
Chapter 2

Pseudo-Differential Operators

associated with modified

Fractional Derivatives involving

the Fractional Fourier Transform

2.1 Introduction

The theory of fractional Fourier transform encompasses the theory of Fourier trans-

form and played a widespread role in mathematics, engineering, and other areas of

sciences. Fractional Fourier transform is the generalization of the Fourier transform,

which is the more flexible approach in the applications of ordinary differential equa-

tions, partial differential equations, quantum mechanics, signal processing, and other

fields also. Many observations of this aforesaid theory have been done by authors

and got important results. Ozaktas et al. [1] have discussed the fractional Fourier
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transform and its applications. The concept of the fractional Fourier transform was

also investigated by De Bie et al. [2] and obtained many important results in the

area of signal processing. A new concept of fractional Fourier transform was studied

by Luchko et al. [3, 4] and discussed various properties on the Lizorkin space by

taking the modified Liouville fractional derivatives and integrals.

Pseudo-differential operators considered interesting tools and were introduced by

Kohn-Nirenberg [5], Hormander [6, 7], Wong [8] and others. By taking the Fourier

transform theory, they studied pseudo-differential operators associated with differ-

ent types of symbols on Schwartz space S(Rn). Cappiello [9, 10], Boutet de Monvel

[11], Zanghirati [12] and Upadhyay et al. [13] considered the characterizations of

pseudo-differential operators of the infinite order on Gevrey, Gelfand and Shilov

types of spaces. Motivated from the results of [3, 4], Srivastava et al. [14] discussed

pseudo-differential operators on Schwartz space S(R) by exploiting the theory of the

fractional Fourier transform.

Our main objective in this chapter is to study the pseudo-differential operators on

S(Rn) and various properties by taking n-dimensional fractional Fourier transform.

In the present chapter, author shall consider the following contents:

1. To introduce the n-dimensional fractional Fourier transform and its inversion

formula.

2. To discuss the convolution property and Plancheral formula.

3. To find continuity properties on S(Rn) and S ′(Rn).

4. To define pseudo-differential operators on S(Rn) space and their characteriza-

tions.

5. An integral representation and boundedness of pseudo-differential operators

are given.
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6. The boundedness of pseudo-differential operator on the Sobolev space dis-

cussed by exploiting the fractional Fourier transform theory.

7. Applications of pseudo-differential operators on the Lizorkin space Φ(R) are

given and by using modified fractional derivative operator Dα
β and integral

operator Iαβ , operational relations are obtained.

The entire chapter is organized in the following manner:

Section 2.1 is introductory, which contains brief history of the fractional Fourier

transform and pseudo-differential operators. We define n-dimensional fractional

Fourier transform and its inversion formula. In Section 2.2, we studied many prop-

erties of the n-dimensional fractional Fourier transform like convolution properties,

continuity properties and Parseval formula. In Section 2.3, we established the con-

tinuity properties of pseudo-differential operators. An integral representation and

boundedness of pseudo-differential operators are made in Section 2.4. The bounded-

ness of pseudo-differential operator on the Sobolev space are discussed in Section 2.5.

In Section 2.6, by using modified fractional derivative operator and integral operator,

applications of pseudo-differential operators on the Lizorkin space are obtained.

Definition 2.1.1. (Fractional Fourier Transform on Rn)

Let φ ∈ L1(Rn) and α ∈ (0, 1]n, then the fractional Fourier transform of order α is

defined by

(Fαφ)(w) ≡ φ̂α(w) := (2π)
−n
2

∫
Rn
e−i

∑n
j=1(signwj)|wj |

1
αj xjφ(x)dx, w ∈ Rn. (2.1.1)
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If we take α = (1, 1, . . . , 1), then (2.1.1) becomes the classical Fourier transform.

The inverse fractional Fourier transform is defined by

F−1
α (Fαφ)(x) :=

1

(2π)
n
2 [α]

∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj xj

(
n∏
j=1

|wj|
1
α j
−1

)

× (Fαφ)(w)dw, x ∈ Rn. (2.1.2)

2.2 Properties of the fractional Fourier transform

In this section, we studied the properties of the fractional Fourier transform on

S(Rn).

Proposition 2.2.1. Let Fα be the fractional Fourier transform, F be the Fourier

transform and α ∈ (0, 1]n. Then

1. Fα : L1(Rn)→ L∞(Rn) is a bounded linear operator.

2. If φ ∈ L1(Rn) and F(φ) ∈ L1(Rn), then F−1
α (Fαφ) = φ a.e. on Rn.

3. (Fαφ̃)(w) = F̃αφ(w), w ∈ Rn, where φ̃(x) = φ(−x), for all x ∈ Rn.

4. Let φ ∈ L1(Rn), then

(Fαφ)(w) = (Fφ)
(

(signw1)|w1|
1
α1 , (signw2)|w2|

1
α2 , . . . , (signwn)|wn|

1
αn

)
,

w = (w1, w2, . . . wn) ∈ Rn.

Proof. 1. Let φ ∈ L1(Rn), then by using (2.1.1), we have

|(Fαφ)(w)| ≤ (2π)
−n
2

∫
Rn
|φ(x)|dx, w ∈ Rn,
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this implies that

sup
x∈Rn
|(Fαφ)(w)| ≤ (2π)

−n
2 ‖φ‖1.

2. Using (2.1.1) and (2.1.2), we have

F−1
α (Fαφ)(x) =

1

(2π)n[α]

∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj xj

(
n∏
j=1

|wj|
1
αj
−1

)

×
(∫

Rn
e−i

∑n
j=1(signwj)|wj |

1
αj tjφ(t)dt

)
dw, x ∈ Rn.

Choosing yj = (signwj)|wj|
1
αj , j = 0, 1, . . . , n and y = (y1, y2, . . . , yn) ∈ Rn, then

F−1
α (Fαφ)(x) =

1

(2π)n

∫
Rn
eix.y

(∫
Rn
e−it.yφ(t)dt

)
dy.

In view of [8, p. 25], the proof of Part 2 is completed.

The proof of Part 3 and Part 4 is obvious and can be obtained easily.

