
CHAPTER 6

LEGENDRE WAVELET METHOD ON SIZE

DEPENDENT BENDING ANALYSIS OF

NANOBEAM UNDER NONLOCAL STRAIN

GRADIENT THEORY

6.1 Introduction1

The discrepancy between experimental and classical continuum mechanics results aris-

ing from a wide variety of nanoscale investigations demonstrates that the classical

theory might not be able to accurately predict the response of nanostructures since it

does not take into account size-scale parameters. It is therefore meaningful to consider

non-classical continuum theories that incorporate extra material length scale param-

eters in order to characterize the size e�ect in nanostructures. Additionally, several

experimental outcomes and theoretical �ndings showed that the sti�ness enhancement

e�ect is a signi�cant factor in explaining the size-dependent analysis comprehensively.

This chapter of thesis examines the prediction of bending characteristics of the

Euler-Bernoulli nanobeam using Moore-Gibson-Thompson thermoelasticity theory in

conjunction with nonlocal strain gradient theory (NSGT). This work is motivated from

some investigations on size-dependent vibration analysis of small scale structures in the

frame of nonlocal theory, nonlocal strain-gradient theory as reported by Zenkour et al.

1The content of this chapter is communicated to an International Journal.
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(2014), Li and Hu (2015), Rezazadeh et al. (2015), Ebrahimi and Barati (2017a), Li et

al. (2017), She et al. (2018), Jena et al. (2021), Jena et al. (2022), Mehrparvar et al.

(2022), Yang et al. (2023) and Kumar and Mukhopadhyay (2023).

In this chapter, the Legendre wavelet method is employed to analyze the size-

dependent thermoelastic bending characteristics of a nanobeam structure by consid-

ering coupled thermoelastic equations within the framework of nonlocal strain gradient

theory (NSGT) and MGT heat conduction model. The coupled equations for dimen-

sionless de�ection and temperature change with ramp-type boundary conditions are

formulated and solved using Laplace method and Wavelet approximation method. The

sti�ness softening and hardening e�ects due to the nonlocal paramter and length-scale

parameter are assessed, and their discrepancies are discussed. The bending nature

under di�erent beam theories is �nally discussed for various geometrical parameters

(nonlocal parameter and length scale parameters) and the comparative analysis on ef-

fects of non-local theory and strain gradient theory on de�ection and thermal moment

of nanobeam structure is presented.

6.2 Theoretical Preliminaries

The rectangular cross-section is assumed with the dimensions of length L, width b, and

thickness h corresponding to x, y, and z-axes, respectively, for small de�ection.

Figure 6.2.1: Graphical illustration of Beam Modeling
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6.2.1 The basics of nonlocal strain gradient theory (NSGT)

In Eringen's theory (Eringen (1972; 1983)), the nonlocal e�ect in classical stress �eld σij

depends on strain not only at the reference point but also depend at all domain points.

An extended version of this theory is established by Lim et al. (2015) by introducing

strain gradient parameter ls in the constitutive equation of the internal energy density

function. According to this proposed theory, total stress tensor σT
ij(x) is the fusion of

both non local elastic stress tensor σ(0)
ij (x) and higher order strain gradient stress tensor

σ
(1)
ij (x), which is de�ned as follows:

σT
ij(x) = σ

(0)
ij (x)−∇σ

(1)
ij (x), (6.2.1)

where σ
(0)
ij (x) and σ

(1)
ij (x) are given by

σ
(0)
ij (x) =

�

V

Ω0 (x, x
′, e0a)Cijklekl(x

′)dV, (6.2.2)

σ
(1)
ij (x) = l2s

�

V

Ω1 (x, x
′,e1a)Cijklekl,m(x

′)dV, (6.2.3)

Ω0 (x, x
′, e0a) and Ω0 (x, x

′, e1a) in above equations are two nonlocal functions with

nonlocal parameters e0a and e1a. Cijkl stands for the elastic modulus tensor of fourth

order. ekl(x′) and ekl,m(x
′) are strain tensor and higher order strain gradient tensor at

reference point x′, respectively. ls denotes the strain gradient parameter to show the

relevance of the higher order strain gradient stress �eld. According to linear thermoe-

lasticity, the linear thermoelastic constitutive relation of local stress �eld component

σij(x
′) is given as

σij(x
′) = 2µeij(x

′) + {λekk(x′)− (3λ+ 2µ)αtθ} δij, (6.2.4)
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where ekk is volumetric part of strain tensor, αt is linear thermal expansion coe�cient,

and θ = T − T0 is the temperature excess of system at time t. λ = Eϑ
(1+ϑ)(1−2ϑ)

and

µ = E
2(1+ϑ)

are the Lame's constants.

