Chapter 2

Pseudo-Differential Operators
associated with modified
Fractional Derivatives involving

the Fractional Fourier Transform

2.1 Introduction

The theory of fractional Fourier transform encompasses the theory of Fourier trans-
form and played a widespread role in mathematics, engineering, and other areas of
sciences. Fractional Fourier transform is the generalization of the Fourier transform,
which is the more flexible approach in the applications of ordinary differential equa-
tions, partial differential equations, quantum mechanics, signal processing, and other
fields also. Many observations of this aforesaid theory have been done by authors

and got important results. Ozaktas et al. [1] have discussed the fractional Fourier
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transform and its applications. The concept of the fractional Fourier transform was
also investigated by De Bie et al. [2] and obtained many important results in the
area of signal processing. A new concept of fractional Fourier transform was studied
by Luchko et al. [3, 4] and discussed various properties on the Lizorkin space by
taking the modified Liouville fractional derivatives and integrals.
Pseudo-differential operators considered interesting tools and were introduced by
Kohn-Nirenberg [5], Hormander [6, 7], Wong [8] and others. By taking the Fourier
transform theory, they studied pseudo-differential operators associated with differ-
ent types of symbols on Schwartz space S(R™). Cappiello [9, 10], Boutet de Monvel
[11], Zanghirati [12] and Upadhyay et al. [13] considered the characterizations of
pseudo-differential operators of the infinite order on Gevrey, Gelfand and Shilov
types of spaces. Motivated from the results of [3, 4], Srivastava et al. [14] discussed
pseudo-differential operators on Schwartz space S(R) by exploiting the theory of the
fractional Fourier transform.

Our main objective in this chapter is to study the pseudo-differential operators on
S(R™) and various properties by taking n-dimensional fractional Fourier transform.

In the present chapter, author shall consider the following contents:
1. To introduce the n-dimensional fractional Fourier transform and its inversion
formula.
2. To discuss the convolution property and Plancheral formula.
3. To find continuity properties on S(R") and S'(R™).

4. To define pseudo-differential operators on S(R™) space and their characteriza-

tions.

5. An integral representation and boundedness of pseudo-differential operators

are given.
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6. The boundedness of pseudo-differential operator on the Sobolev space dis-

cussed by exploiting the fractional Fourier transform theory.

7. Applications of pseudo-differential operators on the Lizorkin space ®(R) are
given and by using modified fractional derivative operator D§ and integral

operator I, operational relations are obtained.

The entire chapter is organized in the following manner:

Section 2.1 is introductory, which contains brief history of the fractional Fourier
transform and pseudo-differential operators. We define n-dimensional fractional
Fourier transform and its inversion formula. In Section 2.2, we studied many prop-
erties of the n-dimensional fractional Fourier transform like convolution properties,
continuity properties and Parseval formula. In Section 2.3, we established the con-
tinuity properties of pseudo-differential operators. An integral representation and
boundedness of pseudo-differential operators are made in Section 2.4. The bounded-
ness of pseudo-differential operator on the Sobolev space are discussed in Section 2.5.
In Section 2.6, by using modified fractional derivative operator and integral operator,

applications of pseudo-differential operators on the Lizorkin space are obtained.

Definition 2.1.1. (Fractional Fourier Transform on R")
Let ¢ € L*(R™) and « € (0,1]", then the fractional Fourier transform of order « is

defined by

1

(Fad)(w) = an(w) = (27r)2n/ e’iZ?=1(Sig“wj)|wf‘a7xj¢(a:)da:, weR" (2.1.1)

n
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If we take = (1,1,...,1), then (2.1.1) becomes the classical Fourier transform.

The inverse fractional Fourier transform is defined by

3

— 1 i S (signw; w%z - 1
fal(fa¢)(x) = m/ne 2321( gnw;)|ws| J (]‘_[|wj|o¢j 1)

j=1

X (Fad)(w)dw, z € R". (2.1.2)

2.2 Properties of the fractional Fourier transform

In this section, we studied the properties of the fractional Fourier transform on

S(R™).

Proposition 2.2.1. Let F, be the fractional Fourier transform, F be the Fourier

transform and o € (0,1]™. Then

1. Fo : LYR™) — L*>(R"™) is a bounded linear operator.

2. If ¢ € L'(R™) and F(¢) € L*(R"™), then F,'(Fod) =¢ a.e. on R".

~ —_— ~

3. (Fad)(w) = Foo(w), w € R"™, where ¢p(x) = ¢(—x), for all x € R™.