Proposition 2.2.2. Let φ ∈ L1(Rn), then

1. (FαTyφ)(w) = ei
∑n
j=1(signwj)|wj |

1
αj yj(Fαφ)(w), w ∈ Rn.

2. (FαDaφ)(w) = 1
an

(Fαφ)(waα), where waα =
(
w1

aα1
, w2

aα2
, . . . , wn

aαn

)
.

Proof. 1. Let φ ∈ L1(Rn), then by (1.1.5) and (2.1.1), we have

(FαTyφ)(w) =

∫
Rn
e−i

∑n
j=1(signwj)|wj |

1
αj xjφ(x+ y)dx.

Let us assume x+ y = s = (s1, s2, . . . , sn) ∈ Rn, then

(FαTyφ)(w) = (2π)
−n
2

∫
Rn
e−i

∑n
j=1(signwj)|wj |

1
αj (sj−yj)φ(s)ds

= (2π)
−n
2 ei

∑n
j=1(signwj)|wj |

1
αj yj

∫
Rn
e−i

∑n
j=1(signwj)|wj |

1
αj sjφ(s)ds
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= ei
∑n
j=1(signwj)|wj |

1
αj yj(Fαφ)(w).

2. Let φ ∈ L1(Rn), then by (1.1.6) and (2.1.1), we have

(FαDaφ)(w) = (2π)
−n
2

∫
Rn
e−i

∑n
j=1(signwj)|wj |

1
αj xjφ(ax)dx.

By taking ax = s, we get

(FαDaφ)(w) = (2π)
−n
2

∫
Rn
e−i

∑n
j=1(signwj)|wj |

1
αj

sj
a φ(s)

1

an
ds

= (2π)
−n
2

1

an

∫
Rn
e
−i

∑n
j=1

(
sign

wj

a
αj

)∣∣ wj
a
αj

∣∣ 1
αj sjφ(s)dx

=
1

an
(Fαφ)(waα).

Proposition 2.2.3. Let φ, ψ ∈ L1(Rn), then

Fα(φ ∗ ψ) = (2π)
n
2 (Fαφ)(Fαψ). (2.2.1)

Proof. Using (1.1.4), (2.1.1) and the Fubini’s theorem, we have

Fα(φ ∗ ψ)(w) = (2π)
−n
2

∫
Rn
e−i

∑n
j=1 xj(signwj)|wj |

1
αj

(φ ∗ ψ)(x)dx

= (2π)
−n
2

∫
Rn
e−i

∑n
j=1 xj(signwj)|wj |

1
αj

(∫
Rn
φ(x− y)ψ(y)dy

)
dx

= (2π)
−n
2

∫
Rn

∫
Rn
e−i

∑n
j=1 xj(signwj)|wj |

1
αj
φ(x− y)ψ(y)dydx.

On putting x− y = s, we get

Fα(φ ∗ ψ)(w) = (2π)
−n
2

∫
Rn

∫
Rn
e−i

∑n
j=1(yj+sj)(signwj)|wj |

1
αj
φ(s)ψ(y)dyds
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= (2π)
−n
2

∫
Rn
e−i

∑n
j=1 yj(signwj)|wj |

1
αj
ψ(y)

×
(∫

Rn
e−i

∑n
j=1 sj(signwj)|wj |

1
αj
φ(s)ds

)
dy.

By using the definition of fractional Fourier transform (2.1.1), we have

Fα(φ ∗ ψ)(w) = (2π)
n
2 (Fαφ)(w)(Fαψ)(w), for all w ∈ Rn.

Proposition 2.2.4. Fα is a continuous linear isomorphism from S(Rn) onto S(Rn).

Proof. Let φ ∈ S(Rn), β = (β1, β2, . . . βn) ∈ Nn
0 and w = (w1, w2, . . . wn) ∈ Rn,

then from (2.1.1), we get

Dβ
w(Fαφ)(w) =

∫
Rn
Dβ
w(e−i

∑n
j=1(signwj)|wj |

1
αj xj)φ(x)dx, w ∈ Rn (2.2.2)

From [14, p. 537], consider αjβj ≤ 1 for each j and on simplifying, (2.2.2) becomes

∣∣∣∣∣(
n∏
j=1

w

γj
αj

j

)
Dβ
w(Fαφ)(w)

∣∣∣∣∣ ≤
(

n∏
j=1

βj
(αj)βj

)(
|
n∏
j=1

w

βj
αj
−βj

j |

)∫
Rn

γ1∑
v1=0

(
γ1

v1

) γ2∑
v2=0

×
(
γ2

v2

)
. . .

γn∑
vn=0

(
γn
vn

)
|(Dγ1−v1

x1
Dγ2−v2
x2

. . . Dγn−vn
xn φ(x))

× (xβ1−v11 xβ2−v22 . . . xβn−vnn )|dx,

which implies that

∣∣∣∣∣
(

n∏
j=1

w

γj−βj
αj

+βj

j

)
Dβ
w(Fαφ)(w)

∣∣∣∣∣ ≤
(

n∏
j=1

βj
(αj)βj

)∑
v≤γ

(
γ

v

)∫
Rn
|xβ−v(Dγ−v

x φ(x))|dx,
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where γ = (γ1, γ2 . . . , γn) and v = (v1, v2, . . . , vn) are multi-indices. Then

∣∣∣∣∣
(

n∏
j=1

w

γj−βj
αj

+βj

j

)
Dβ
w(Fαφ)(w)

∣∣∣∣∣ ≤
(

n∏
j=1

βj
(αj)βj

)∑
v≤γ

(
γ

v

)∫
Rn

n∏
j=1

(
1 + |xj|2

)βj−γj
2

+1

× |(Dγ−v
x φ(x))|

(
n∏
j=1

(1 + |xj|2)−1

)
dx.

Let m be an integer such that max
1≤j≤n

∣∣∣βj−γj2
+ 1
∣∣∣ ≤ m, N = nm and notice that

|xj|2 ≤ |x|2 =
∑n

j=1 |xj|2, we have

∣∣∣∣∣
(

n∏
j=1

w

γj−βj
αj

+βj

j

)
Dβ
w(Fαφ)(w)

∣∣∣∣∣ ≤
(

n∏
j=1

βj
(αj)βj

)∑
v≤γ

(
γ

v

)∫
Rn

(1 + |x|2)N

× |(Dγ−v
x φ(x))|

(
n∏
j=1

(1 + |xj|2)−1

)
dx.

