourier
transform in the usual sense. Several important properties of the fractional Fourier
transform including the inversion formula and the operational relations for the frac-
tional derivatives, together with its applications in solving some partial differential

equations of fractional order were also given by Luchko et al. [3, 4].

Motivated by these theoretical developments, Upadhyay and Khatterwani [29] con-
sidered the conventional fractional Hankel transform and presented the relation

between a two-dimensional fractional Fourier transform and the fractional Hankel
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transform in terms of radial functions. They also derived other operational proper-

ties of the Hankel transform and the fractional Hankel transform.

The Hankel transform played an important role for solving the problem in mathe-
matics, physics and engineering and also a useful technique in the solution of infi-
nite cylindrical boundary value problems. Many researchers exploited the theory of
Hankel transformation and found many important observations in different research
works. The theory of Hankel transform was introduced by Haimo [17], Hirshman
[30], and Cholewinski [31]. Considering this transform, these researchers investigated

integral equations and approximations associated with Hankel convolution.

In this sequel to the above-mentioned developments, our contributions in this chapter

are given below:

1. Taking the concepts of [17, 30, 31], with the help of two-dimensional fractional
Fourier transform, the fractional Hankel transform and its inversion formula
are introduced. The fractional Hankel translation and the fractional Hankel

convolution are defined by exploiting the theory of fractional Hankel transform.

2. Parseval formula and convolution property for the fractional Hankel transform

are found.
3. Boundedness properties of the fractional Hankel translation and of the frac-
tional Hankel convolution are proved.
Our plan in this chapter is as follows:

In Section 4.2, the fractional Hankel transform and its inversion formula are intro-
duced, with the help of two-dimensional fractional Fourier transform. The fractional

Hankel translation and the fractional Hankel convolution are defined. In Section 4.3,
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the Parseval formula and the properties of fractional Hankel convolution are derived.
By using the fractional Hankel convolution theory, boundedness properties for the

fractional Hankel translation and the fractional Hankel convolution have been given.

4.2 Foundation of the fractional Hankel transform

In this section, from [17, 30, 31], the fractional Hankel transform and its inversion
formula are obtained, with the help of two-dimensional fractional Fourier transform.
Later on, the fractional Hankel translation and the fractional Hankel convolution

are defined.

Theorem 4.2.1. The two-dimensional fractional Fourier transform can be expressed

in terms of the fractional Hankel transform as

1

(Fof)(wr,ws) = %hg(F(r))(p), for all wy,wy € R, (4.2.1)
where F(r) = r2 f(r), r and p are radial functions and
B = [ o (12.)

for r =+/2%2 + 23 and p =\/w} + w3.

Proof. Two dimensional fractional Fourier transform of radial function f is given

by

1 oo ptoo 1, 1,
(faf)(wla w2) = % / ez(xlw1|w1\a +azwafwe|a )f<\ / LU% + l’%)dﬂfldIQ

[e.9]
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By taking the substitutions,

x1 = rcos, xo = rsind, wy = pcosy, wy = psiny, we get

+oo
(F f) (wh w2 2 / / 'Lrpa cos@cosw\cosw +szn95m1/;|szm/}| )f<7“)7"d9d7”
yiyes

If we take ¢ = 2nm, n = NU {0}, then (w;,ws) becomes (p,0) with 0 < p < o0

and we get

+oo
(Faf)(wr,ws) = 27ra/ / "COSG(W f(r)rdodr.

27 ircost

1
Changing the order of integration by Fubini’s theorem and using the formula fo e (P)df =

27 Jo(rpa) from Sneddon [33, p. 62], we get

2T

1 [T 1
= —/0 Jo(rpa)rf(r)dr

(07

(Faf) (w1, wa) = L /0+Oo (/0% e”wsf’@é)de) rf(r)dr

-1

2a +OO l 1 1
Sy / (ro® ) do(rp*)rt £ (r)dr

«

Corollary 4.2.2. Let ¢(p) = (.7: N, wa, .ywy), §—1=v and

rz f(r)=¢(r), then

o(p) = 1 /Ooo(plr)éJ (par)<b(r)dr, for0<a<1. (4.2.3)
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Proof. From Theorem 4.2.1 and [33, pp. 62-65], we can find

p*i(%*l)
(faf)(wl,UJQ, 7wn) -

an/?

|t o) It

Therefore

n—1

_(nfl 1

p 2a)(.7:af)(w1,w2,...,wn):W/ (pér)%t]gq(p%?")(r
0

If we take ¢(p) = p’(%l)(Faf)(wl,wQ, <y Wy ), then

o) = = | oI5 7T 1)

By considering § — 1 = v and ranlf(r) = ¢(r), (4.2.5) becomes

2 f(r))dr.

