
Chapter 3

Abelian Theorems involving the

Fractional Wavelet Transform

3.1 Introduction

The fractional Fourier transform, which was studied by Luchko et al. [3] in the

year 2008, plays a significant role for finding the fractional derivatives. Later, in

the year 2010, Kilbas et al. [4] discussed the composition of the fractional Fourier

transform with some modified fractional integral and derivatives. More recently, the

calculus of pseudo-differential operators, which are associated with the fractional

Fourier transform on the Schwartz space, were considered in [14, 15]. Motivated by

these and other related developments, Srivastava, Khatterwani and Upadhyay [16]

investigated various potentially useful properties of the continuous fractional wavelet

transform.

Abelian theorems are useful for finding the initial value with the help of the final

value and with help of the intitial value, the final value is found by exploiting different
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integral transforms. By using different integral transforms, Abelian theorems were

investigated by many authors in classical and distributional sense both and found

different observations.

In 1955, J.L. Griffith [19] gave a theorem concerning the asymptotic behavior of

Hankel transforms. In 1966, Zemanian [21] considered some Abelian theorems for the

distributional Hankel and K transformations. Hayek and Gonzalez [25] established

Abelian theorems for the generalized index 2F1 -transform in 1992. Pathak [22, 49]

investigated the Abelian theorems for the wavelet transform by exploiting the theory

of the Fourier transforms in 2001. After that, Upadhyay et al. [35] found the abelian

theorems for the Bessel wavelet transform in 2020. Abelian theorems for the Laplace

and the Mehler- Fock transforms of general order over distributions of compact

support and over certain spaces of generalized functions are proved by Gonzalez and

Negrın [26] in 2020. In 2022, Prasad et al. [24] discussed the Abelian theorems for

the quadratic-phase Fourier wavelet transform and got different results.

Motivated from the above results, our main objective in the present chapter is to

discuss Abelian theorems for the fractional wavelet transform in classical and dis-

tributions sense by using the technique of the fractional Fourier transform. An

application of Abelian theorems associated with the continuous fractional wavelet

transform are discussed by using the Mexican hat wavelet function.

The entire chapter is organized in the following manner:

Section 3.1 is introductory, which contains definitions and properties of the contin-

uous fractional wavelet transform. In Section 3.2, the initial-value and final-value

theorems for the fractional wavelet transform of functions are given. In Section 3.3,

Abelian theorems for the fractional wavelet transform of distributions are investi-

gated and their properties are obtained by exploiting the theory of the fractional
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Fourier transform. An application and justification of Abelian theorems regard-

ing the fractional wavelet transform is presented by using the Mexican hat wavelet

function in Section 3.4.

Definition 3.1.1. Let ψ ∈ L2(R) and 0 < α ≤ 1. Then the fractional wavelet

ψα,a,b(t) is defined by

ψα,a,b(t) =
1

|a| 1α
ψ

(
t− b
|a| 1α

)
, a 6= 0, b ∈ R. (3.1.1)

Definition 3.1.2. Let ψ ∈ L2(R). Then the continuous fractional wavelet transform

of a given signal φ ∈ L2(R) for 0 < α ≤ 1 is defined by

(
Wψαφ

)
(b, a) = 〈φ, ψα,a,b〉

=

∫ +∞

−∞
φ(t)

1

|a| 1α
ψ

(
t− b
|a| 1α

)
dt. (3.1.2)

From (1.4.1) and (3.1.1), we have

Fα(ψα,a,b(t))(w) = e−i(signw)|w|
1
α bψ̂α(aw). (3.1.3)

Let φ, ψ ∈ L2(R). Then the Parseval formula (see [16]) for the fractional Fourier

transform is given by

〈φ, ψ〉 =
1

2πα

〈
|w|

1
α
−1φ̂α(w), ψ̂α(w)

〉
. (3.1.4)

In view of (3.1.2), (3.1.3) and (3.1.4), we get the following relation

(
Wψαφ

)
(b, a) =

1

2πα

∫ +∞

−∞
ei(signw)|w|

1
α b|w|

1
α
−1φ̂α(w)ψ̂α(aw)dw. (3.1.5)
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3.2 Abelian theorems for the fractional wavelet

transform of functions

In this section, we present the initial-value and final-value theorems for the fractional

wavelet transform of functions.

Let us suppose that

ψ̂α(w) = O(|w|µ), |w| → 0 (3.2.1)

and that

1 +
1

α
< η < µ+ 1 +

1

α
, for 0 < α ≤ 1.

Then the following integral:

∫ +∞

−∞
ψ̂α(w)|w|

1
α
−ηdw,

is convergent.

