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Introduction

The theory of Fourier transform of fractional order was initially introduced by

Wiener (1929). The fractional Fourier transform played an important role in find-

ing problems of quantum mechanics, signal processing, image processing, stochastic

processes, optics, wavelets and other areas of mathematical sciences. The impor-

tance of the fractional Fourier transform is that it is a generalization of the Fourier

transform. Many definitions and properties regarding the fractional Fourier trans-

form are given, which have different applications in different areas. Condon (1937)

constructed a continuous group of functional transforms which contained ordinary

Fourier transforms as a subgroup. The Fourier transform of fractional order was

observed by Namias (1980) and found the integral representation and generalized

operational calculus. A. McBride and F. Kerr (1987) found more specific and modi-

fied results of Namias’s fractional operators. Zayed (1997) gave the relation between

the Fourier transform and the fractional Fourier transform. Using analytical tech-

niques and algebraic techniques, Zayed (1998) extended the results of Namias for

the fractional Fourier transform on different spaces of generalized functions. He had

also observed convolution operation for the fractional Fourier transform. Ozaktas
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(2001) introduced six different definitions regarding the fractional Fourier transform

and found different applications in the voice, signal processing and image processing.

Luchko et al. (2008) introduced the fractional Fourier transform, which is useful to

find properties of the fractional derivative and fractional integral operators in the

Lizorkin space. With the help of the aforesaid technique, the partial diffusion-type

differential equation of fractional order was solved by Kilbas et al. [4]. The solution

of model partial differential equations of fractional order was discussed by Luchko et

al. [3]. The compositions of the fractional Fourier transform with modified fractional

integrals and derivatives were considered by Kilbas et al.(2010).

The pseudo-differential operator is an important tool, which is the generalization of

the partial differential operator and useful to find the solution of the partial differen-

tial equation. By exploiting the theory of many integral transforms, many authors

had discussed properties of the pseudo-differential operator and found applications

in the Sobolev type space. Kohn-Nirenberg [5], Hormander [6, 7], Wong [8] and oth-

ers discussed properties of the pseudo-differential operator by exploiting the theory

of the Fourier transform. For the Hankel transform concern, the pseudo-differential

operator were found by Pathak and Pandey [38]. Several results of the pseudo-

differential operator associated with the fractional Fourier transform, the fractional

Hankel transform and other integral transforms were investigated by Prasad et al.

[39, 40] and Upadhyay et al. [29]. Recently, Srivastava et al. [14], studied properties

of the pseudo-differential operator by exploiting the Luchko theory of the fractional

Fourier transform on the Schwartz space S(R).

The wavelet transform associated to the Fourier transform is an integral transform,

whose kernel contains the translation and dilation in the time domain. A wavelet

transform gives local as well as global information of a signal. The wavelet transform

by exploiting the Fourier transform is given in [49]. Pathak and Dixit [32] developed
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continuous and discrete Bessel wavelet transform in 2003. Recently, Upadhyay, Sri-

vastava and Khatterwani [16], discussed the continuous fractional wavelet transform

by taking the fractional Fourier transform theory.

From [3, 4, 8, 14, 16, 16, 17, 28, 32, 49], several definitions, formulae, and properties

are given in this chapter that will be used in the subsequent chapters.

1.1 Basic definitions

From [8, 28, 49], some basic definitions which are useful for the present thesis are

given below:

Definition 1.1.1. (Lp-spaces)

Let 1 ≤ p < ∞. A function f : Rn → C is said to be in Lp(Rn) if it is measurable

and its norm

||f ||p :=

(∫
Rn
|f(x)|pdx

) 1
p

(1.1.1)

is finite. In the case p = ∞, f is said to be in L∞(Rn) if it is measurable and

essentially bounded, i.e., if

||f ||∞ := ess supx∈Rn|f(x)| <∞. (1.1.2)

Here ess supx∈Rn|f(x)| is defined as the smallest M such that |f(x)| ≤M for almost

all x ∈ Rn.