Since φ ∈ S(Rn), then by (1.1.8), we obtain

∣∣∣∣∣
(

n∏
j=1

w

γj−βj
αj

+βj

j

)
Dβ
w(Fαφ)(w)

∣∣∣∣∣ ≤
(

n∏
j=1

βj
(αj)βj

)∑
v≤γ

B(v, γ, β)‖φ‖N . (2.2.3)

The inequality (2.2.3) shows that Fαφ ∈ S(Rn). Also the linearity of Fα is easy to

verify.

For continuity, let (φk) be a sequence of functions in S(Rn) such that φk → 0 in S(Rn)

as k → ∞, then we need to show that Fα(φk) → 0 in S(Rn) as k → ∞. Now by

using (2.2.3), we have

∣∣∣∣∣
(

n∏
j=1

w

γj−βj
αj

+βj

j

)
Dβ
w(Fαφk)(w)

∣∣∣∣∣ ≤
(

n∏
j=1

βj
(αj)βj

)∑
v≤γ

B(v, γ, β)‖φk‖N . (2.2.4)

The right-hand side of the inequality (2.2.4) tends to 0 as k → ∞, which proves

that Fα(φk)→ 0 as k →∞.
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For bijection, let φ ∈ S(Rn), then from (2.1.1) and (2.1.2), we have

F−1
α (Fαφ)(x) =

1

(2π)n[α]

∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj xj

(
n∏
j=1

|wj|
1
α
−1

)

×
(∫

Rn
e−i

∑n
j=1(signwj)|wj |

1
αj tjφ(t)dt

)
dw, ∀ x ∈ Rn.

Choosing yj = (signwj)|wj|
1
αj , j = 0, 1, . . . , n and y = (y1, y2, . . . , yn) ∈ Rn,

t = (t1, t2, . . . , tn) ∈ Rn, then we have

F−1
α (Fαφ)(x) =

1

(2π)n

∫
Rn
eix.y

(∫
Rn
e−it.yφ(t)dt

)
dy. (2.2.5)

In view of ([8], p. 22), we get F−1
α (Fαφ)(x) = φ(x) for all x ∈ Rn.

Similarly, we can show that Fα(F−1
α φ)(x) = φ(x), for all x ∈ Rn. This proves that

Fα is a bijection from S(Rn) onto S(Rn).

Proposition 2.2.5. The fractional Fourier transform Fα of order α ∈ (0, 1]n is a

bijective continuous linear mapping from S ′(Rn) onto S ′(Rn).

Proof. The linearity of Fα is easy to verify. Let T be a tempered distribution in

S ′(Rn), then firstly we prove that Fα(T ) is also a tempered distribution in S ′(Rn).

Now, let (φk) be a sequence of functions in S(Rn) such that φk → 0 in S(Rn) as k →

∞, then by Definition 1.1.4 and Proposition 2.2.4, we get

〈FαT, φk〉 = 〈T,Fαφk〉 → 0, as k →∞.

Therefore, Fα(T ) is a tempered distribution.
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Next, we have to prove that Fα is continuous mapping. For this let (Tk) be a

sequence of tempered distributions such that Tk → T in S ′(Rn) as k →∞, then

〈Tk, φ〉 → 〈T, φ〉, for all φ ∈ S(Rn).

Now for φ ∈ S(Rn), we have

〈FαTk, φ〉 = 〈Tk,Fα(φ)〉 → 〈T,Fα(φ)〉 = 〈FαT, φ〉,

this implies that Fα is continuous. Also

〈(F−1
α Fα)(T ), φ〉 = 〈FαT,F−1

α φ〉 = 〈T,FαF−1
α φ〉 = 〈T, φ〉, for all φ ∈ S(Rn).

(2.2.6)

Similarly, we can show that

〈(FαF−1
α )(T ), φ〉 = 〈T, φ〉. (2.2.7)

Thus from (2.2.6) and (2.2.7), we can say that F−1
α Fα = I = FαF−1

α . Hence Fα is

a bijection.

Proposition 2.2.6. Let φ, ψ ∈ S(Rn). Then the Parseval formula for the fractional

Fourier transform is given by

∫
Rn
φ(x)ψ(x)dx =

1

[α]

∫
Rn

(Fαφ)(w)(Fαψ)(w)

(
n∏
j=1

|wj|
1
αj
−1

)
dw. (2.2.8)

Proof. Let φ, ψ ∈ S(Rn), then by using (2.1.2), Proposition 2.2.4, and the Fubini’s

theorem, we have

∫
Rn
φ(x)ψ(x)dx =

1

(2π)
n
2 [α]

∫
Rn
ψ(x)

(∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj xj

(
n∏
j=1

|wj|
1
αj
−1

)
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× (Fαφ)(w)dw

)
dx

=
1

(2π)
n
2 [α]

∫
Rn

(Fαφ)(w)

(
n∏
j=1

|wj|
1
αj
−1

)(∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj xj

× ψ(x)dx

)
dw

=
1

(2π)
n
2 [α]

∫
Rn

(Fαφ)(w)

(
n∏
j=1

|wj|
1
αj
−1

)

×

(∫
Rn
e−i

∑n
j=1(signwj)|wj |

1
αj xjψ(x)dx

)
dw.

Using (2.1.1), the above expression yields

∫
Rn
φ(x)ψ(x)dx =

1

[α]

∫
Rn

(Fαφ)(w)(Fαψ)(w)

(
n∏
j=1

|wj|
1
αj
−1

)
dw.

For φ = ψ, in (2.2.8), we get

∫
Rn
|φ(x)|2dx =

1

[α]

∫
Rn
|(Fαφ)(w)|2

(
n∏
j=1

|wj|
1
αj
−1

)
dw. (2.2.9)

The above identity (2.2.9) known as the Plancherel identity.