4. Let ¢ € L*(R™), then
(Fut)(w) = (F0) ((signwn)|ur[*1, (signwa)wa| . .. (signw,) .| ).
w = (wy,wy, ... w,) € R".
Proof. 1. Let ¢ € L'(R"), then by using (2.1.1), we have

|(Fag)(w)] < (21)7 - |o(x)|dz, w e R",
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this implies that
sup [(Fag) (w)] < (2m) % [[]1.

rER™

2. Using (2.1.1) and (2.1.2), we have

_ 1 7 signw;)|w (% aj
fal(Fa¢)(x) _ W/ e Z] 1 (signw;)|w; | “9 <H ‘w]‘ >
> (/ eiZ?—l(Signwa‘)wjla”j¢(t)dt) dw, = € R"

1
Choosing y; = (signw;)|w;|*, j=0,1,...,n and y = (y1,¥2,...,yn) € R, then

Fo (Fad)(a) = (2%) [ e ( /. e‘“%(t)dt) J

In view of [8, p. 25|, the proof of Part 2 is completed.

The proof of Part 3 and Part 4 is obvious and can be obtained easily. O]

Proposition 2.2.2. Let ¢ € L*(R"), then

1. (FaTy0)(w) = ¢ Simabimunlusl ™ (£ 8y (), w € R™.

2. (FaDuo)(w) = ain(Faqﬁ)(wg), where we = (mTlm PR ;‘fT’;)

Proof. 1. Let ¢ € L'(R"), then by (1.1.5) and (2.1.1), we have

(FaTyew) = [ e Emsmend gt s

Let us assume = +y = s = (s, Sg,...,5,) € R, then

(FuTy)(w) = (27)F / e il (i) g (5)ds

1
— (27'(') QLBZZ _ (signw;)|wj]| ]y]/ e—iZ?ﬂ(signwj)\wjlo‘j 5.7'¢(S)d3

R
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1

= ¢ Z?:l(Signwj)‘w”(ijj (fa¢) (w>

2. Let ¢ € L'(R™), then by (1.1.6) and (2.1.1), we have

1

(FaDad)w) = (2m)F [ e Sl ao) s

By taking ax = s, we get

—n . n . % S5 1
(FuDug)(u) = (2m) [ e Tl 2 o(s) Lo
an

n

1
= (27T>_Tni / e—iZ?:1 (sign%)‘%‘ai Sj¢(s)dx

an
)
[
Proposition 2.2.3. Let ¢,v € LY(R"), then
Fal@ 1) = (2m) 2 (Faip) (Fatd). (2.2.1)

Proof. Using (1.1.4), (2.1.1) and the Fubini’s theorem, we have

1
]

Foldx ) (w) = (2m) 2 / e~ 2 m S el (g g ) (z)d

n

= (zw)g/ et =1 @ (signw;)|w;| %I ( o(x — y)zﬁ(y)dy) dr
R’I’L

3

Rn
—nF [ [ erShnemen™ o - y)o(y)dyds,

On putting  — y = s, we get

1
o

Faloriu) = @nF [ [ sl oo )y
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1

_(27T);/ S (s | )
" (/ i 1s1<s1gnwj>|wj|“¢(s>d5) dy.

By using the definition of fractional Fourier transform (2.1.1), we have

Fuld* ) (w) = (2)2 (Fad)(w)(Fat))(w), for all w € R™.

]

Proposition 2.2.4. F, is a continuous linear isomorphism from S(R™) onto S(R").

Proof. Let ¢ € S(R™), 5= (b1, Pa,-..0n) € Nj and w = (wy,ws,...w,) € R,

then from (2.1.1), we get

DE(Fad)(w) = | DB (e EinGinmwil™ ey s )dy € R (2.2.2)

Rn

From [14, p. 537], consider a;3; <1 for each j and on simplifying, (2.2.2) becomes

(1)< (fT ) (T01) L2 ()5
x Zj)i (Z:)KD;;MD;;W...D;ZW (2))

X (:cfl v 52 vz .xﬁ"’””)\dw,

which implies that

(lﬁ[w% " B’) D (Fadh)(w)

< (H (Of”;ﬁj) > (7) [ e (1 0(a) e,
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where v = (v1,72...,7) and v = (vy,ve,...,v,) are multi-indices. Then
W] /J‘J n ﬁ
‘(Hw )Dﬂ(fgb (H ! ) ()/H1+|x]\
7j=1 ) v<y
x |(D7"¢(x))] (H(l + !$j|2)1> da.
j=1

Let m be an integer such that max Bj;” + 1‘ < m, N = nm and notice that

1<j<n

;" <l = 375y ||, we have

S(ﬁ 25) 2 () Lo

j=1 v<ry

(DY p(@)| | TT(+ |2*)™ )dm.