Here, ϑ is Poisson's ratio and E refers to the elastic modulus. The following forms

de�ne the linear nonlocal di�erential operator, which could be utilized with nonlocal

functions (Lim et al. (2015)):

L1 =

(
1−

(e0a
L

)2
L2 ∂2

∂x2

)
, (6.2.5)

L2 =

(
1−

(e1a
L

)2
L2 ∂2

∂x2

)
, (6.2.6)

where L represents the length of the beam.

Further, in view of Eqs. (6.2.5) and (6.2.6), a simpli�ed form of Eqs. (6.2.2) and (6.2.3)

can be found as follows (Lim et al. (2015)):

L1σ
(0)
ij (x) = σij(x

′), (6.2.7)

L2σ
(1)
ij (x) = l2s∇σij(x

′). (6.2.8)

By combining Eqs. (6.2.4), (6.2.7) and (6.2.8) for e0 = e1, it is obtained that

(
1− ηL2∇2

)
σ
(0)
ij (x) = 2µeij(x

′) + {λekk(x′)− βθ} δij, (6.2.9)(
1− ηL2∇2

)
σ
(1)
ij (x) = τ 2L2 {2µ∇eij(x

′) + (λ∇ekk(x
′)− β∇θ) δij} , (6.2.10)

where η = e0a
L
and τ = ls

L
are dimensionless nonlocal and strain gradient parameters,

respectively. Moreover, β = Eαt

(1−2ϑ)
is the thermoelastic coupling parameter.

In view of Eqs. (6.2.9) and (6.2.10), the following is acquired:
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(
1− ηL2∇2

)
σ
(T )
ij (x) = 2µeij(x

′)+{λekk(x′)− βθ} δij−τ 2L2∇2 {2µeij(x′) + (λekk(x
′)− βθ) δij} .

(6.2.11)

In the special case when the thermal e�ect is negligible (i.e., αt = 0) in above equation,

then one can obtain the constitutive relation for NSGT as

(
1− η2L2 ∂2

∂x2

)
σT
xx(x) = (λ+ 2µ)

(
1− τ 2L2 ∂2

∂x2

)
exx(x

′). (6.2.12)

The above constitutive relation can be characterized by three di�erent theories:

� Classical Elasticity theory (CT): σT
ij(x) = (λ+ 2µ) ekk(x

′) when η = 0 and τ = 0.

� Nonlocal beam theory (NBT): {1− η2L2∇2}σT
ij(x) = (λ+ 2µ) ekk(x

′) when η ̸= 0

and τ = 0.

� Strain gradient theory (SGT): σT
ij(x) = (λ+ 2µ) (1− τ 2L2∇2) ekk(x

′) when η = 0

and τ ̸= 0.

6.2.2 Equation of motion of nanobeam resonator

The Euler-Bernoulli nanobeam is considered in this chapter. Therefore, the displace-

ment components are assumed to have the form as

ux = −z
∂w(x, t)

∂x
, uy = 0, uz = w(x, t), (6.2.13)

where w(x, t) is small transverse de�ection. By using plane stress condition, the normal

strain components are given as

exx = −z
∂2w(x, t)

∂x2
, eyy = 0, ezz = 0.

Therefore, non-vanishing volumetric strain can be obtained as
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ekk = −z
∂2w(x, t)

∂x2
. (6.2.14)

Putting Eq. (6.2.14) into Eq. (6.2.11), the constitutive relation for NSGT with thermal

e�ect takes form as

(
1− η2L2 ∂2

∂x2

)
σT
xx(x) =

{
(λ+ 2µ)

(
1− τ 2L2 ∂2

∂x2

)(
−z

∂2w(x, t)

∂x2

)
− βθ

}
.