(4.2.4)

(4.2.5)

Now, from (4.2.1) and (4.2.3), we can define the conventional fractional Hankel

transform of a function ¢ as

o0 1 1 1 1
(hs6) (w) = / i) g wha)o(a)de, p> 1 0<a<l

(4.2.6)

To convert (4.2.6) in Haimo type fractional Hankel transform, we take 27¢(z) €

LL(I) and =~ — 1, then from (4.2.6), we have

N|=

(he_127¢)(w) = /0 " (wta) T, 1 (waz)a)é(x)dz.
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By multiplying w™= in the above equation, we get

7 o 1
W (h_y276) (w) = / 2iT (»y + 5) (W) 2, (we ) o(a)
2 0
2y
X : ’ dz
27721 (7 + %)
- | cwiai, winewis),
where
C 271r< 1) do(z) L
= 97732 + =, olx) = x
V BE 2+ )
and J,_ 1 denotes the Bessel function of order u — % Now, by taking
jwez) = Cy(waz) T 7Ty (wox),

we find the following expression
W) w) = [ j(wia)o(e)dos).
0
By setting ®(w) = w’%(hl‘jx”qb)(w), we get

®(w) = /0 h j(wez)p(z)do (). (4.2.7)

Now, we are able to define the fractional Hankel transform in the Haimo setting by

the following way:

Definition 4.2.3. Let ¢ € L (I), the fractional Hankel transform of ¢ is defined by

(hpa®)(w) = ba(w) == /Oooj(w;a:)qb(x)da(a:), 0<z<oo, 0<a<l. (4.238)
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If ¢ € LL(I), then ¢, is continuous and bounded on [0, c0) and

1dalloco < 1€]11.0- (4.2.9)

Definition 4.2.4. If ¢ € LL(I) and hy, 4¢ € LL(I), then for 0 < o < 1 the inverse

fractional Hankel transform is defined by

o(z) == /Oooj(wix)(hu,agb)(w)w do(w), 0<z<oo. (4.2.10)

Definition 4.2.5. Let ¢ € LL(I), then the fractional Hankel translation is defined

by

(1y0)(7) = Palz,y) / d(2) Do, y, 2)do(2), 0 <z, y < oo, (4.2.11)

where

D,(z,y,2) = /Oooj(wix)j(w;y)j(wiz)wa do(w). (4.2.12)

Definition 4.2.6. Let ¢ € L1 (1) and ¢ € LL(I), then the fractional Hankel convo-

lution is defined by

(p#)(x / oz, y)0(y)do(y), 0<a <1, (4.2.13)
where ¢, (x,y) is given by (4.2.11).
Using (4.2.8) and (4.2.10), we get

/ j(wez) Do, y, 2)do(x) = jwey)j(waz), 0<z,y < oo, 0 < w < oo,
0
(4.2.14)
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Setting w = 0, we obtain

/000 D.(z,y,2)do(z) = 1. (4.2.15)

4.3 Properties of the fractional Hankel transform

In this section, the Parseval formula and the properties of fractional Hankel convo-
lution are derived. By using the fractional Hankel convolution theory, boundedness
properties for the fractional Hankel translation and the fractional Hankel convolution

have been given.

Theorem 4.3.1. If ¢, ¢ € LL(I) and ¢o, Vo € LL(I), then the Parseval formula

s given by 1
1
2 do(a). (4.3.1)

(0%

/ " (@)l () = / " balw)(w)

Proof. From (4.2.8) and (4.2.10), we have

[ ewn@ao) = [T owasto) [ St ey dow)

— [ batw)ia () —do(w)
0 1o
O
Theorem 4.3.2. Let ¢ € LP(I), then
|[pa(, ~)||p,o' < ||¢||p,ov (4.3.2)

for any fixed x.
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Proof. From (4.2.11), we have

(1) /¢ (2,9, 2)do(2)

= / ¢(2)D5($7972)D§($,y, z)do(z), E + 1_ 1,
0 P q

which yields that

bal )] < / " 6(2)|DE 2y, 2) D (2, g, 2)dor ().

Applying Holder inequality, we get

ol = </0°° W(zﬂpD“(I’y’Z)d"(Z)); </0°° Da(fﬁay,z)da(z))é

Using (4.2.15), we obtain

el < ([T 10IPDue o)

Thus, we have

[ testapanty < [ [ i Duta. o) aot
[ wriots ([ D o).