Jj=1

Since ¢ € S(R™), then by (1.1.8), we obtain

The inequality (2.2.3) shows that F,¢ € S(R™). Also the linearity of F, is easy to

n ’in,ﬁj +ﬁj
(H w; D8 (Fod)(w

Jj=1

)ZmenqﬁnN. (2.2.3)

v<vy

verify.
For continuity, let (¢x) be a sequence of functions in S(R™) such that ¢ — 0 in S(R™)
as k — oo, then we need to show that F,(¢x) — 0in S(R") as k — oo. Now by

using (2.2.3), we have

7] BJ

E:

(1=

> DY (Fotby)(w

( 53 )ZBw,v,mnmnN. (2.2.4)

v<vy

The right-hand side of the inequality (2.2.4) tends to 0 as kK — oo, which proves
that F,(¢r) — 0 as k — oo.
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For bijection, let ¢ € S(R™), then from (2.1.1) and (2.1.2), we have

1 . n . O/i n 1
F Y (Fad)(z) = —/ et 2j=1 (signw;)|w;| ™7 z; lw,| ="
ol Jee 111
%
X ( / et Xj=a (sign wy) s |7 tj(b(t)dt) dw, Yz cR"
1

Choosing y; = (signw;)|w;|*, j=0,1,...,n and y = (Y1, Y2, .-, Yn) € R",
t = (t1,t9,...,t,) € R" then we have

FUE6) (@) = @ /R et ( / n e—%’t-yqb(t)dt) dy. (2.2.5)

In view of ([8], p. 22), we get F,, ' (Fa¢)(x) = ¢(z) for all x € R™.

Similarly, we can show that F,(F,'¢)(z) = ¢(x), for all z € R™. This proves that

Fo is a bijection from S(R™) onto S(R™). O

Proposition 2.2.5. The fractional Fourier transform F, of order o € (0,1]" is a

bijective continuous linear mapping from S'(R™) onto S'(R™).

Proof. The linearity of F, is easy to verify. Let T be a tempered distribution in

S’(R™), then firstly we prove that F,(7) is also a tempered distribution in S'(R™).

Now, let (¢x) be a sequence of functions in S(R™) such that ¢, — 0 in S(R™) as k —

00, then by Definition 1.1.4 and Proposition 2.2.4, we get

(FoT', o) = (T, Fatr) = 0, as k — oo.

Therefore, F,(T) is a tempered distribution.



Chapter 2. P.D.O. associated with modified Fractional Derivatives involving the
Fr.F.T 26

Next, we have to prove that F, is continuous mapping. For this let (T}) be a

sequence of tempered distributions such that T}, — T in S'(R™) as k — oo, then
<Tk7 ¢> - <T7 ¢>7 for all ¢ < SGRn)
Now for ¢ € S(R™), we have

<FaTku¢> = <Tk7]:04(¢>> — <Ta fa(¢)> = <FaT7 ¢>7
this implies that F, is continuous. Also

(FAF)T), ) = (FuT, Fi'o) = (T, FoF ') = (T, ¢), for all ¢ € S(R").
(2.2.6)

Similarly, we can show that

(FaFo ' NT), 0) = (T, 0). (2.2.7)

Thus from (2.2.6) and (2.2.7), we can say that F,'F, = I = F,F,"'. Hence F, is
a bijection. O]
Proposition 2.2.6. Let ¢, € S(R™). Then the Parseval formula for the fractional
Fourier transform is given by

— 1 — [+ 1
| d@p@)de =5 | (Fad)()Fat)(w) [Tlwil™ ™ Jdw. (228

j=1

Proof. Let ¢, 1p € S(R™), then by using (2.1.2), Proposition 2.2.4, and the Fubini’s

theorem, we have

X x .I:; x eizj 1(signwy) |wj‘% - walei
[ ot = o [ ></ (Hr i )




Chapter 2. P.D.O. associated with modified Fractional Derivatives involving the
Fr.F.T 27

X (fa¢)(w)dw> dx

_ 1 w - w.c«%_l eizyzl(signwj)le\%jxj
= g Lo >(Hr ) )(/

X W{L’)diﬁ) dw

1 i |
= g% Lo (H g )

Jj=1
;.
X (/ i 0 (signw;) ;| %7 W(ﬂf)dx) "

Using (2.1.1), the above expression yields

NE

[ o = o [ R Fai) (H \wj\%*) du,

For ¢ =1, in (2.2.8), we get

() Pl =
]Rn

(] Jgn [(Fao)(w)f <H \wj\alj_1> dw. (2.2.9)

j=1

The above identity (2.2.9) known as the Plancherel identity.