(6.2.15)

Now, multiplying Eq. (6.2.15) by z and integrating the result with respect to cross-

sectional area dA, the following is achieved:

{
1− η2L2 ∂2

∂x2

}
M = −

{
(λ+ 2µ) I

(
1− τ 2L2 ∂2

∂x2

)
∂2w(x, t)

∂x2
+Mt

}
, (6.2.16)

where I = bh3

12
is moment of inertia. The bending moment M and thermal moment Mt

are given by

Mt = Eαtb

h/2�

−h/2

θzdz, (6.2.17)

M =

�
σT
xx(x)zdA. (6.2.18)

An Euler-Bernoulli beam vibrating transversely can be described by the following equa-

tion of motion (see Lim et al. (2015), Rezazadeh et al. (2015)):

∂2M

∂x2
− ρA

∂2w(x, t)

∂t2
= 0, (6.2.19)

where ρ is the mass density.

In view of Eqs. (6.2.16) and (6.2.19), the equation of motion is derived by using NSGT
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theory as follows:

S1
∂4w

∂x4
+ S2

∂2w

∂t2
+

∂2Mt

∂x2
= 0, (6.2.20)

where S1 = (λ+ 2µ) I
(
1− τ 2L2 ∂2

∂x2

)
and S2 = ρA

(
1− η2L2 ∂2

∂x2

)
.

6.2.3 Coupled heat conduction equation for the Moore�Gibson�

Thompson (MGT) Theory

Using non-vanishing strain components ekk in the MGT heat conduction equation, it is

obtained that

(
K

∂

∂t
+K∗

)(
∂2θ

∂x2
+

∂2θ

∂z2

)
−
(
1 + τq

∂

∂t

)(
ρcE

∂2

∂t2
θ − T0βz

∂4w

∂t2∂x2

)
= 0. (6.2.21)

The above equation takes the following form by multiplying with bβz and then inte-

grating the resultant over the thickness direction:

(
K

∂

∂t
+K∗

)∂2Mt

∂x2
+ bβ

h/2�

−h/2

z
∂2θ

∂z2
dz

−
(
1 + τq

∂

∂t

)(
ρcE

∂2

∂t2
Mt − IT0β

2 ∂4w

∂t2∂x2

)
= 0.

(6.2.22)

6.3 De�ection and Temperature Field

The temperature change in thin beam vary along the z- axes (thickness direction) as

the function of sin (gz). Therefore, we can express θ in the following form:

θ (x, z, t) = Θ(x, t) sin (gz), (6.3.1)

where g = π
h
.
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Then, Eqs. (6.2.20) and (6.2.22) take the following forms:

ρA
∂2w

∂t2
− η2L2ρA

∂4w

∂t2∂x2
+ (λ+ 2µ) I

∂4w

∂x4
− (λ+ 2µ) Iτ 2L2∂

6w

∂x6
+

2bβ

g2
∂2Θ

∂x2
= 0,

(6.3.2)(
K

∂

∂t
+K∗

)(
∂2Θ

∂x2
− g2Θ

)
−
(
1 + τq

∂

∂t

)(
ρcE

∂2Θ

∂t2
− IT0βg

2

2b

∂4w

∂t2∂x2

)
= 0.

(6.3.3)

Here, the following dimensionless variables are used for convenience:

x′ =
x

L
, t′ =

tϵ

L
w′ =

w

h
, θ′ =

Θ

T0

,

η =
e0a

L
, τ =

ls
L
, ϵ =

√
E

ρ
, τ ′1 =

τqϵ

L
.