Now, we set ∫ +∞

−∞
ψ̂α(w)|w|

1
α
−ηdw = F1(α, η). (3.2.2)

Theorem 3.2.1. (Initial-Value Theorem)

Let

1 +
1

α
< η < µ+ 1 +

1

α
and µ > 0.

Assume also that

|w|
1
α
−ηψ̂α(w) ∈ L1(R),

|ψ̂α(w)| ≤M, M > 0
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and

|w|
1
α
−1φ̂α(w) ∈ L1(δ,∞), ∀ δ > 0.

If

lim
|w|→0

(2πα)−1|w|−1+ηφ̂α(w) = F2(α, η), (3.2.3)

then

lim
a→∞

a1−η+ 1
α

(
Wψαφ

)
(b, a) = F1(α, η)F2(α, η). (3.2.4)

Proof. From (3.1.5) and (3.2.2), we have

∣∣∣a1−η+ 1
α

(
Wψαφ

)
(b, a)− F1(α, η)F2(α, η)

∣∣∣
=
∣∣∣a1−η+ 1

α
1

2πα

∫ +∞

−∞
ei(signw)|w|

1
α b|w|

1
α
−1φ̂α(w)ψ̂α(aw)dw

− F2(α, η)

∫ +∞

−∞
ψ̂α(aw)|aw|

1
α
−ηadw

∣∣∣
= a
∣∣∣ ∫ +∞

−∞
(2πα)−1ei(signw)|w|

1
α b|aw|

1
α
−1|aw|1−η|w|−1+ηφ̂α(w)ψ̂α(aw)dw

− F2(α, η)

∫ +∞

−∞
ψ̂α(aw)|aw|1−η|aw|

1
α
−1dw

∣∣∣
= a
∣∣∣ ∫ +∞

−∞

[
(2πα)−1ei(signw)|w|

1
α b|w|−1+ηφ̂α(w)− F2(α, η)

]
× |aw|1−η|aw|

1
α
−1ψ̂α(aw)dw

∣∣∣
≤ a sup

|w|<δ

∣∣∣(2πα)−1ei(signw)|w|
1
α b|w|−1+ηφ̂α(w)− F2(α, η)

∣∣∣
×
∫
|w|<δ

|aw|1−η|aw|
1
α
−1|ψ̂α(aw)|dw

+ a

∫
|w|>δ

∣∣∣(2πα)−1ei(signw)|w|
1
α b|w|−1+ηφ̂α(w)− F2(α, η)

∣∣∣
× |aw|1−η|aw|

1
α
−1|ψ̂α(aw)|dw

≤ sup
|w|<δ

∣∣∣(2πα)−1ei(signw)|w|
1
α b|w|−1+ηφ̂α(w)− F2(α, η)

∣∣∣
×
∫ +∞

−∞
|w|

1
α
−η|ψ̂α(w)|dw
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+Ma1+ 1
α
−η
∫
|w|>δ

∣∣∣(2πα)−1ei(signw)|w|
1
α b|w|−1+ηφ̂α(w)− F2(α, η)

∣∣∣
× |w|

1
α
−ηdw. (3.2.5)

Since |w| 1α−ηψ̂α(w) ∈ L1(R), there exist a positive real number M1 such that

∫ +∞

−∞
|w|

1
α
−η|ψ̂α(w)|dw = M1 <∞.

Also, for any ε > 0, we have

sup
|w|<δ

∣∣(2πα)−1ei(signw)|w|
1
α b|w|−1+ηφ̂α(w)− F2(α, η)

∣∣ < ε

2M1

,

by choosing δ small enough.

Next, since η > 1 + 1
α

, we find that

a1+ 1
α
−η → 0, as a→∞

and the integral in second term of (3.2.5) is convergent. So, for any ε > 0, we can

made the second term in (3.2.5) less than ε
2
. Hence for any ε > 0, the following

consequence: ∣∣a1−η+ 1
2α

(
Wψαφ

)
(b, a)− F1(α, η)F2(α, η)

∣∣ < ε,

for sufficiently large a.

Theorem 3.2.2. (Final-Value Theorem)

Let

1 +
1

α
< η < µ+ 1 +

1

α
, and µ > 0.

Suppose also that

|w|
1
α
−ηψ̂α(w) ∈ L1(R)
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and that

|w|µ+ 1
α
−1φ̂α(w) ∈ L1(−X,X), ∀ X > 0.