2.3 Pseudo-differential operators

In this section, definition and properties of pseudo-differential operators are given

by involving the n-dimensional fractional Fourier transform of order v € (0, 1]™.
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The linear partial differential operator P,(x, D) of order m on R™ is given by

Po(z,D) = ) ag(x)D", (2.3.1)

|B|I<m

where D? = (—i)IPID51DP2 . D and coefficient ag(z) are functions defined on R™.

If we replace D? in (2.3.1) by monomials

- Bj ) 1.5
T (simnwlusl ) " = (siznw)fun|5)*

Jj=1

x ((signws)|wa|>2)%2 ... ((sign wn)|wn|$)ﬁn (2.3.2)

in R™, then

3

P.(z,w) = Z (H sign w; ]wj]“ )B) (2.3.3)

|BI<m Jj=1

is called the symbol of the operator P, (z, D).

Proposition 2.3.1. If ¢ € S(R"), then

Fo(DPp(2) (H sign w; ) |wy| J) j)(}"aqﬁ)(w), w e R". (2.3.4)

J=1

Proof. From (2.1.1), we have

FaD*6(@))(w) = [ e T (Do)

%
= (i) [ el (DADE | Dloa) da

(2.3.5)

Now using integration by parts in (2.3.5), we obtain

Fol D2 () (w) = (=) 71(0) ¥ (sign wn) g |77 ) * ((sign we) [ws|27)
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1

y ((Signwn)’wn|f"ln)ﬁn(/ 671'2?21(signwj)|wj|‘7jwj¢($)dx)

n

n

— (H ((signwj)|wj|‘%j)ﬁj> (Fa®)(w).

j=1
[l

Theorem 2.3.2. Integral representation of the partial differential operator P, (x, D),

€ (0,1]™ is given by

J=1

X (Fa®)(w)dw, for all p € S(R™). (2.3.6)

Proof. Let ¢ € S(R™),

Then by Proposition 2.2.4, we get

Po(z,D)p(z) = Y as(x)F, (FaD 9)(x).

[B|<m

Now, using (2.3.4), we have

Paa D)ole) = Y a7 [T (ien ) (Fut)] @

|BI<m 7j=1
Z 1 L
1Bl<m (27)2[a] Jen

(Tl ™) [TT (it )™ | Fatp

1 . & _
= ———— ZZJ (Slgnw])|wj < oc >
(2#)% [Oz] /n e 1 H |w]|



Chapter 2. P.D.O. associated with modified Fractional Derivatives involving the
Fr.F.T 30

n

< [ 32 as(o) TT (tsign oy | (Fa) )

18]<m J=1

1 5" (signw; waim - L1
= m/ne Do (signw;)lw;| % JPa(f,w)<H|wj|“J )

J=1

X (Fod)(w)dw.

Now, we define general symbol class and corresponding partial differential operator.

Definition 2.3.3. Let m € R and a € (0,1]*. We define STl is the set of all
functions o, (z, w) € C*°(R™xR"™) such that for all 8,y € N, there exists a constant

Ag~ > 0 depending on 3 and « only, such that
1D DY oo(z, w)] < Ag~ (1 + Jw]) e (2.3.7)

We call any function o, € U,,S ol a symbol.

Definition 2.3.4. Let o,(z,w) € C®(R™ x R") be a symbol. Then the pseudo-

differential operator T, , associated to o,(x,w) is defined by

1 —n . o n 1 9
T, o) (2) = —— [ ¢t Siealsignuy)lu;] ﬂzj( 14 )

X 0o (2, w)(Fa)(w)dw, (2.3.8)

for all ¢ € S(R™).