2.3 Pseudo-differential operators

In this section, definition and properties of pseudo-differential operators are given

by involving the n-dimensional fractional Fourier transform of order α ∈ (0, 1]n.
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The linear partial differential operator Pα(x,D) of order m on Rn is given by

Pα(x,D) =
∑
|β|≤m

aβ(x)Dβ, (2.3.1)

where Dβ = (−i)|β|Dβ1
x1
Dβ2
x2
. . . Dβn

xn and coefficient aβ(x) are functions defined on Rn.

If we replace Dβ in (2.3.1) by monomials

n∏
j=1

(
(signwj)|wj|

1
αj

)βj
= ((signw1)|w1|

1
α1 )β1

× ((signw2)|w2|
1
α2 )β2 . . . ((signwn)|wn|

1
αn )βn (2.3.2)

in Rn, then

Pα(x,w) =
∑
|β|≤m

aβ(x)
( n∏
j=1

(
(signwj)|wj|

1
αj
)βj) (2.3.3)

is called the symbol of the operator Pα(x,D).

Proposition 2.3.1. If φ ∈ S(Rn), then

Fα(Dβφ(x))(w) =
( n∏
j=1

(
(signwj)|wj|

1
αj
)βj)(Fαφ)(w), w ∈ Rn. (2.3.4)

Proof. From (2.1.1), we have

Fα(Dβφ(x))(w) =

∫
Rn
e−i

∑n
j=1(signwj)|wj |

1
αj xj(Dβφ(x))dx

= (−i)|β|
∫
Rn
e−i

∑n
j=1(signwj)|wj |

1
αj xj

(
Dβ1
x1
Dβ2
x2
. . . Dβn

xnφ(x)
)
dx.

(2.3.5)

Now using integration by parts in (2.3.5), we obtain

Fα(Dβφ(x))(w) = (−i)|β|(i)|β|
(
(signw1)|w1|

1
α1

)β1((signw2)|w2|
1
α2

)β2 . . .
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×
(
(signwn)|wn|

1
αn

)βn
(

∫
Rn
e−i

∑n
j=1(signwj)|wj |

1
αj xjφ(x)dx)

=
( n∏
j=1

(
(signwj)|wj|

1
αj
)βj)(Fαφ)(w).

Theorem 2.3.2. Integral representation of the partial differential operator Pα(x,D),

α ∈ (0, 1]n is given by

Pα(x,D)φ(x) =
1

(2π)
n
2 [α]

∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj xjPα(x,w)

( n∏
j=1

|wj|
1
αj
−1
)

× (Fαφ)(w)dw, for all φ ∈ S(Rn). (2.3.6)

Proof. Let φ ∈ S(Rn),

Pα(x,D)φ(x) =
∑
|β|≤m

aβ(x)Dβφ(x).

Then by Proposition 2.2.4, we get

Pα(x,D)φ(x) =
∑
|β|≤m

aβ(x)F−1
α (FαDβφ)(x).

Now, using (2.3.4), we have

Pα(x,D)φ(x) =
∑
|β|≤m

aβ(x)F−1
α

[ n∏
j=1

(
(signwj)|wj|

1
αj

)βj
(Fαφ)

]
(x)

=
∑
|β|≤m

aβ(x)
1

(2π)
n
2 [α]

∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj xj

×
( n∏
j=1

|wj|
1
αj
−1
)[ n∏

j=1

(
(signwj)|wj|

1
αj

)βj ]
(Fαφ)(w)dw

=
1

(2π)
n
2 [α]

∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj xj

( n∏
j=1

|wj|
1
αj
−1
)
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×
[ ∑
|β|≤m

aβ(x)
n∏
j=1

(
(signwj)|wj|

1
αj

)βj ]
(Fαφ)(w)dw

=
1

(2π)
n
2 [α]

∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj xjPα(x,w)

( n∏
j=1

|wj|
1
αj
−1
)

× (Fαφ)(w)dw.

Now, we define general symbol class and corresponding partial differential operator.

Definition 2.3.3. Let m ∈ R and α ∈ (0, 1]n. We define S
m
[α] is the set of all

functions σα(x,w) ∈ C∞(Rn×Rn) such that for all β, γ ∈ Nn
0 , there exists a constant

Aβ,γ > 0 depending on β and γ only, such that

|Dβ
xD

γ
wσα(x,w)| ≤ Aβ,γ(1 + |w|)

m
[α]
−|γ|. (2.3.7)

We call any function σα ∈ ∪mS
m
[α] a symbol.

Definition 2.3.4. Let σα(x,w) ∈ C∞(Rn × Rn) be a symbol. Then the pseudo-

differential operator Tσ,α associated to σα(x,w) is defined by

(Tσ,αφ)(x) =
1

(2π)
n
2 [α]

∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj xj

( n∏
j=1

|wj|
1
αj
−1
)

× σα(x,w)(Fαφ)(w)dw, (2.3.8)

for all φ ∈ S(Rn).

Theorem 2.3.5. Let σα(x,w) ∈ S
m
[α] , then the pseudo-differential operator Tσ,α is

a continuous linear mapping from S(Rn) into S(Rn).
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Proof. We take φ ∈ S(Rn), then for any β, γ, δ ∈ Nn
0 and using (2.3.8), we have

(DγTσ,αφ)(x) =
1

(2π)
n
2 [α]

∫
Rn
Dγ
[
ei

∑n
j=1(signwj)|wj |

1
αj xjσα(x,w)

]( n∏
j=1

|wj|
1
α j
−1
)

× (Fαφ)(w)dw

=
(−i)|γ|

(2π)
n
2 [α]

∫
Rn

∑
δ≤γ

(
γ

δ

)[
Dγ−δ
x σα(x,w)

][
Dδ
xe
i
∑n
j=1(signwj)|wj |

1
αj xj

]
×
( n∏
j=1

|wj|
1
α j
−1
)

(Fαφ)(w)dw

=
(−i)|γ|

(2π)
n
2 [α]

∫
Rn

∑
δ≤γ

(
γ

δ

)[
Dγ−δ
x σα(x,w)

] [ n∏
j=1

(
i(signwj)|wj|

1
αj

)δj ]
× ei

∑n
j=1(signwj)|wj |

1
αj xj

( n∏
j=1

|wj|
1
α j
−1
)

(Fαφ)(w)dw. (2.3.9)

For y = (y1, y2, . . . yn) ∈ Rn, and yj = (signwj)|wj|
1
αj , then for each j,

wj = (sign yj)|yj|αj , 1
[α]

∏n
j=1 |wj|

1
α j
−1
dw = dy and

yα =
(
(sign y1)|y1|α1 , (sign y2)|y2|α2 , . . . , (sign yn)|yn|αn

)
.