If

lim
|w|→∞

(2πα)−1ei(signw)|w|
1
α b|w|−1+ηφ̂α(w) = F3(α, b, η), (3.2.6)

then

lim
a→0

a1−η+ 1
α

(
Wψαφ

)
(b, a) = F1(α, η)F3(α, b, η). (3.2.7)

Proof. In view of the proof of the previous theorem, we find ∀ X > 0 that

∣∣a1−η+ 1
α

(
Wψαφ

)
(b, a)− F1(α, η)F3(α, b, η)

∣∣
≤ a

∫
|w|<X

∣∣(2πα)−1ei(signw)|w|
1
α b|w|−1+ηφ̂α(w)− F3(α, b, η)

∣∣
× |aw|1−η|aw|

1
α
−1|ψ̂α(aw)|dw

+ a

∫
|w|>X

∣∣(2πα)−1ei(signw)|w|
1
α b|w|−1+ηφ̂α(w)− F3(α, b, η)

∣∣
× |aw|1−η|aw|

1
α
−1|ψ̂α(aw)|dw

≤ a1−η+ 1
α

∫ +X

−X

∣∣(2πα)−1ei(signw)|w|
1
α b|w|−1+ηφ̂α(w)− F3(α, b, η)

∣∣
× |w|1−η|w|

1
α
−1|ψ̂α(aw)|dw

+ sup
|w|>X

∣∣(2πα)−1ei(signw)|w|
1
α b|w|−1+ηφ̂α(w)− F3(α, b, η)

∣∣
×
∫ +∞

−∞
|w|1−η|w|

1
α
−1|ψ̂α(w)|dw.

Thus, by using (3.2.1), there exists a positive constant M2 > 0 such that

|ψ̂α(aw)| ≤ M2(a|w|)µ.
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Hence we have

∣∣a1−η+ 1
α

(
Wψαφ

)
(b, a)− F1(α, η)F3(α, b, η)

∣∣
≤M2a

µ+1−η+ 1
α

∫ +X

−X

∣∣(2πα)−1ei(signw)|w|
1
α bφ̂α(w)− F3(α, b, η)|w|1−η

∣∣
× |w|

1
α
−1+µdw

+ sup
|w|>X

∣∣(2πα)−1ei(signw)|w|
1
α b|w|−1+ηφ̂α(w)− F3(α, b, η)

∣∣
×
∫ +∞

−∞
|w|

1
α
−η|ψ̂α(w)|dw. (3.2.8)

Now, since both of the integrals on the right hand side of (3.2.8) are convergent and

η < 1 +
1

α
+ µ,

therefore, as a → 0, the first term can be made less than ε
2
. Also, for sufficiently

large X, the second term, which is independent of a, can be made less than ε
2
. Hence

we obtain ∣∣a1−η+ 1
α

(
Wψαφ

)
(b, a)− F1(α, η)F3(α, b, η)

∣∣ < ε,

for sufficiently small a.

3.3 Abelian theorems for the fractional wavelet

transform of distributions

In this section, Abelian theorems for the fractional wavelet transform of distributions

are investigated and their properties are obtained by exploiting the theory of the

fractional Fourier transform.
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If φ ∈ S ′(R), then |w| 1α−1φ̂α(w) ∈ S ′(R). Hence we can define the fractional wavelet

transform of distributions.

Definition 3.3.1. The fractional wavelet transform of |w| 1α−1φ̂α(w) ∈ S ′(R) is de-

fined by (
Wψαφ

)
(b, a) =

1

2πα

〈
|w|

1
α
−1φ̂α(w), ei(signw)|w|

1
α bψ̂α(aw)

〉
. (3.3.1)

Theorem 3.3.2. If φ ∈ S
′
(R), then the differentiability of the fractional wavelet

transform: (
Wψαφ

)
(b, a)

is exhibited by

(
∂

∂a

)m(
∂

∂b

)n(
Wψαφ

)
(b, a)

=
1

2πα

〈
|w|

1
α
−1φ̂α(w),

(
i(signw)|w|

1
α

)n
ei(signw)|w|

1
α b

(
∂

∂a

)m
ψ̂α(aw)

〉
, (3.3.2)

for a > 0 and for all m,n ∈ N0.

Proof. For h > 0, we have

1

h

((
Wψαφ

)
(b, a+ h)−

(
Wψαφ

)
(b, a)

)
− 1

2πα

〈
|w|

1
α
−1φ̂α(w), ei(signw)|w|

1
α b ∂

∂a
ψ̂α(aw)

〉
=

1

2πα

〈
|w|

1
α
−1φ̂α(w), ei(signw)|w|

1
α b

×
{1

h

(
ψ̂α((a+ h)w)− ψ̂α(aw)

)
− ∂

∂a
ψ̂α(aw)

}〉
.