Theorem 2.3.5. Let 0,(z,w) € S[%l, then the pseudo-differential operator T, . is

a continuous linear mapping from S(R™) into S(R™).
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Proof. We take ¢ € S(R"™), then for any g, v, § € Ny and using (2.3.8), we have

L [0
x (JT ¢)(w)dw

27T Bl /n Z ( ) : Ua . w)] [Dieizy_l(signwj)wjlo‘ljmj]
. (H w7 ) (Fag) (w)duw

el (e

J=1

1 n

o o S sign )y | (H |wj|éj—1> (Fad)(w)dw. (2.3.9)

j=1

1
For y = (y1,y2,...yn) € R, and y; = (signw;)|w,;|*7, then for each j,

, o n 1
w; = (signy;)ly;|*, & 15 [w]=5 ™ dw = dy and
Yo = ((signyn)|ya]™, (signya)|y2]®, ..., (signyn)|ya]*").

Then (2.3.9), becomes

ot [, X (3)pteimrtote e

X (Y’ Fad(ya))dy. (2.3.10)

.

:L‘B(DA/TU’QQS)(!I) =

V|3

Using integration by parts and Leibnitz’s formula, (2.3.10) becomes

x'B(DVTma(b)(x) _ (—1) \’Y\+|5| MH5| /nz( > i yD'B< D 50a(x,ya))

X (Y’ Fad(ya)) )dy
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0
_ (=D (g)bl+ |/ ( )(6)61»;5_3,[1)[3_@7_5
Yy x
R 5<’Y n<p 7

X 0a(2, Yo )| [D} (v’ Fad(ya))] dy. (2.3.11)

Now using the fact that o, € STl is a symbol, we can find a constant Ag,~,d,n7 > 0

such that (2.3.11) takes the form

sup |27 (DT, o0)(x =y ZZ( )( )AMM/ (14 |y |) —|8]+In|

PISING 5<y 1<B

X IDZ(y‘Sfacb(ya))} dy. (2.3.12)

Since the integral in (2.3.11) is absolutely integrable for ¢ € S(R™), then we find
that sup,egn [2° (DT, 49)(x)| < 0o, which proves that T, ,¢ € S(R"). The linearity
of T, . is easy to verify. For continuity of T, ,, let ¢ — 0 in S(R™) as k — oo, then

by using the relation (2.3.12), we have

sup |:I: (DT, 0t0k)(

reR™

()
5<7 n<pB R

X \DZ(y5fa¢k(ya))} dy. (2.3.13)

By using Proposition 2.2.4, we can say that
(1+ |ya|2)%(%—\6|—lnl) |Dg(y6]:agbk(ya))| — 0in S(R™) as k — oo, which shows that
the right side of (2.3.13) tends to 0 as k — oo.

This proves that T, ,¢r — 0 in S(R™) as k — oo. Thus T}, is continuous. O

Definition 2.3.6. Let 7, , be a pseudo differential operator on S(R™) and u €

S’(R™), then T, is defined on S’(R™) by

(Trau)(9) = u(T;,0), ¢ € SR, (2.3.14)
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where T7 , is the formal adjoint of 7, ,, which is given by

(Trat,¥) = (6, Tpo), ¢,% € S(R"). (2.3.15)
Theorem 2.3.7. T, : S'(R") — S"(R") be a continuous linear mapping.

Proof. The linearity of T,, is obvious. Let ¢ — 0 in S(R") as k — oo, then
by Theorem 2.3.5, T7 ¢, — 0 in S(R"), as k — oo. Now for u € S'(R") and
using (2.3.14), we have (T, u)(¢x) — 0 in S(R") as k — oo. This gives that

T,ou € S'(R™). For continuity, consider ¢ € S(R™) and let u;, — 0 in S'(R") as

k — oo, therefore from (2.3.14), we have (T,q(u))(¢) = we(T;o¢) — 0 in S'(R")
as k — oo. This yields that T, qu, — 0 in S'(R") as k& — oo. Hence T, is a

continuous mapping. ]

2.4 Integral representation and boundedness of

the pseudo-differential operator 1,

In this section, the integral representation, boundedness of pseudo-differential op-
erator T, , and its various properties are discussed by exploiting the theory of the

fractional Fourier transform.

Theorem 2.4.1. Let o,(z,w) € Sﬁ, then the pseudo-differential operator T, , can

be represented by

1
(27)

(Toad)0) = oy [ O)(F o) = )y, (241)

©l3
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where
(]:—1 )( ) _ 1 iZ”1(Signwj)wj|alj($j—yj)<ﬁ | |$*1>
7j=1
X 042, w)dw. (2.4.2)

Moreover, if ¢ € L*(R™) then for

n

we have

ITradlloo < C 16111, (2.4.3)

e 1"
for some positive constant C .