If φ, ψ ∈ L2(Rn), then the inner product of φ and ψ is defined by

〈φ, ψ〉 :=

∫
Rn
φ(x)ψ(x)dx. (1.1.3)
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If φ, ψ ∈ L1(Rn), then the convolution of φ and ψ is defined as

(φ ∗ ψ)(x) =

∫
Rn
φ(x− y)ψ(y)dy, x ∈ Rn. (1.1.4)

Let φ be a measurable function, which is defined on Rn. For any fixed y ∈ Rn and a

be a positive real number, we define translation function Tyφ and dilation function

Daφ by

(Tyφ)(x) = φ(x+ y), (1.1.5)

(Daφ)(x) = φ(ax). (1.1.6)

Definition 1.1.2. (Schwartz space)

The Schwartz space S(Rn) is the vector space of all complex valued infinitely differ-

entiable functions φ on Rn such that for all multi-indices β,γ ∈ Nn
0 , we have

‖φ‖β,γ = sup
x∈Rn
|xβ(Dγφ)(x)| <∞. (1.1.7)

Moreover,

‖φ‖β,γ <∞ iff ‖φ‖N = sup
x∈Rn

(1 + |x|2)N |(Dβφ)(x)| <∞, N ∈ N0. (1.1.8)

Definition 1.1.3. (Convergence in the Schwartz space)

A sequence (φj) of functions in the Schwartz space S(Rn) is said to converge to zero

in S(Rn) (denoted by φj → 0 in S(Rn)) if for all multi-indices β, γ ∈ Nn
0 , we have,

supx∈Rn |xβ(Dγφj)(x)| → 0, as j →∞.

Definition 1.1.4. (Tempered distributions)

A linear functional T on S(Rn) is called continuous if for any sequence (φj) of

functions in S(Rn) converging to zero in S(Rn), we have T (φj) → 0 as j → ∞.

Continuous linear functionals on S(Rn) are called tempered distributions and the
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set of continuous linear functionals is denoted by S ′(Rn). Let T ∈ S ′(Rn), then

T : S(Rn) → C is a continuous linear map such that T (φ) = 〈T, φ〉, for all

φ ∈ S(Rn).

Definition 1.1.5. (Convergence in S ′(Rn))

A sequence (Tj) of functions in S ′(Rn) is said to converge to zero in S ′(Rn), if for

any φ ∈ S(Rn), the sequence 〈Tj, φ〉 converges to zero in C, as j →∞.

Definition 1.1.6. (Distributions of compact support)

We denote D(R) be the set of all complex-valued infinitely differentiable functions

on R having compact support. D′(R) is the dual of the space D(R) and its elements

are called Schwartz distributions. The space of all those distributions in D′(R) which

have compact support is denoted by E
′
(R).

1.2 Riemann-Liouville fractional derivatives and

integrals

In this section, from [3, 4] various properties and formulae of Riemann-Liouville

fractional derivatives and integrals are given below:

The modified fractional derivative Dα
β is defined by

Dα
βu := (1− β)Dα

+u− βDα
−u, 0 < α ≤ 1, β ∈ R, (1.2.1)

where Dα
+u and Dα

−u are the left-hand and right-hand side Riemann-Liouville frac-

tional derivatives on the real axis, which are defined by

(Dα
+u)(x) :=

( d
dx

)
(I1−α

+ u)(x), (1.2.2)
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where Iα+ is the Riemann-Liouville fractional integral operator

(Iα+u)(x) =
1

Γ(α)

∫ x

−∞
(x− t)α−1u(t)dt, (1.2.3)

and

(Dα
−u)(x) :=

(
− d

dx

)
(I1−α
− u)(x), (1.2.4)

where Iα− is the Riemann-Liouville fractional integral operator

(Iα−u)(x) =
1

Γ(α)

∫ +∞

x

(t− x)α−1u(t)dt. (1.2.5)

For α > 0 and real β ∈ R, the modified fractional integral operator Iαβ is defined by

Iαβ u := (1− β)Iα+u− βIα−u. (1.2.6)

Properties of the fractional derivative operator and fractional integral operator

Let w ∈ R, w 6= 0 and 0 < α < 1, then

(
Iα+e

iwt
)

(x) = eiwx|w|−α
(
cos(απ/2)− i(signw)sin(απ/2)

)
, (1.2.7)(

Iα−e
iwt
)

(x) = eiwx|w|−α
(
cos(απ/2) + i(signw)sin(απ/2)

)
, (1.2.8)(

Dα
+e

iwt
)

(x) = eiwx|w|α
(
cos(απ/2) + i(signw)sin(απ/2)

)
, (1.2.9)(

Dα
−e

iwt
)