Thus, clearly we have to show that

ei(signw)|w|
1
α b
{1

h

(
ψ̂α((a+ h)w)− ψ̂α(aw)

)
− ∂

∂a
ψ̂α(aw)

}
→ 0,

in S(R), as h→ 0. For this, we have to take for the following way:



Chapter 3. Abelian Theorems involving the Fractional Wavelet Transform 56

∣∣∣wk( ∂

∂w

)m(
ei(signw)|w|

1
α b
{1

h

(
ψ̂α((a+ h)w)− ψ̂α(aw)

)
− ∂

∂a
ψ̂α(aw)

})∣∣∣
=
∣∣∣wk m∑

r=0

(
m

r

)(( ∂

∂w

)m−r
ei(signw)|w|

1
α b
)

×
(( ∂

∂w

)r{1

h

(
ψ̂α((a+ h)w)− ψ̂α(aw)

)
− ∂

∂a
ψ̂α(aw)

})∣∣∣
=
∣∣∣wk m∑

r=0

(
m

r

)(( ∂

∂w

)m−r
ei(signw)|w|

1
α b
)

×
{1

h

(( ∂

∂w

)r
ψ̂α((a+ h)w)−

( ∂

∂w

)r
ψ̂α(aw)

)
− ∂

∂a

( ∂

∂w

)r
ψ̂α(aw)

}∣∣∣
=

∣∣∣∣∣wk
m∑
r=0

(
m

r

)(( ∂

∂w

)m−r
ei(signw)|w|

1
α b
)

× 1

h

(∫ a+h

a

{( ∂
∂t

)( ∂

∂w

)r
ψ̂α(tw)−

( ∂
∂a

)( ∂

∂w

)r
ψ̂α(aw)

}
dt

)∣∣∣∣∣
=
∣∣∣wk m∑

r=0

(
m

r

)(( ∂

∂w

)m−r
ei(signw)|w|

1
α b
)

× 1

h

∫ a+h

a

(∫ t

a

( ∂
∂u

)2( ∂

∂w

)r
ψ̂α(uw)du

)
dt
∣∣∣

≤
∣∣∣wk m∑

r=0

(
m

r

)(( ∂

∂w

)m−r
ei(signw)|w|

1
α b
)∣∣∣

× h

2
sup

a≤u≤a+h

∣∣∣( ∂
∂u

)2( ∂

∂w

)r
ψ̂α(uw)

∣∣∣. (3.3.3)

From [14, p.535], we can write

( ∂

∂w

)m−r
ei(signw)|w|

1
α b

= (m− r)!

(
(ib)ei(signw)|w|

1
α b
(

1
α

)(
1
α
− 1
)(

1
α
− 2
)
...
(

1
α
− (m− r) + 1

)
1!(m− r)!

×|w|
1
α
−(m−r)(signw)m−r+1 + . . .

+
(ib)m−rei(signw)|w|

1
α b 1

αm−r

(1!)m−r(m− r)!
|w|

m−r
α
−(m−r)(signw)2(m−r)

)
= (m− r)!

(
A1(ib)ei(signw)|w|

1
α b(signw)m−r+1|w|

1
α
−(m−r) + . . .

+Am−r(ib)
m−rei(signw)|w|

1
α b(signw)2(m−r)|w|

m−r
α
−(m−r)

)
, (3.3.4)
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where A1, A2, ...Am−r are constants.

Next, from (3.3.4), we have

∣∣∣( ∂

∂w

)m−r
ei(signw)|w|

1
α b
∣∣∣ ≤ (m− r)!

(
|A1||b||w|

1
α
−(m−r) + . . .

+ |Am−r||b|m−r|w|(m−r)(
1
α
−1)
)
. (3.3.5)

Using (3.3.3) and (3.3.5), we obtain

∣∣∣wk( ∂

∂w

)m(
ei(signw)|w|

1
α b
(1

h
(ψ̂α((a+ h)w)− ψ̂α(aw)

)
− ∂

∂a
ψ̂α(aw)

))∣∣∣
≤

m∑
r=0

(
m

r

)
(m− r)!

(
|A1||b||w|

1
α
−(m−r) + · · ·+ |Am−r||b|m−r|w|(m−r)(

1
α
−1)
)

× h

2
sup

a≤u≤a+h

∣∣∣wk( ∂
∂u

)2( ∂

∂w

)r
ψ̂α(uw)

∣∣∣. (3.3.6)

By substituting uw = z in (3.3.6), we get

∣∣∣wk( ∂
∂w

)m
ei(signw)|w|

1
α b
(1

h

(
ψ̂α((a+ h)w)− ψ̂α(aw)

)
− ∂

∂a
ψ̂α(aw)

)∣∣∣
≤

m∑
r=0

(
m

r

)
(m− r)!