Proof. Using (2.3.8) and the Fubini’s theorem, we have

1 > (signw;)|w; %m a %‘1
(Toad)@) = Gy [ oSl (Tl Yoo w)
X (Fot)(w)dw
1 n
IR S BD oY G (AN L a7
(27)"[] /ne 1 (j[[l‘w]‘ )aa(m,w)
L.
" ( / o S sign ) Juuy | % w¢(y)dy)dw
Rn
1 1 R ay
— i3 5= (signwj)|w;| %7 (z5—y;)
a7 Lo L
- 1
X <H|wj|°‘i )aa(x,w)dw>dy
1
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Now, in view of (2.3.7) and the following inequalities,
"and (1+ w*)™ < 1+ |w|)®™,

1
S -

n

1
Tt~ < (14 Juwl)
j=1

there exist C' > 0 such that (2.4.2) becomes
1 i - m
il ]C LT el ) (1 fewl) T dw

j=1
n 1 _, m
2i=1 3 (1+ |w|)®=l dw

(Faow)(m,a—y)] <
1
el RS
5 (1 4 w]?) " dw.

< o
— (212«
1 POy
< —C 1+ =t ey
(2m)3 o] /n( )=
Assuming
~ 1
n -+ +ﬁ<0, we have
‘Ha o |d
(2.4.4)

1

(Fon e =) € € [ () .
Cn el Jus
Since the integral on the right hand-side of (2.4.4) is integrable therefore there exists

(2.4.5)

a positive constant C* such that,
(Filoa) (@, 2 —y)| < C.

In view of (2.4.1) and (2.4.5), we obtain
|6(y)ldy, = €R™
R

(Tr)@)| < € 5y

This implies that there exist a positive constant C* > 0, such that

H(Toad)lloo < C"[10]l1-
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This proves (2.4.3) and hence the above proof is completed. O

2.5 The Sobolev space

In this section, the properties of Sobolev space associated with the pseudo-differential
operator J; , with a symbol o, are discussed by exploiting the theory of fractional
Fourier transform of order o € (0, 1]™.

For s € R, let 0, be a symbol, which is given by
0t (1+Z|wk|%)i w e R, (2.5.1)

Then the pseudo-differential operator J3 , associated to the given symbol (2.5.1) is
defined by

L

X (1 - Zn: \wk\i> ﬁ(]'—oxﬁ)(”tv)dw
7= +Z % ) 7 (Fog) )] 2. for 6 € SR,

It can be easily shown that for u € S’(R"), the product o, ,u of o, , and u defined
by
(0sau)(9) = u(osad), ¢ € SR"),

is also in S’(R™). Moreover, for u € S'(R"),

(J2 [(1 + Z |wk|ak> )] (2.5.2)
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From (2.5.2), it is clear that J3 , is an element of S'(IR™).

Theorem 2.5.1. Let u € S'(R"), then
10 J3 (T qu) = T3t .
2. Jgjau = u.
Proof. Now, we find
T = Too[Fa [ (14 30 Junl ) ™ (Fu) big]]
k=1
= F (e ) T (14 3 ) o]
k=1 k=1
— F! [(1 +y |wk|a>
k=1

(o]
(Farr)
= Jot,

al

Next, by using Proposition 2.2.5, we have

Pau=F (14 Zn: x| ) g (Fa)]
k=1

= F N (Fau)

= U.

Definition 2.5.2. Let s € R and 1 < p < oo, then H’? is defined by

H? = {ue S'(R") : J;5u € LP(R™)}. (2.5.3)
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It can easily show that H>” is a vector space.

Let ||.]|sp : HS? — R, is defined by

lullsp = o aullp, we HEP. (2.5.4)

Then H? is a normed linear space with respect to the norm ||.|/s, given by (2.5.4).
Moreover, from the concept of Wong ([8], p. 88) it is a Banach space. We call H>?,

the LP- Sobolev space of order ﬁ

Theorem 2.5.3. J. , : H3? — H3™P is an onto isometry.

Proof. Let u € H}P, then

1o attllsep = 17507 T aully = o aully = llullsy-

This proves that J. , is an isometry.