Again, by using (4.2.15), we yield

/0 " balm y)Pdoly) < / " 6(2) Pdo(2)
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Thus for any fixed z, we get
P2, )lpo < N0lp.o-
]
Theorem 4.3.3. Let ¢ € LL(I) and o € LE(I) then,
lo#¢[lo < llolhol[¢llpe,  0<a <1 (4.3.3)

Proof. From (4.2.13), we have

(6#0)(a /%xy o(y)
/ 168 (2, )0 ) 164 (. )l do (y), %+§:1,

which implies that

(G ()] < / "6k (@, )b ()62 (2, ) ldo ().

Applying Holder inequality, we get

eI < ([~ atanllvw oty ) ([ eutenianty )

= oo et ([ loaenllvtraoty >).

Now, by using (4.3.2), we get

(6#0) (@) < (||6]l10)7 (/ |00 (2, y)|[(y)[Pdo(y )) :
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On integrating both sides and using Fubini’s theorem, we get

[T iero@rine < Qo ([~ [ oatenlivwPistio
< olh)® [ W)ty (/ uli, o))
< Uoll) ([~ trant )

Now, using the relation ]lg + (11 =1, we get

66l < (¢]la) 5+ ( / rw<y>\Pda<y>)”

= [¢1,01¥p0-
[
Theorem 4.3.4. Let ¢ € LE(I) and ¢ € Li(I) then,
I o#0llo < ollpellbllues 0<a <1 and f=24o-1  (@34)
Proof. From (4.2.13), we have
@#0e) = [ dula)in)doty)

Now, we can write

($#0)(@)] < / " balm )W) ldo(y).

Applying Young’s inequality, we get

m»a

(6#) (a / b, y) Pl ()| Yo (y) / bal y)Pdo(y)
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< ([T trasw)

Above implies that

/Ooo () () do () < /Ooo ((/OOO |¢a(w,y)lp|¢(y)lqda(y))

([ tentanras)
(| wras) "o,

Using Fubini’s theorem, we get

| ern@risw < ([ o prise) /w )[1do(y)
/I%wylpda /|¢ )|%do(y)

Now, by using translation symmetry in (4.2.11) and the relation,

1 1 1
—:—+——1,
r P g

we can write the above expression as

/ [(p#¢)(2)|"do(x g / (6o (2, y)Pdo(y ))i(1+r—;)

1+r—g)
/ () |do ()

/chaxylpda /w )9do(y))*

= [|0a(2; )lpolltallge-

T q
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Thus, by using (4.3.2), we get
lo#dlre < [|9llpolPllgo, 0 <a <1
O
Theorem 4.3.5. Let ¢ € LE(I) and ¢ € Li(I) then,
|9# ¢ |cor < [|€llpoll¥llgo, 0 << 1. (4.3.5)

Proof. From the definition of the fractional Hankel convolution (4.2.13), we have

(b)) = / " bl 9)y)doly),

which implies that

($#0)()] < / T balm )W) ldo(y).

By using Holder inequality, the above expression becomes

|(97#) ()] < [[da (2, )lp.ol[¢]lg0-

Now, in view of (4.3.2), we get

[(@#0)(2)] < |9llpoll¥llgo,  VzeL

Theorem 4.3.6. Let ¢ € LL(I) and o € LL(I) then,

hma(gb#Q/J) = (h'u,oﬂs) (hma'éb), O<a<l

(4.3.6)
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Proof. By the definition of the fractional Hankel transform (4.2.8) and the fractional

Hankel convolution (4.2.13), we have

e (6800) () () = / " j(wha) (¢hv) (@)do ()

From (4.2.13), we can write

o (o)) = [~ itwha)( [ sule o)) dote)

From (4.2.11), then we get

hualot)e)w) = [k [o ([ sDute.uodotoidotw))dote)

Using Fubini’s theorem, we get

oot w) = [ [T wto)( [ iwha) Due,u o) )dotuydoto

From (4.2.14), we find

By (0) (3 / / ()6 (0)] () (w ) dor(w)dor(v)

_ /O b(w)j(wsu)do (u /¢ wav)do (v )

By the definition of the fractional Hankel transform (4.2.8), the above expression

becomes

hyua(0#4) (%)) (0) = (hypa®) (W) (hyath) (w).
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4.4 Conclusions

Like Fourier transform, Hankel transform contains rich calculus and deep mathemat-
ical background. It is useful tool to find the solution of cylindrical boundary value
problem. Many authors used this theory and found many applications in differential
equations and other areas of mathematics. The fractional Hankel transform is modi-
fication and generalization of the Hankel transform for 0 < o < 1. From [17, 30, 31],
in the present chapter, the properties of the fractional Hankel convolution and other
associated results are investigated by exploiting the theory of the fractional Hankel
transform. Using the aforesaid theory, the author is able to study the theory of the
fractional Bessel wavelet transform and its various properties which will be given in

Chapter 5.

Kk
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