Then (2.3.9), becomes

xβ(DγTσ,αφ)(x) =
(−i)|γ|(i)|δ|

(2π)
n
2

∫
Rn

∑
δ≤γ

(
γ

δ

)
(Dβ

y e
ix.y)[Dγ−δ

x σα(x, yα)]

× (yδFαφ(yα))dy. (2.3.10)

Using integration by parts and Leibnitz’s formula, (2.3.10) becomes

xβ(DγTσ,αφ)(x) =
(−1)|γ|+|β|(i)|γ|+|δ|

(2π)
n
2

∫
Rn

∑
δ≤γ

(
γ

δ

)
eix.yDβ

y

( (
Dγ−δ
x σα(x, yα)

)
×
(
yδFαφ(yα)

) )
dy
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=
(−1)|γ|+|β|(i)|γ|+|δ|

(2π)
n
2

∫
Rn

∑
δ≤γ

∑
η≤β

(
γ

δ

)(
β

η

)
eix.y[Dβ−η

y Dγ−δ
x

× σα(x, yα)]
[
Dη
y

(
yδFαφ(yα)

)]
dy. (2.3.11)

Now using the fact that σα ∈ S
m
[α] is a symbol, we can find a constant Aβ, γ, δ, η > 0

such that (2.3.11) takes the form

sup
x∈Rn
|xβ(DγTσ,αφ)(x)| ≤ 1

(2π)
n
2

∑
δ≤γ

∑
η≤β

(
γ

δ

)(
β

η

)
Aβ,γ,δ,η

∫
Rn

(1 + |yα|)
m
[α]
−|β|+|η|

×
∣∣Dη

y(y
δFαφ(yα))

∣∣ dy. (2.3.12)

Since the integral in (2.3.11) is absolutely integrable for φ ∈ S(Rn), then we find

that supx∈Rn |xβ(DγTσ,αφ)(x)| <∞, which proves that Tσ,αφ ∈ S(Rn). The linearity

of Tσ,α is easy to verify. For continuity of Tσ,α, let φk → 0 in S(Rn) as k →∞, then

by using the relation (2.3.12), we have

sup
x∈Rn
|xβ(DγTσ,αφk)(x)| ≤ 1

(2π)
n
2

∑
δ≤γ

∑
η≤β

(
γ

δ

)(
β

η

)
Aβ,γ,δ,η

∫
Rn

(1 + |yα|)
m
[α]
−|β|+|η|

×
∣∣Dη

y(y
δFαφk(yα))

∣∣ dy. (2.3.13)

By using Proposition 2.2.4, we can say that

(1 + |yα|2)
1
2( m

[α]
−|β|−|η|) ∣∣Dη

y(y
δFαφk(yα))

∣∣→ 0 in S(Rn) as k →∞, which shows that

the right side of (2.3.13) tends to 0 as k →∞.

This proves that Tσ,αφk → 0 in S(Rn) as k →∞. Thus Tσ,α is continuous.

Definition 2.3.6. Let Tσ,α be a pseudo differential operator on S(Rn) and u ∈

S ′(Rn), then Tσ,α is defined on S ′(Rn) by

(Tσ,αu)(φ) = u(T ∗σ,αφ), φ ∈ S(Rn), (2.3.14)
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where T ∗σ,α is the formal adjoint of Tσ,α, which is given by

(Tσ,αφ, ψ) = (φ, T ∗σ,αψ), φ, ψ ∈ S(Rn). (2.3.15)

Theorem 2.3.7. Tσ,α : S ′(Rn)→ S ′(Rn) be a continuous linear mapping.

Proof. The linearity of Tσ,α is obvious. Let φk → 0 in S(Rn) as k → ∞, then

by Theorem 2.3.5, T ∗σ,αφk → 0 in S(Rn), as k → ∞. Now for u ∈ S ′(Rn) and

using (2.3.14), we have (Tσ,αu)(φk) → 0 in S(Rn) as k → ∞. This gives that

Tσ,αu ∈ S ′(Rn). For continuity, consider φ ∈ S(Rn) and let uk → 0 in S ′(Rn) as

k → ∞, therefore from (2.3.14), we have (Tσ,α(uk))(φ) = uk(T ∗σ,αφ) → 0 in S ′(Rn)

as k → ∞. This yields that Tσ,αuk → 0 in S ′(Rn) as k → ∞. Hence Tσ,α is a

continuous mapping.

2.4 Integral representation and boundedness of

the pseudo-differential operator Tσ,α

In this section, the integral representation, boundedness of pseudo-differential op-

erator Tσ,α and its various properties are discussed by exploiting the theory of the

fractional Fourier transform.

Theorem 2.4.1. Let σα(x,w) ∈ S
m
[α] , then the pseudo-differential operator Tσ,α can

be represented by

(Tσ,αφ)(x) =
1

(2π)
n
2

∫
Rn
φ(y)(F−1

α σα)(x, x− y)dy, (2.4.1)
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where

(F−1
α σα)(x, x− y) =

1

(2π)
n
2 [α]

∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj (xj−yj)

( n∏
j=1

|wj|
1
αj
−1
)

× σα(x,w)dw. (2.4.2)

Moreover, if φ ∈ L1(Rn) then for

n+
n∑
j=1

1

αj
+
m

[α]
< 0,

we have

‖Tσ,αφ‖∞ ≤ C
′′‖φ‖1, (2.4.3)

for some positive constant C ′′.