For onto, let x € H*"?, then J; 5 'z € LP(R"). Now from Theorem 2.5.1

Joote = J 5, 0x) € LP(R™),

which implies that J, 'z € HJ?, so J. (J tx) = J) o = x. This proves that J

is an onto mapping. O

From Wong ([8], p. 88), we give the following example:

Example 1. Let s > 0. We define the function G4 on R™ by

1 0 [ 12 n—s d
Go(r) = ——— [ et oY peRr
22F( ) 0

N |»

Then, we have
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G, € LY(R") with |G,y = (27)2 and (FG,)(w) = (1 + |w|?)=, w € R™.
Now, using Proposition 2.2.1 and Example 1, the fractional Fourier transform of G

is given by

(FoalGs)(w) = (.FGS) ((Sign wy) |wy |1, (signws)|wsloz, ..., (signwn)\wn\ﬁ)

= <1+Z\wk\%> , for all w = (wy, we,...,w,) € R". (2.5.5)
k=1

Theorem 2.5.4. Let s >0 and 1 < p < oo. Then J;, is a bounded linear operator

from LP(R™) into itself.
Proof. Let ¢ € S(R"), then

FalT2a0)w) = [ (14 3 o) ™ (7] )

k=1

Next, by using Proposition 2.2.3 and (2.5.5), we have

)7 (Fad)(w),

FulGs # ¢)(w) = (2m)3 (1 +3 " Jun

so that

Goxd= (2m)5F, ! [(1 + i \wk\ﬁ) ?(Faqb)} . (2.5.6)

Since (2.5.6) is true for all s > 0, so we can replace s by [%5} > 0, in (2.5.6) thus, we

have
0 2\ Tl
G x 0= 2mEF (142 funlo )™ (Fag)]
k=1
Therefore we get,

Joa® = (27)_7” <G[%s] * gb)
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Now, using the properties of convolution ([8], p. 9), we have

175 a0l = (2m) (G 2 # ¢ll, < 27) Z NG 2 1allo ]l = 1], (2.5.7)

Relation (2.5.7) proves that J3 , is a bounded linear map from S(R") into itself.
From ([8], p. 14), S(R") is dense in LP(R")(1 < p < 00), therefore J3 , can be

extended to a bounded linear operator on LP(R") satisfying (2.5.7). O

Theorem 2.5.5. Let 1 < p < o0 and s < t, then

HP C Hy and fullsp < ey,

for all u € HLP.

Proof. Let u € H.P then, J ! u € LP(R™).
Now, we can write

Joou = JoS (T ).

Exploiting (2.5.7), we obtain

lullsp = 1 Toaully = 1750 o a)ll < g aully < llullp, v e HP.

Theorem 2.5.6. For s € R, 1 <p < oo, S(R") is dense in HZP.

Proof. Letu € H3P, then J; ju € LP(R"). Since S(R") is dense in LP(R"), so there
exists a sequence (¢;) in S(R") such that ¢; — J 5u in LP(R") as j — oo.

Assume x; = JJ ,¢; € S(R").
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From (2.5.4), we find that

I = ullsp = 1000 = Wy = 15 axs = Joavlle = 165 = Joaull, = 0,

as j — oo. This shows that S(R™) is dense in H3P. O

Theorem 2.5.7. For s > 0, 1 <p < oo, J;, is a bounded linear operator from
HZP into itself.

Proof. From inequality (2.5.7), J; , is a bounded linear operator from S(R") into
itself. From Theorem 2.5.6, we have seen that S(R") is dense in H3P. So that, J; ,

can be extended to a bounded linear operator on H>P. O

2.6 Applications of pseudo-differential operators

in fractional calculus

In this section, applications of pseudo-differential operators involving fractional
derivatives and fractional integrals on Lizorkin space ®(R) are discussed by ex-

ploiting the theory of the fractional Fourier transform.

Lemma 2.6.1. If T}, is the pseudo-differential operator corresponding to the sym-
bol oo(z,w) = oo(w) € Sa, then for ¢ € S(R), we have to prove the following
ETPTession

(FaTlsa®)(w) = oa(w)(Fad)(w). (2.6.1)
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Proof. For ¢ € S(R), using (2.3.8) for n = 1 and taking oo (7, w) = o4(w) € S,

we get

(To.0¢)(z) =

(27r)%a /]R6i(signw)|w|ém|w|i—lo_a(w)(./—_-a¢)(w)dw' (262)

From (2.1.2), (2.6.2) becomes

(Tr.a®)(@) = Fo oa(w)(Fad) (w)](@). (2.6.3)

Since ¢ € S(R), therefore by using Proposition 2.2.4, we get F,¢ € S(R). This
implies that R.H.S of (2.6.3) be an element of S(R).
Now, by the property of the fractional Fourier transform, we can write (2.6.3) by

the following way:

(FaTload)(w) = oo(w)(Fad)(w),
which is an element of S(R). O

Lemma 2.6.2. If F,¢ € V(R), which is defined in (1.5.1), then the pseudo differ-

ential operator T, ¢ is given in (2.6.2) is an element of the Lizorkin space ®(R).