(x) = eiwx|w|α
(
cos(απ/2)− i(signw)sin(απ/2)

)
. (1.2.10)

1.3 Lizorkin space

This section presents the definition and properties of the Lizorkin space as described

by Luchko et al. (2008):
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Let V (R) be the set of functions φ ∈ S(R) satisfying the conditions:

dnφ(x)

dxn

∣∣∣∣∣
x=0

= 0, n = 0, 1, 2, ... (1.3.1)

Definition 1.3.1. The Lizorkin space Φ(R) is introduced as the Fourier pre-image

of the space V (R) in the space S(R), i.e.,

Φ(R) = {φ ∈ S(R) : Fφ ∈ V (R)}, (1.3.2)

where F denotes the Fourier transform.

Properties of the Lizorkin space

1. The following orthogonality conditions hold:

∫ +∞

−∞
xnφ(x)dx = 0, φ ∈ Φ(R), n = 0, 1, 2, .... (1.3.3)

2. The Lizorkin space is invariant with respect to the fractional integration and

differentiation operators.

3. If φ, ψ ∈ Φ(R), the following formula for integration by parts for the fractional

Riemann-Liouville derivatives holds true:

∫ +∞

−∞
φ(x)(Dα

+ψ)(x)dx =

∫ +∞

−∞
(Dα
−φ)(x)ψ(x)dx. (1.3.4)

4. If φ, ψ ∈ Φ(R), the following formula for integration by parts for the fractional

Riemann-Liouville integral holds true:

∫ +∞

−∞
φ(x)(Iα+ψ)(x)dx =

∫ +∞

−∞
(Iα−φ)(x)ψ(x)dx. (1.3.5)
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1.4 Fractional Fourier transform

From [3, 4, 14, 16], in this section various definitions and properties of the fractional

Fourier transform are discussed.

Definition 1.4.1. The fractional Fourier transform for a given function φ of order

α (0 < α ≤ 1) is defined by

(Fαφ)(w) ≡ φ̂α(w) :=

∫
R
e−i(signw)|w|

1
α xφ(x)dx, ∀ w ∈ R, (1.4.1)

provided the integral on R.H.S. of (1.4.1) is convergent.

The inverse fractional Fourier transform of Fαφ of order α (0 < α ≤ 1) is defined by

F−1
α (Fαφ)(x) :=

1

2πα

∫
R
ei(signw)|w|

1
α x|w|

1
α
−1(Fαφ)(w)dw, ∀ x ∈ R, (1.4.2)

provided the integral on R.H.S. of (1.4.2) is convergent.

Properties of the fractional Fourier transform

1. Fα : L1(R)→ L∞(R) is a bounded linear operator for 0 < α ≤ 1.

2. If φ ∈ L1(R), then

(Fαφ)(w) = (Fφ)((signw)|w|
1
α ), w ∈ R; α > 0, (1.4.3)

where F denotes the Fourier transform operator.

3. Let φ, ψ ∈ L1(R), then

Fα(φ ∗ ψ) = (Fαφ)(Fαψ). (1.4.4)
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4. Let φ ∈ L1(R), then

(FαTyφ)(w) = ei(signw)|w|
1
α y(Fαφ)(w), w ∈ R. (1.4.5)

5. Let φ ∈ L1(R), then for any positive real number a, we have

(FαDaφ)(w) =
1

a
(Fαφ)

( w
aα

)
, w ∈ R. (1.4.6)

6. If φ ∈ Φ(R), β ∈ N and α > 0, then we have

Fα(Dβφ(x))(w) = ((signw)|w|
1
α )β(Fαφ)(w), w ∈ R. (1.4.7)

7. Let φ, ψ ∈ L2(R), then the Parseval formula of the fractional Fourier transform

is given by

〈φ, ψ〉 =
1

2πα

〈
|.|

1
α
−1(Fαφ), (Fαψ)

〉
. (1.4.8)

8. If φ ∈ L1(R) and F(φ) ∈ L1(R), then F−1
α (Fαφ) = φ a.e. on R.

9. If φ ∈ L1(R), then (Fαφ̃)(w) = F̃αφ(w), w ∈ R, where φ̃(x) = φ(−x), for all x ∈

R.