(
|A1||b|

∣∣∣z
u

∣∣∣ 1α−(m−r)
+ · · ·+ |Am−r||b|m−r

∣∣∣z
u

∣∣∣(m−r)( 1
α
−1))

× h

2
sup

a≤u≤a+h

∣∣∣zk+2ur−2−k
( ∂
∂z

)r+2

ψ̂α(z)
∣∣∣

≤
m∑
r=0

(
m

r

)
(m− r)!h

2

(
|A1||b| sup

z∈R

∣∣∣zk+2+ 1
α
−(m−r)

( ∂
∂z

)r+2

ψ̂α(z)
∣∣∣

× sup
a≤u≤a+h

|u|r−2−k− 1
α

+(m−r) + · · ·+ |Am−r||b|m−r

× sup
z∈R

∣∣∣zk+2+(m−r)( 1
α
−1)
( ∂
∂z

)r+2

ψ̂α(z)
∣∣∣

× sup
a≤u≤a+h

|u|r−2−k−(m−r)( 1
α
−1)
)

≤ h

2

m∑
r=0

(
m

r

)
(m− r)!

[
|A1||b| sup

a≤u≤a+h
|u|m−2−k− 1

α

× γk+2+ 1
α
−(m−r),r+2(ψ̂α) + · · ·+ |Am−r||b|m−r
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× sup
a≤u≤a+h

|u|r−2−k−(m−r)( 1
α
−1)

× γk+2+(m−r)( 1
α
−1),r+2(ψ̂α)

]
→ 0, as h→ 0.

Hence, finally we find that

lim
h→0

(Wψαφ
)
(b, a+ h)−

(
Wψαφ

)
(b, a)

h

=
1

2πα

〈
|w|

1
α
−1φ̂α(w), ei(signw)|w|

1
α b ∂

∂a
ψ̂α(aw)

〉
.

Similarly, we can prove the differentiability with respect to the variable b and, in

general, we can find (3.3.2).

Theorem 3.3.3. Let
(
Wψαφ

)
(b, a) be the fractional wavelet transform of

|w|
1
α
−1φ̂α(w) ∈ S ′(R).

defined by (3.3.1). Then, for large k and a > 0, it is asserted that

(
Wψαφ

)
(b, a) = O(a−k−

k
α |b|k), a→ 0; (3.3.7)

= O(a2k− k
α ), a→∞; (3.3.8)

= O
(
a−

k
α (1 + a2)k

)
, |b| → 0; (3.3.9)

= O
(
a−k−

k
α (1 + a2)k|b|k

)
, |b| → ∞. (3.3.10)

Proof. In view of the boundedness property of generalized functions ([27], p.111)

there exist a constant C > 0 and a non-negative integer k depending on |w| 1α−1φ̂α(w)

such that

|
(
Wψαφ

)
(b, a)| ≤ C sup

w

∣∣(1 + w2)k
( ∂

∂w

)k
{ei(signw)|w|

1
α bψ̂α(aw)}

∣∣
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= C sup
w

∣∣∣(1 + w2)k
k∑
s=0

(
k

s

)(( ∂

∂w

)s
ei(signw)|w|

1
α b
)(( ∂

∂w

)k−s
ψ̂α(aw)

)∣∣∣
= C sup

w

∣∣∣ k∑
s=0

k∑
r=0

(
k

s

)(
k

r

)
w2r
(( ∂

∂w

)s
ei(signw)|w|

1
α b
)(( ∂

∂w

)k−s
ψ̂α(aw)

)∣∣∣.
On the other hand, in view of (3.3.5), there exist positive constants A1, A2, . . . , As

such that

|
(
Wψαφ

)
(b, a)| ≤ C sup

w

∣∣∣ k∑
s=0

k∑
r=0

(
k

s

)(
k

r

)
w2r(s)!

(
A1|b||w|

1
α
−s + . . .

+ As|b|s|w|
s
α
−s
)(( ∂

∂w

)k−s
ψ̂α(aw)

)∣∣∣.
Let z = aw, then we can find

|
(
Wψαφ

)
(b, a)| ≤ C sup

z

∣∣∣ k∑
s=0

k∑
r=0

(
k

s

)(
k

r

)
ak−s−2rz2r(s)!

(
A1|b|

∣∣∣z
a

∣∣∣ 1α−s + . . .

+ As|b|s
∣∣∣z
a

∣∣∣ sα−s)(( ∂

∂w

)k−s
ψ̂α(z)

)∣∣∣
≤ C sup

z

∣∣∣ k∑
s=0

k∑
r=0

(
k

s

)(
k

r

)
(s)!
(
A1|b|ak−

1
α
−2r|z|2r+

1
α
−s + . . .