Proof. From (2.6.1) and Leibnitz formula for differentiation, we have

Dy (FaTrad)(w)) =) (m) (D "o (w)) (D (Fad)(w)), for m € N. (2.6.4)

r=0 r
Since Fo¢ € V(R), and at w = 0, the right hand side of (2.6.4) will be zero. For

making 7, ,¢ is in the Lizorkin space, put w = 0 in (2.6.1), we get (F,1,,.¢)(0) = 0.
Finally T, ,¢ belongs to the Lizorkin space ®(R). O
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Theorem 2.6.3. If F,¢ € V(R), then following operational relation holds for 0 <
a <1,

(FaD§To,00)(w) = (icaw)(da(w)(Fag)(w)), weR, (2.6.5)

where B is any parameter and c, is

Co = sin(am/2) —i(signw)(1 — 25)cos(am/2), (2.6.6)

and T, ¢ is defined by (2.6.2).

Proof. By using Lemma 2.6.2, we prove the above theorem by the following way:
Case 1: If o = 1, then (2.6.5) holds easily.

Case 2: If w =0, « # 1, then we need to show that (F,D§T5.¢)(0) = 0.

Now, by using the definition of the fractional Fourier transform, D§ and Theorem

4.1 from [3], we get

“+o00

(FaD5T5.00)(0) = (FaD5T5.00)(x)dx

I

00
“+oo

(1= B) () (L Toad) @) + () (1T, 00) )

—0o0

I
S —

Y

by using the fact that ®(R) is a proper subset of S(R).
Case 3: a # 1, w > 0, then from (1.3.4), (1.2.9), (1.2.10) and [3, p. 465], we have

“+o00

(FaD3Ty ) (w) = / e-ilvlRa (DA, 6)(x)de

—00

400 1
~(1-5) / eI (DIT, o) (2)do

— ,6’/+OO e_i‘w‘ém(Dng’agb)(x)dx

o0

— =) [ e @) (T ) o)

o0
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4 / (Do R () (T ) ()

too g
e vl va®(z)dx

= ((1 —2B)cos(ar/2) + isin(om/2))w/

—0o0

= ((1 = 2B)cos(ar/2) + isin(am/2))w(FaTyad(x))(w).
Now, by using Lemma 2.6.1, we have
(FaD§Ty00)(w) = (iw) (sin(am/2) —i(1 — 28)cos(am /2)) (0a(w)(Fad)(w)).

Case 4: For a # 1, w < 0, then we get

—+00

(FaD3 Ty 06) (w) = / ol (F DET, o) (2)d.

—00

Taking the concept of [3, p.465] and case 3, we have

(FaDj va®)(w) = (iw) (sm(om/Z) +i(1 — 2ﬁ)cos(aw/2)) (0a(w)(Fad)(w)).

Hence by combining cases 1 to 4, we find the proof of the Theorem. O]

Theorem 2.6.4. If F,¢ € V(R), then following operational relation holds for 0 <

a <1,
FuliToad)w) = 2 @) (Fap)w), weR wro,  (26)

where
d,(8) = sin(%) —i(signw)(1 — zﬁ)cos(o;—”), (2.6.8)

and T, o ¢ is given in (2.6.2).
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Proof. By using Lemma 2.6.2, the proof of aforesaid theorem can be easily obtained

from [4, p. 789-790]. O

2.7 Conclusions

Fractional Fourier transform is a useful tool for solving the problems of Riemann-
Liouville fractional derivatives and other problems of fractional calculus. The im-
portance of this theory can be seen in the papers of Luchko et al [3, 4]. Properties
of the fractional Fourier transform, pseudo-differential operators on Schwartz space
S(R™) and applications of pseudo-differential operators on the Sobolev space of type
H3P associated with a certain class of symbols are discussed in this paper. The
authors also studied applications of pseudo-differential operators on Lizorkin space
®(R) by utilizing the theory of the fractional Fourier transform, modified fractional
derivative operator Dj and modified fractional integral operator I§. This paper is
of great importance in mathematical sciences, physical sciences, engineering, and
other areas. This paper is useful for those researchers, who are interested to work in
the area of pseudo-differential operators, fractional calculus, image processing, sig-
nal processing, and others. The authors cited all the possible recent developments
regarding the fractional Fourier transform, pseudo-differential operators, and others

in the form of references.

Kokk
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