Proof. Using (2.3.8) and the Fubini’s theorem, we have

(Tσ,αφ)(x) =
1

(2π)
n
2 [α]

∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj xj

( n∏
j=1

|wj|
1
αj
−1
)
σα(x,w)

× (Fαφ)(w)dw

=
1

(2π)n[α]

∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj xj

( n∏
j=1

|wj|
1
αj
−1
)
σα(x,w)

×
(∫

Rn
e−i

∑n
j=1(signwj)|wj |

1
αj yjφ(y)dy

)
dw

=
1

(2π)
n
2

∫
Rn
φ(y)

( 1

(2π)
n
2 [α]

∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj (xj−yj)

×
( n∏
j=1

|wj|
1
αj
−1
)
σα(x,w)dw

)
dy

=
1

(2π)
n
2

∫
Rn
φ(y)(F−1

α σα)(x, x− y)dy.
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Now, in view of (2.3.7) and the following inequalities,

n∏
j=1

|wj|
1
αj
−1 ≤ (1 + |w|)

∑n
j=1

1
αj
−n

and (1 + |w|2)n ≤ (1 + |w|)2n,

there exist C > 0 such that (2.4.2) becomes

|(F−1
α σα)(x, x− y)| ≤ 1

(2π)
n
2 [α]

C

∫
Rn

(
n∏
j=1

|wj|
1
αj
−1

)
(1 + |w|)

m
[α] dw

≤ 1

(2π)
n
2 [α]

C

∫
Rn

(1 + |w|)
∑n
j=1

1
αj
−n

(1 + |w|)
m
[α] dw

≤ 1

(2π)
n
2 [α]

C

∫
Rn

(1 + |w|)
∑n
j=1

1
αj

+n+ m
[α] (1 + |w|2)−ndw.

Assuming

n+
n∑
j=1

1

αj
+
m

[α]
< 0, we have

|(F−1
α σα)(x, x− y)| ≤ 1

(2π)
n
2 [α]

C

∫
Rn

(1 + |w|2)−ndw. (2.4.4)

Since the integral on the right hand-side of (2.4.4) is integrable therefore there exists

a positive constant C ′ such that,

|(F−1
α σα)(x, x− y)| ≤ C ′ . (2.4.5)

In view of (2.4.1) and (2.4.5), we obtain

|(Tσ,αφ)(x)| ≤ C ′ 1

(2π)
n
2

∫
Rn
|φ(y)|dy, x ∈ Rn.

This implies that there exist a positive constant C ′′ > 0, such that

‖(Tσ,αφ)‖∞ ≤ C
′′‖φ‖1.
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This proves (2.4.3) and hence the above proof is completed.

2.5 The Sobolev space

In this section, the properties of Sobolev space associated with the pseudo-differential

operator Jsσ,α with a symbol σs,α are discussed by exploiting the theory of fractional

Fourier transform of order α ∈ (0, 1]n.

For s ∈ R, let σs,α be a symbol, which is given by

σs,α(w) =
(

1 +
n∑
k=1

|wk|
2
αk

)−s
[α]
, w ∈ Rn. (2.5.1)

Then the pseudo-differential operator Jsσ,α associated to the given symbol (2.5.1) is

defined by

(Jsσ,αφ)(x) =
1

(2π)
n
2 [α]

∫
Rn
ei

∑n
j=1(signwj)|wj |

1
αj xj

( n∏
j=1

|wj|
1
αj
−1
)

×
(

1 +
n∑
k=1

|wk|
2
αk

)−s
[α]

(Fαφ)(w)dw

= F−1
α

[(
1 +

n∑
k=1

|wk|
2
αk

)−s
[α]

(Fαφ)(w)
]
(x), for φ ∈ S(Rn).

It can be easily shown that for u ∈ S ′(Rn), the product σs,αu of σs,α and u defined

by

(σs,αu)(φ) = u(σs,αφ), φ ∈ S(Rn),

is also in S ′(Rn). Moreover, for u ∈ S ′(Rn),

(Jsσ,αu) = F−1
α

[(
1 +

n∑
k=1

|wk|
2
αk

)−s
[α]

(Fαu)
]
. (2.5.2)
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From (2.5.2), it is clear that Jsσ,α is an element of S ′(Rn).

Theorem 2.5.1. Let u ∈ S ′(Rn), then

1. Jsσ,α(J tσ,αu) = Js+tσ,α u.

2. J0
σ,αu = u.

Proof. Now, we find

Jsσ,α(J tσ,αu) = Jsσ,α

[
F−1
α

[(
1 +

n∑
k=1

|wk|
2
αk

)−t
[α]

(Fαu) big]
]

= F−1
α

[(
1 +

n∑
k=1

|wk|
2
αk

)−s
[α]
(

1 +
n∑
k=1

|wk|
2
αk

)−t
[α]

(Fαu)
]

= F−1
α

[(
1 +

n∑
k=1

|wk|
2
αk

)−s−t
[α]

(Fαu)
]

= Js+tσ,α u.

Next, by using Proposition 2.2.5, we have

J0
σ,αu = F−1

α

[(
1 +

n∑
k=1

|wk|
2
αk

) 0
[α]

(Fαu)
]

= F−1
α (Fαu)

= u.

Definition 2.5.2. Let s ∈ R and 1 ≤ p <∞, then Hs,p
α is defined by

Hs,p
α = {u ∈ S ′(Rn) : J−sσ,αu ∈ Lp(Rn)}. (2.5.3)
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It can easily show that Hs,p
α is a vector space.

Let ‖.‖s,p : Hs,p
α → R, is defined by

‖u‖s,p = ‖J−sσ,αu‖p, u ∈ Hs,p
α . (2.5.4)

Then Hs,p
α is a normed linear space with respect to the norm ‖.‖s,p given by (2.5.4).

Moreover, from the concept of Wong ([8], p. 88) it is a Banach space. We call Hs,p
α ,

the Lp- Sobolev space of order s
[α]

.

Theorem 2.5.3. J tσ,α : Hs,p
α → Hs+t,p

α is an onto isometry.

Proof. Let u ∈ Hs,p
α , then

‖J tσ,αu‖s+t,p = ‖J−s−tσ,α J tσ,αu‖p = ‖J−sσ,αu‖p = ‖u‖s,p.