By taking these non-dimensional variables and notations and omitting the primes for

simplicity, Eqs. (6.3.2) and (6.3.3) yield the following equations:

∂2w

∂t2
− L1

∂4w

∂t2∂x2
+ L2

∂4w

∂x4
− L3

∂6w

∂x6
+ L4

∂2θ

∂x2
= 0, (6.3.4)(

k1 +
∂

∂t

)(
∂2θ

∂x2
− L5θ

)
−
(
1 + τ1

∂

∂t

)(
L6

∂2θ

∂t2
− L7

∂4w

∂t2∂x2

)
= 0, (6.3.5)

where

k1 =
K∗L

Kϵ
, L1 = η2, L2 =

(λ+ 2µ) I

L2EA
, L3 =

(λ+ 2µ) Iτ 2

L2EA
, L = 2

T0bβ

g2EAh
,

L5 = g2L2, L6 =
ρcEELϵ

K
, L7 =

βIg2hϵ

2bKL
.

Further, the initial conditions are taken to be homogeneous and boundary conditions

in dimensionless forms are considered as follows:
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w(0, t) =
∂2w

∂x2
(0, t) =

∂4w

∂x4
(0, t) = 0; w(1, t) =

∂2w

∂x2
(1, t) =

∂4w

∂x4
(1, t) = 0, (6.3.6)

θ(0, t) = θ0


0 for t ≤ 0

t
t0

for 0 < t < t0

1 for t ≥ t0

, θ(1, t̄) = 0. (6.3.7)

where t0 is non negative ramp time parameter and θ0 is a �xed constant temperature.

6.4 Legendre Wavelets

The mother wavelet Ψ(x) plays a vital role in generating a set of functions, called

wavelets, by translation and dilation. The dilation parameter c and translation pa-

rameter d are continually varied to produce the family of continuous wavelets in the

following way (Daubechies (1992)):

Ψc,d(x) = |c|−1/2Ψ

(
x− d

c

)
,

where c, d ∈ R and c ̸= 0.

Legendre wavelets Ψm,n(x) = Ψ(n, r, m̂, x) in the context of Legendre polynomials Ln(x)

of order n, which belong to the interval [−1, 1] is de�ned as follows (Liu and Lin (2010),

Xu and Xu (2018)):

Ψm,n(x) =


√

n+ 1
2
2

r
2Ln(2

rx− m̂), m̂−1
2r

≤ x < m̂
2r

0, otherwise

, (6.4.1)

where x ∈ [0, 1) and the coe�cient
√
n+ 1

2
is taken for orthonormality. Moreover,
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r ∈ N, m = 1, 2, ..., 2r−1, m̂ = 2m − 1, n = 0, 1, 2, ..., N − 1 is the order of Legendre

polynomial.

6.4.1 Function approximation

In the form of Legendre wavelet, any function u(x) ∈ L2(R) de�ned on the interval

[0, 1) can be represented as

u(x) =
∞∑

m=1

∞∑
n=0

βm,nΨm,n(x), (6.4.2)

where βm,n = ⟨u(x),Ψm,n(x)⟩ denote the wavelet coe�cients and ⟨., .⟩ is the inner

product in L2[0, 1).

If the above series de�ned in Eq. (6.4.2) is truncated, it is simpli�ed to the following

form:

u(x) ∼=
2r−1∑
m=1

N−1∑
n=0

βm,nΨm,n(x).

By using concise notation, it can be de�ned as follows:

u(x) ∼=
n̂∑

i=1

βiΨi(x) = BTΨ(x),

where B and Ψ(x) are n̂ = 2r−1N column vectors de�ned as

B = [β1,0, β1,1, ..., β1,N−1, β2,0, ..., β2,N−1, ..., β2r−1,0, β2r−1,1, ..., β2r−1,N−1]
T ,

Ψ(x) = [Ψ1,0, Ψ1,1, ..., Ψ1,N−1, Ψ2,0, ..., Ψ2,N−1, ..., Ψ2r−1,0, Ψ2r−1,1, ..., Ψ2r−1,N−1]
T .

6.4.2 Convergence of Legendre wavelets

Theorem (Liu and Lin (2010)): A continuous function u(x) de�ned on [0, 1] can be

written as an in�nite sum of Legendre wavelets, and the series converges uniformly to
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u(x) if it has a bounded second-order derivative., i.e.

u(x) =
∞∑

m=1

∞∑
n=0

βm,nΨm,n(x).

Proof: (see Liu and Lin (2010)).