+ As|b|sak−
s
α
−2r|z|2r+

s
α
−s
)(( d

dz

)k−s
ψ̂α(z)

)∣∣∣
≤ C

k∑
s=0

k∑
r=0

(
k

s

)(
k

r

)
(s)!
(
A1|b|ak−

1
α
−2r sup

z

∣∣z2r+ 1
α
−s
( d
dz

)k−s
× ψ̂α(z)

∣∣+ · · ·+ As|b|sak−
s
α
−2r sup

z

∣∣z2r+ s
α
−s
( d
dz

)k−s
ψ̂α(z)

∣∣)
≤ C

k∑
s=0

k∑
r=0

(
k

s

)(
k

r

)
(s)!
(
A1|b|ak−

1
α
−2rγ2r+ 1

α
−s,k−s

(
ψ̂α(z)

)
+

· · ·+ As|b|sak−
s
α
−2rγ2r+ s

α
−s,k−s

(
ψ̂α(z)

))
= C

k∑
s=0

k∑
r=0

s∑
l=1

(
k

s

)(
k

r

)
(s)!Al|b|lak−

l
α
−2rγ2r+ l

α
−s,k−s

(
ψ̂α(z)

)
≤ C

′
k∑
s=0

k∑
r=0

(
k

s

)(
k

r

)
(s)!As|b|sak−

s
α
−2rγ2r+ s

α
−s,k−s

(
ψ̂α(z)

)
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≤ C
′′

k∑
r=0

(
k

r

)
a−2rak−

k
α (a+ |b|)k

= C
′′
(1 + a−2)kak−

k
α (a+ |b|)k. (3.3.11)

Thus, from (3.3.11) we are led to the assertions (3.3.7), (3.3.8), (3.3.9) and (3.3.10).

For proving Theorem 3.3.4, we assume that

Dsψ̂α(w) = O(|w|µ), |w| → 0, ∀s ∈ N0, (3.3.12)

for some real number µ.

Theorem 3.3.4. Let ψ ∈ S(R) and φ ∈ S ′(R) be a distribution of compact support

in R. Then

(
Wψαφ

)
(b, a) =

1

2πα

〈
|w|

1
α
−1φ̂α(w), ei(signw)|w|

1
α bψ̂α(aw)

〉
,

is a smooth function on R× R+ and satisfies the following condition:

(
Wψαφ

)
(b, a) = O

(
aµ(1 + a+ |b|)k

)
, |a| → 0, k ∈ N. (3.3.13)

Proof. Let φ ∈ S ′(R). Then, from Theorem 2.3 of [14], we have φ̂α ∈ S
′
(R). We

assume that φ̂α is of compact support K ⊂ R. We also let λ(w) ∈ D(R), the space

of all C∞- functions of compact support such that λ(w) = 1 in a neighborhood of

K. Therefore, we get

(
Wψαφ

)
(b, a) =

1

2πα

〈
|w|

1
α
−1φ̂α(w), ei(signw)|w|

1
α bψ̂α(aw)

〉
=

1

2πα

〈
|w|

1
α
−1φ̂α(w), λ(w)ei(signw)|w|

1
α bψ̂α(aw)

〉
.



Chapter 3. Abelian Theorems involving the Fractional Wavelet Transform 61

So, by Theorem 3.3.2,
(
Wψαφ

)
(b, a) is infinitely differentiable with respect to the

variables b and a. Thus, by the boundedness property of generalized functions as

used in Theorem 3.3.3, we have

∣∣(Wψαφ
)
(b, a)

∣∣ =
1

2πα

∣∣∣∣〈|w| 1α−1φ̂α(w), ei(signw)|w|
1
α bψ̂α(aw)

〉∣∣∣∣
≤ C max

r
sup
w∈K

∣∣∣∣Dr
w

[
λ(w)ei(signw)|w|

1
α bψ̂α(aw)

]∣∣∣∣
≤ C max

r
sup
w∈K

r∑
n=0

(
r

n

)∣∣∣∣(Dr−n
w λ(w)

)
Dn
w

(
ei(signw)|w|

1
α bψ̂α(aw)

)∣∣∣∣
≤ C max

r
sup
w∈K

r∑
n=0

(
r

n

)∣∣∣∣(Dr−n
w λ(w)

)
×

n∑
s=0

(
n

s

)(
Dn−s
w ei(signw)|w|

1
α b
)(
Ds
wψ̂α(aw)

)∣∣∣∣.
In view of (3.3.5), there exists positive constants A1, . . . An−s such that

∣∣(Wψαφ
)
(b, a)

∣∣ ≤ C max
r

sup
w∈K

r∑
n=0

n∑
s=0

(
r

n

)(
n

s

)∣∣(Dr−n
w λ(w)

)∣∣
× (n− s)!