1.5 Pseudo-differential operators involving the frac-

tional Fourier transform

In this section, from [14], definitions and properties of pseudo-differential operators

are discussed by exploiting the theory of the fractional Fourier transform.
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Definition 1.5.1. Let m ∈ R and α ∈ (0, 1]. We define S
m
α is the set of all

functions σα ∈ C∞(R × R) such that for all β, γ ∈ N0, there exists a constant

Aβ,γ > 0 depending on β and γ only, such that

|Dβ
xD

γ
wσα(x,w)| ≤ Aβ,γ(1 + |w|)

m
α
−|γ|. (1.5.1)

We call any function σα ∈ ∪m∈RS
m
α a symbol.

Definition 1.5.2. Let σα ∈ C∞(R× R) be a symbol. Then the pseudo-differential

operator Tσ,α associated with symbol σα(x,w) is defined by

(Tσ,αφ)(x) :=
1

2πα

∫
R
ei(signw)|w|

1
α x|w|

1
α
−1σα(x,w)(Fαφ)(w)dw, (1.5.2)

for all φ ∈ S(R).

Definition 1.5.3. (Formal adjoint)

For any pair of functions φ and ψ in S(R), we define (φ, ψ) by

(φ, ψ) :=

∫
R
φ(x)ψ(x)dx. (1.5.3)

Let σα be a symbol in S
m
α and Tσ,α its associated pseudo differential operator.

Suppose there exists a linear operator T ∗σ,α : S(R)→ S(R) such that

(Tσ,αφ, ψ) = (φ, T ∗σ,αψ), φ, ψ ∈ S(R). (1.5.4)

Then we call T ∗σ,α a formal adjoint of the operator Tσ,α.

Definition 1.5.4. Let Tσ,α be a pseudo differential operator on S(R) and u ∈ S ′(R),

then Tσ,α is defined on S ′(R) by

(Tσ,αu)(φ) = u(T ∗σ,αφ), φ ∈ S(R), (1.5.5)
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where T ∗σ,α is the formal adjoint of Tσ,α.

Properties of pseudo-differential operator

1. The operator Tσ,α is a bounded linear map from S(R) into itself.

2. The operator Tσ,α is a bounded linear map from S
′
(R) into itself.

1.6 The continuous fractional wavelet transform

involving the fractional Fourier transform

From [16], definitions and properties of the continuous fractional wavelet transform

which are helpful in the subsequent chapters of this thesis are given below :

Definition 1.6.1. The fractional wavelet ψα,a,b(t) of order α (0 < α ≤ 1), where

ψ ∈ L2(R), is defined as follows:

ψα,a,b(t) =
1

|a| 1
2α

ψ

(
t− b
|a| 1α

)
, a, b ∈ R, a 6= 0, (1.6.1)

and satisfies the following admissibility condition:

Cψα =

∫ +∞

−∞

|ψ̂α(w)|2

|w|
dw <∞. (1.6.2)

Definition 1.6.2. If ψ ∈ L2(R), then the integral transformation given by

(
Wψαφ

)
(b, a) = 〈φ, ψα,a,b〉 =

∫ +∞

−∞
φ(t)

1

|a| 1
2α

ψ

(
t− b
|a| 1α

)
dt (1.6.3)

is called continuous fractional wavelet transformation of a given signal φ ∈ L2(R).
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Properties of the continuous fractional wavelet transform

For 0 < α ≤ 1, following properties hold:

1. If ψ ∈ L2(R), we have

Fα(ψα,a,b(t))(w) = |a|
1
2α e−i(signw)|w|

1
α bψ̂α(aw). (1.6.4)

2. Let ψ ∈ L2(R), then for any signal φ ∈ L2(R), we have following integral

representation of
(
Wψαφ

)
(b, a)

(
Wψαφ

)
(b, a) =

|a| 1
2α

2πα

∫ +∞

−∞
ei(signw)|w|

1
α b|w|

1
α
−1φ̂α(w)ψ̂α(aw)dw. (1.6.5)

3. Let ψ ∈ L2(R), then for any φ1, φ2 ∈ L2(R), the Parseval’s formula for the

continuous fractional wavelet transform is given by

∫ +∞

−∞

∫ +∞

−∞

(
Wψαφ1

)
(b, a)

(
Wψαφ2

)
(b, a)

dbda

|a| 1α+1
= Cψα〈φ1, φ2〉. (1.6.6)