This proves that J tσ,α is an isometry.

For onto, let x ∈ Hs+t,p
α , then J−s−tσ,α x ∈ Lp(Rn). Now from Theorem 2.5.1

J−s−tσ,α x = J−sσ,α(J−tσ,αx) ∈ Lp(Rn),

which implies that J−tσ,αx ∈ Hs,p
α , so J tσ,α(J−tσ,αx) = J0

σ,αx = x. This proves that J tσ,α

is an onto mapping.

From Wong ([8], p. 88), we give the following example:

Example 1. Let s > 0. We define the function Gs on Rn by

Gs(x) =
1

2
s
2 Γ( s

2
)

∫ ∞
0

e−
r
2 e−

|x|2
2r r−

(n−s)
2
dr

r
, x ∈ Rn.

Then, we have
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Gs ∈ L1(Rn) with ‖Gs‖1 = (2π)
n
2 and (FGs)(w) = (1 + |w|2)

−s
2 , w ∈ Rn.

Now, using Proposition 2.2.1 and Example 1, the fractional Fourier transform of Gs

is given by

(FαGs)(w) =
(
FGs

)(
(signw1)|w1|

1
α1 , (signw2)|w2|

1
α2 , . . . , (signwn)|wn|

1
αn

)
=
(

1 +
n∑
k=1

|wk|
2
αk

)−s
2
, for all w = (w1, w2, . . . , wn) ∈ Rn. (2.5.5)

Theorem 2.5.4. Let s > 0 and 1 ≤ p <∞. Then Jsσ,α is a bounded linear operator

from Lp(Rn) into itself.

Proof. Let φ ∈ S(Rn), then

Fα(Jsσ,αφ)(w) =
[(

1 +
n∑
k=1

|wk|
2
αk

)−s
[α]

(Fαφ)
]
(w).

Next, by using Proposition 2.2.3 and (2.5.5), we have

Fα(Gs ∗ φ)(w) = (2π)
n
2

(
1 +

n∑
k=1

|wk|
2
αk

)−s
2

(Fαφ)(w),

so that

Gs ∗ φ = (2π)
n
2Fα−1

[(
1 +

n∑
k=1

|wk|
2
αk

)−s
2

(Fαφ)
]
. (2.5.6)

Since (2.5.6) is true for all s > 0, so we can replace s by 2s
[α]
> 0, in (2.5.6) thus, we

have

G 2s
[α]
∗ φ = (2π)

n
2Fα−1

[(
1 +

n∑
k=1

|wk|
2
αk

)−s
[α]

(Fαφ)
]
.

Therefore we get,

Jsσ,αφ = (2π)
−n
2

(
G 2s

[α]
∗ φ
)
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Now, using the properties of convolution ([8], p. 9), we have

‖Jsσ,αφ‖p = (2π)
−n
2 ‖G 2s

[α]
∗ φ‖p ≤ (2π)

−n
2 ‖G 2s

[α]
‖1‖φ‖p = ‖φ‖p. (2.5.7)

Relation (2.5.7) proves that Jsσ,α is a bounded linear map from S(Rn) into itself.

From ([8], p. 14), S(Rn) is dense in Lp(Rn)(1 ≤ p < ∞), therefore Jsσ,α can be

extended to a bounded linear operator on Lp(Rn) satisfying (2.5.7).

Theorem 2.5.5. Let 1 < p <∞ and s < t, then

H t,p
α ⊆ Hs,p

α and ‖u‖s,p ≤ ‖u‖t,p,

for all u ∈ H t,p
α .

Proof. Let u ∈ H t,p
α then, J−tσ,αu ∈ Lp(Rn).

Now, we can write

J−sσ,αu = J t−sσ,α (J−tσ,αu).

Exploiting (2.5.7), we obtain

‖u‖s,p = ‖J−sσ,αu‖p = ‖J t−sσ,α (J−tσ,αu)‖p ≤ ‖J−tσ,αu‖p ≤ ‖u‖p, u ∈ H t,p
α .

Theorem 2.5.6. For s ∈ R, 1 < p <∞, S(Rn) is dense in Hs,p
α .

Proof. Let u ∈ Hs,p
α , then J−sσ,αu ∈ Lp(Rn). Since S(Rn) is dense in Lp(Rn), so there

exists a sequence (φj) in S(Rn) such that φj → J−sσ,αu in Lp(Rn) as j →∞.

Assume χj = Jsσ,αφj ∈ S(Rn).
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From (2.5.4), we find that

‖χj − u‖s,p = ‖J−sσ,α(χj − u)‖p = ‖J−sσ,αχj − J−sσ,αu‖p = ‖φj − J−sσ,αu‖p → 0,

as j →∞. This shows that S(Rn) is dense in Hs,p
α .

Theorem 2.5.7. For s > 0, 1 < p < ∞, Jsσ,α is a bounded linear operator from

Hs,p
α into itself.

Proof. From inequality (2.5.7), Jsσ,α is a bounded linear operator from S(Rn) into

itself. From Theorem 2.5.6, we have seen that S(Rn) is dense in Hs,p
α . So that, Jsσ,α

can be extended to a bounded linear operator on Hs,p
α .

2.6 Applications of pseudo-differential operators

in fractional calculus

In this section, applications of pseudo-differential operators involving fractional

derivatives and fractional integrals on Lizorkin space Φ(R) are discussed by ex-

ploiting the theory of the fractional Fourier transform.

Lemma 2.6.1. If Tσ,α is the pseudo-differential operator corresponding to the sym-

bol σα(x,w) = σα(w) ∈ S
m
α , then for φ ∈ S(R), we have to prove the following

expression

(FαTσ,αφ)(w) = σα(w)(Fαφ)(w). (2.6.1)
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Proof. For φ ∈ S(R), using (2.3.8) for n = 1 and taking σα(x,w) = σα(w) ∈ Sm
α ,

we get

(Tσ,αφ)(x) =
1

(2π)
1
2α

∫
R
ei(signw)|w|

1
α x|w|

1
α
−1σα(w)(Fαφ)(w)dw. (2.6.2)

From (2.1.2), (2.6.2) becomes

(Tσ,αφ)(x) = F−1
α [σα(w)(Fαφ)(w)](x). (2.6.3)

Since φ ∈ S(R), therefore by using Proposition 2.2.4, we get Fαφ ∈ S(R). This

implies that R.H.S of (2.6.3) be an element of S(R).