(
A1|b||w|

1
α
−(n−s) + · · ·+ An−s|b|n−s|w|(n−s)

(
1
α
−1
))

×
∣∣(Ds

wψ̂α(aw)
)∣∣

≤ C
′
max
r

sup
w∈K

r∑
n=0

n∑
s=0

(
r

n

)(
n

s

)∣∣(Dr−n
w λ(w)

)∣∣
×
( n−s∑

l=1

Al|b|l|w|
l
α
−(n−s)

)∣∣(Ds
wψ̂α(aw)

)∣∣
≤ C

′′
max
r

sup
w∈K

r∑
n=0

n∑
s=0

(
r

n

)(
n

s

)
|b|n−s|w|(n−s)

(
1
α
−1
)
as+µ|w|µ

≤ C
′′

max
r

r∑
n=0

(
r

n

)( n∑
s=0

(
n

s

)
|b|n−s

)
as+µ

≤ C
′′

max
r

r∑
n=0

(
r

n

)(
a+ |b|

)n
aµ
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= C
′′

max
r

(
1 + a+ |b|

)r
aµ,

where C
′′

is a positive constants. Hence we have

∣∣(Wψαφ
)
(b, a)

∣∣ ≤ C
′′

max
r

(
1 + a+ |b|

)r
aµ.

The aforesaid theorem is useful for finding Abelian theorems, which are given below:

Theorem 3.3.5. (Initial-Value Theorem)

Let φ̂α ∈ S
′
(R) which can be decomposed into

φ̂α = φ1 + φ2,

where φ1 is an ordinary function and φ2 ∈ E
′
(R − {0}) is of order k. Also let real

numbers µ and η be such that

1 +
1

α
+ 2k − k

α
< η < µ+ 1 +

1

α
.

Suppose also that

|w|
1
α
−ηψ̂α(w) ∈ L1(R)

and

|w|
1
α
−1φ1(w) ∈ L1(δ,∞), ∀ δ > 0,

and assume that (
Wψαφ

)
(b, a)
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is the distributional wavelet transform of |w| 1α−1φ̂α, which is defined by (3.3.1). Then

lim
a→∞

a1−η+ 1
α

(
Wψαφ

)
(b, a) = F1(α, η) lim

|w|→0
(2πα)−1|w|−1+ηφ̂α(w). (3.3.14)

Proof. By Theorem 3.3.2, we see that

(
Wψαφ2

)
(b, a) =

1

2πα

〈
|w|

1
α
−1φ2(w), ei(signw)|w|

1
α bψ̂α(aw)

〉
,

is an infinitely differentiable function on R× R+. Furthermore, by Theorem 3.3.3,

(
Wψαφ2

)
(b, a) = O(a2k− k

α ), a→∞.

Hence there exists a constant C > 0 such that

∣∣∣a1−η+ 1
α

(
Wψαφ2

)
(b, a)

∣∣∣ ≤ Ca1−η+ 1
α

+2k− k
α . (3.3.15)

Since

1− η +
1

α
+ 2k − k

α
< 0,

the right hand side of (3.3.15) tends to 0, as a → ∞. Also, since the support of

φ2 ∈ E
′
(R− {0}) is a compact subset of R− {0}, we get

lim
w→0

ei(signw)|w|
1
α b|w|−1+ηφ2(w) = 0.

The result asserted by Theorem 3.3.5 follows by an application of Theorem 3.2.1

with φ̂α(w) replaced by φ1(w).

Theorem 3.3.6. (Final-Value Theorem)

Let

1 +
1

α
< η < µ+ 1 +

1

α
, µ > 0.
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Assume thet φ̂α ∈ S
′
(R) can be decomposed into φ̂α = φ1 + φ2, where φ1 is an

ordinary function satisfying the following condition:

|w|µ+ 1
α
−1φ1(w) ∈ L1(−X,X), ∀ X > 0

and φ2 ∈ E
′
(R − {0}). If

(
Wψαφ

)
(b, a) is the distributional wavelet transform of

|w| 1α−1φ̂α defined by (3.3.1), then

lim
a→0

a1−η+ 1
α

(
Wψαφ

)
(b, a) = F1(α, η)(2πα)−1 lim

w→∞
ei(signw)|w|

1
α b|w|−1+ηφ̂α(w).

(3.3.16)

Proof. By Theorem 3.3.2 and Theorem 3.3.4, we observe that

(
Wψαφ2

)
(b, a) =

1

2πα

〈
|w|

1
α
−1φ2(w), ei(signw)|w|

1
α bψ̂α(aw)

〉
,

is an infinitely differentiable function on R× R+ and

(
Wψαφ2

)
(b, a) = Caµ(1 + |b|)k, as a→ 0,

C being a large constant.