4. Let ψ ∈ L2(R), then a signal φ ∈ L2(R) can be reconstructed by the following

inversion formula for the continuous fractional wavelet transform

φ(t) =
1

Cψα

∫ +∞

−∞

∫ +∞

−∞

(
Wψαφ

)
(b, a)ψα,a,b(t)

dbda

|a| 1α+1
. (1.6.7)

5. Let ψ ∈ L2
σ(I). Then the discrete fractional wavelet transform of a signal

φ ∈ L2
σ(I) is given by

(
Wψαφ

)
(m,n) =

∫ ∞
0

φ(t) ψα,m,n(t) dσ(t), (1.6.8)
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where

ψα,m,n(t) = |a0|−
m
2αψ
(
a
−m
α

0 t− nb0

)
, m, n ∈ N. (1.6.9)

1.7 Hankel transform

From Haimo [17] and Pathak et al. [32], definitions, properties and formulae of the

Hankel transform are given in this section.

Let µ be a positive real number. Take

σ(x) =
x2µ+1

2µ+ 1
2 Γ(µ+ 3

2
)

(1.7.1)

and

j(x) = Cµx
1
2
−µJµ− 1

2
(x), Cµ = 2µ−

1
2 Γ

(
µ+

1

2

)
, (1.7.2)

where Jµ− 1
2

denotes the Bessel function of order µ− 1
2
.

The space Lpσ(I), I = (0,∞) and 1 ≤ p ≤ ∞, is the space of those real measurable

functions φ on (0,∞) for which

||φ||p,σ =

[∫ ∞
0

|φ(x)|pdσ(x)

] 1
p

<∞, 1 ≤ p <∞, (1.7.3)

||φ||∞,σ = ess sup
0<x<∞

|φ(x)| <∞. (1.7.4)

Definition 1.7.1. For each φ ∈ L1
σ(I), the Hankel transform of the function φ is

defined by

(hµφ)(w) ≡ φ̂(w) :=

∫ ∞
0

j (wx) φ(x) dσ(x), 0 < x <∞. (1.7.5)
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If φ ∈ L1
σ(I) and hµφ ∈ L1

σ(I), then the inverse Hankel transform is defined by

φ(x) :=

∫ ∞
0

j (wx) (hµφ) (w)dσ(w) (0 < x <∞). (1.7.6)

If φ ∈ L1
σ(I), then φ̂ is continuous and bounded on [0,∞) and

||hµφ||∞,σ ≤ ||φ||1,σ. (1.7.7)

If φ, ψ ∈ L1
σ(I), then the following Parseval formula holds:

∫ ∞
0

φ̂(w)ψ̂(w)dσ(x) =

∫ ∞
0

φ(x)ψ(x)dσ(x). (1.7.8)

To define the Hankel convolution # we need to introduce Hankel translation. Define

D(x, y, z) :=

∫ ∞
0

j(wx)j(wy)j(wz)dσ(w). (1.7.9)

Using (1.7.5), (1.7.6) and (1.7.9), we get

∫ ∞
0

j(wx)D(x, y, z)dσ(x) = j(wy)j(wz), 0 < x, y <∞, 0 ≤ w <∞. (1.7.10)

Setting w = 0, we obtain

∫ ∞
0

D(x, y, z)dσ(z) = 1. (1.7.11)

The Hankel translation τy of φ ∈ Lpσ(I), 1 ≤ p ≤ ∞ is defined by

(τyφ)(x) = φ(x, y) :=

∫ ∞
0

φ(z)D(x, y, z)dσ(z), 0 < x, y <∞. (1.7.12)
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For each fixed x, we have

||φ(x, .)||p,σ ≤ ||φ||p,σ. (1.7.13)

Let p, q, r ∈ [1,∞) and 1/r = (1/p)+(1/q)−1. The Hankel convolution of φ ∈ Lpσ(I)

and ψ ∈ Lqσ(I) is defined by

(φ#ψ)(x) :=

∫ ∞
0

φ(x, y)ψ(y)dσ(y), (1.7.14)

and

||φ#ψ||r,σ ≤ ||φ||p,σ||ψ||q,σ. (1.7.15)

If φ, ψ ∈ L1
σ(I), then

hµ(φ#ψ)(w) = (hµφ)(w)(hµψ)(w), 0 ≤ w <∞. (1.7.16)

***
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