Now, by the property of the fractional Fourier transform, we can write (2.6.3) by

the following way:

(FαTσ,αφ)(w) = σα(w)(Fαφ)(w),

which is an element of S(R).

Lemma 2.6.2. If Fαφ ∈ V (R), which is defined in (1.3.1), then the pseudo differ-

ential operator Tσ,αφ is given in (2.6.2) is an element of the Lizorkin space Φ(R).

Proof. From (2.6.1) and Leibnitz formula for differentiation, we have

Dm
w ((FαTσ,αφ)(w)) =

m∑
r=0

(
m

r

)(
Dm−r
w σα(w)

)
(Dr

w(Fαφ)(w)) , for m ∈ N. (2.6.4)

Since Fαφ ∈ V (R), and at w = 0, the right hand side of (2.6.4) will be zero. For

making Tσ,αφ is in the Lizorkin space, put w = 0 in (2.6.1), we get (FαTσ,αφ)(0) = 0.

Finally Tσ,αφ belongs to the Lizorkin space Φ(R).
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Theorem 2.6.3. If Fαφ ∈ V (R), then following operational relation holds for 0 <

α ≤ 1,

(FαDα
βTσ,αφ)(w) = (icαw)(σα(w)(Fαφ)(w)), w ∈ R, (2.6.5)

where β is any parameter and cα is

cα = sin(απ/2)− i(signw)(1− 2β)cos(απ/2), (2.6.6)

and Tσ,αφ is defined by (2.6.2).

Proof. By using Lemma 2.6.2, we prove the above theorem by the following way:

Case 1: If α = 1, then (2.6.5) holds easily.

Case 2: If w = 0, α 6= 1, then we need to show that (FαDα
βTσ,αφ)(0) = 0.

Now, by using the definition of the fractional Fourier transform, Dα
β and Theorem

4.1 from [3], we get

(FαDα
βTσ,αφ)(0) =

∫ +∞

−∞
(FαDα

βTσ,αφ)(x)dx

=
[
(1− β)

( d
dx

)
(I1−α

+ Tσ,αφ)(x) + β
( d
dx

)
(I1−α
− Tσ,αφ)(x)

]+∞

−∞

= 0,

by using the fact that Φ(R) is a proper subset of S(R).

Case 3: α 6= 1, w > 0, then from (1.3.4), (1.2.9), (1.2.10) and [3, p. 465], we have

(FαDα
βTσ,αφ)(w) =

∫ +∞

−∞
e−i|w|

1
α x(Dα

βTσ,αφ)(x)dx

= (1− β)

∫ +∞

−∞
e−i|w|

1
α x(Dα

+Tσ,αφ)(x)dx

− β
∫ +∞

−∞
e−i|w|

1
α x(Dα

−Tσ,αφ)(x)dx

= (1− β)

∫ +∞

−∞
(Dα
−e
−i|w|

1
α t)(x)(Tσ,αφ)(x)dx
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− β
∫ +∞

−∞
(Dα

+e
−i|w|

1
α t)(x)(Tσ,αφ)(x)dx

=
(
(1− 2β)cos(απ/2) + isin(απ/2)

)
w

∫ +∞

−∞
e−i|w|

1
α xTσ,αφ(x)dx

=
(
(1− 2β)cos(απ/2) + isin(απ/2)

)
w(FαTσ,αφ(x))(w).

Now, by using Lemma 2.6.1, we have

(FαDα
βTσ,αφ)(w) = (iw)

(
sin(απ/2)− i(1− 2β)cos(απ/2)

)
(σα(w)(Fαφ)(w)).

Case 4: For α 6= 1, w < 0, then we get

(FαDα
βTσ,αφ)(w) =

∫ +∞

−∞
ei|w|

1
α x(FαDα

βTσ,αφ)(x)dx.

Taking the concept of [3, p.465] and case 3, we have

(FαDα
βTσ,αφ)(w) = (iw)

(
sin(απ/2) + i(1− 2β)cos(απ/2)

)
(σα(w)(Fαφ)(w)).

Hence by combining cases 1 to 4, we find the proof of the Theorem.

Theorem 2.6.4. If Fαφ ∈ V (R), then following operational relation holds for 0 <

α ≤ 1,

(FαIαβ Tσ,αφ)(w) =
dα(β)i

w
(σα(w)(Fαφ)(w)), w ∈ R; w 6= 0, (2.6.7)

where

dα(β) = sin(
απ

2
)− i(signw)(1− 2β)cos(

απ

2
), (2.6.8)

and Tσ,αφ is given in (2.6.2).



Chapter 2. P.D.O. associated with modified Fractional Derivatives involving the
Fr.F.T 45

Proof. By using Lemma 2.6.2, the proof of aforesaid theorem can be easily obtained

from [4, p. 789-790].

2.7 Conclusions

Fractional Fourier transform is a useful tool for solving the problems of Riemann-

Liouville fractional derivatives and other problems of fractional calculus. The im-

portance of this theory can be seen in the papers of Luchko et al [3, 4]. Properties

of the fractional Fourier transform, pseudo-differential operators on Schwartz space

S(Rn) and applications of pseudo-differential operators on the Sobolev space of type

Hs,p
α associated with a certain class of symbols are discussed in this paper. The

authors also studied applications of pseudo-differential operators on Lizorkin space

Φ(R) by utilizing the theory of the fractional Fourier transform, modified fractional

derivative operator Dα
β and modified fractional integral operator Iαβ . This paper is

of great importance in mathematical sciences, physical sciences, engineering, and

other areas. This paper is useful for those researchers, who are interested to work in

the area of pseudo-differential operators, fractional calculus, image processing, sig-

nal processing, and others. The authors cited all the possible recent developments

regarding the fractional Fourier transform, pseudo-differential operators, and others

in the form of references.

***
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