Since 1− η +
1

α
+ µ > 0, we have

a1−η+ 1
α

∣∣(Wψαφ2

)
(b, a)

∣∣ ≤ Ca1−η+ 1
α

+µ(1 + |b|)k,→ 0 as a→ 0.

By taking φ̂α(w) to be φ2(w), the final result follows from Theorem 3.2.2.
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3.4 Application

In this section, an application and justification of Abelian theorems regarding the

fractional wavelet transform is presented by using the Mexican hat wavelet function.

The Mexican hat wavelet function is given by

ψ(x) = (1− x2)e−
1
2
x2 . (3.4.1)

Also, from Example 1.6.4 of [23, p.11], the Fourier transform of (3.4.1) is given by

ψ̂(w) =
√

2π|w|2e−
|w|2
2 ,

where ψ̂(w) is the Fourier transform of ψ(x).

Now, by Remark 5 of [4, p. 787], the fractional Fourier transform of (3.4.1) is given

by

ψ̂α(w) = ψ̂((signw)|w|
1
α )

=
√

2π|w|
2
α e−

1
2
|w|

2
α . (3.4.2)

Furthermore, the following asymptotic order of ψ̂α(w) holds true:

ψ̂α(w) = O(w
2
α ), |w| → 0. (3.4.3)

Hence, in view of (3.1.5) and (3.4.2), we have the following fractional wavelet trans-

form:

(
Wψαφ

)
(b, a) =

1√
2πα

∫ +∞

−∞
ei(signw)|w|

1
α b|w|

1
α
−1φ̂α(w)
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× |aw|
2
α e−

1
2
|aw|

2
α dw. (3.4.4)

Thus, from (3.2.2) and (3.4.2), we find the following expression of F1(α, η):

F1(α, η) =

∫ +∞

−∞

√
2π|w|

2
α e−

1
2
|w|

2
α |w|

1
α
−ηdw

=

∫ +∞

−∞

√
2π|w|

3
α
−ηe−

1
2
|w|

2
α dw,

which, in view of the following familiar Gamma-function result:

∫ ∞
0

xme−ax
n

dx =
1

na

(
m+1
n

)Γ

(
m+ 1

n

)
, for Re(m) > −1; min{Re(n), Re(a)} > 0,

can be rewritten as follows:

F1(α, η) = απ
1
2 2

1
2

(4+α−αη)Γ

(
3− αη + α

2

)
, for η <

3

α
+ 1. (3.4.5)

Therefore, by a modification of proof of Theorem 3.2.1, for

η <
3

α
+ 1

and

e−
1
2
|w|

2
α |w|

1
α
−1φ̂α(w) ∈ L1(δ,∞), ∀ δ > 0

and, by using (3.4.5), we find that

lim
a→∞

a1−η+ 1
α

(
Wψαφ

)
(b, a) = π−

1
2 2

1
2

(2+α−αη)Γ

(
3− αη + α

2

)
× lim
|w|→0

|w|−1+ηφ̂α(w). (3.4.6)
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Furthermore, by applying Theorem 3.2.2, for

η <
3

α
+ 1

and

|w|
3
α
−1φ̂α(w) ∈ L1(−X,X), ∀ X > 0

and, by using (3.4.5), we get

lim
a→0

a1−η+ 1
α

(
Wψαφ

)
(b, a) = π−

1
2 2

1
2

(2+α−αη)Γ

(
3− αη + α

2

)
× lim
|w|→∞

ei(signw)|w|
1
α b|w|−1+ηφ̂α(w). (3.4.7)

Finally, upon taking into account the fact that the kernel ψ̂α(w) is exponentially

decreasing, the conditions of validity of the initial-value and final-value results are

relaxed in this example. By using (3.4.6) and (3.4.7), we can obtain the correspond-

ing results derivable from Theorem 3.3.5 and Theorem 3.3.6 respectively.

3.5 Conclusions

In several earlier developments (see, for example, [3, 4, 14–16]), one can find that

the fractional wavelet transform has rich theory and extensive mathematical back-

ground. This theory presents a study of Abelian theorems in classical as well as

distributional sense both. In our investigation herein, we have established several

Abelian theorems of the fractional wavelet transform. Moreover, with the help of an

example, we have shown that the Mexican hat function is a fractional wavelet func-

tion, which contains adequate time and frequency localization and justifies Abelian

theorems involving the fractional wavelet transform. Upon a systematic survey of
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the existing literature on Abelian theorems for many different integral transforms,

we conclude that Abelian theorems associated with the fractional wavelet trans-

form provide potentially useful information about the initial and final values of the

fractional wavelet transform which we have investigated herein.

***
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