6.5 Solution Procedure

Here, the Laplace transform method and Wavelet method are used to solve the Eqs.

(6.3.4) and (6.3.5). Applying the Laplace transform

L[u(x, t)] = u(x, p) =

� ∞

0

u(x, t)e−ptdt

to the Eqs. (6.3.4) and (6.3.5) by utilizing the homogeneous initial conditions, it is

obtained that

p2w − L1p
2∂

2w

∂x2
+ L2

∂4w

∂x4
− L3

∂6w

∂x6
+ L4

∂2θ

∂x2
= 0, (6.5.1)

(k1 + p)

(
∂2θ

∂x2
− L5θ

)
− (1 + τ1p)

(
L6p

2θ − L7p
2∂

2w

∂x2

)
= 0, (6.5.2)

where p is the Laplace transform parameter.

Similarly, Laplace transform is applied to boundary conditions (6.3.6) and (6.3.7) to

get the following equations

w(0, p) =
∂2w

∂x2
(0, p) =

∂4w

∂x4
(0, p) = 0, (6.5.3)

w(1, p) =
∂2w

∂x2
(1, p) =

∂4w

∂x4
(1, p) = 0, (6.5.4)

θ(0, p) =
θ0
t0p2

− θ0e
−pt0

t0p2
, θ(1, p) = 0, (6.5.5)
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6.5.1 Space discretization by Legendre wavelets

The Legendre wavelet method is adopted to approximate the space domain in this

subsection. In wavelet-based approaches, wavelet series is often used to approximate

the highest order derivative of an unknown function that appears in the problem. After

that, using boundary conditions and sequential integration, the unknown function itself

as well as its lower-order derivatives are obtained. Following this, it is assumed that

∂6w
∂x6 can be expressed by Legendre wavelet in the following way (Liu and Lin (2010),

Xu and Xu (2018)):

∂6w

∂x6
(x, p) =

n̂∑
i=1

aiΨi(x). (6.5.6)

In order to solve this further, the following notations are used (Oruç et al. (2015)):

Pi,1(x) =

� x

0

Ψi(ξ)dξ, Pi,2(x) =

� x

0

Pi,1(ξ)dξ, Pi,3(x) =

� x

0

Pi,2(ξ)dξ,

Pi,4(x) =

� x

0

Pi,3(ξ)dξ, Pi,5(x) =

� x

0

Pi,4(ξ)dξ, Pi,6(x) =

� x

0

Pi,5(ξ)dξ. (6.5.7)

Now, integrating Eq. (6.5.6) with respect to x from 0 to x and using Eq. (6.5.7), we

obtain
∂5w

∂x5
(x, p) =

n̂∑
i=1

aiPi,1(x) +
∂5w

∂x5
(0, p). (6.5.8)

Again integrating above equation two times with respect to x from 0 to x and using

Eq. (6.5.7) and boundary condition given by Eq. (6.5.3), it is acquired that

∂4w

∂x4
(x, p) =

n̂∑
i=1

aiPi,2(x) + x
∂5w

∂x5
(0, p), (6.5.9)

since ∂5w
∂x5 (0, p) is unknown in above equation so by substituting x = 1 in above equation

and using boundary condition, Eq. (6.5.9) yields

∂4w

∂x4
(x, p) =

n̂∑
i=1

aiPi,2(x)− x
n̂∑

i=1

aiPi,2(1). (6.5.10)
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Now, taking double integration of Eq. (6.5.10) with respect to x, the following is

achieved:

∂2w

∂x2
(x, p) =

n̂∑
i=1

aiPi,4(x)−
x3

6

n̂∑
i=1

aiPi,2(1)−x

n̂∑
i=1

aiPi,4(1)+
x

6

n̂∑
i=1

aiPi,2(1). (6.5.11)

Again integrating two times Eq. (6.5.11) with respect to x and considering Eqs. (6.5.4),

(6.5.5) and (6.5.7), the following is obtained:

w(x, p) =
n̂∑

i=1

aiPi,6(x)−
x5

120

n̂∑
i=1

aiPi,2(1)−
x3

6

n̂∑
i=1

aiPi,4(1) +
x3

36

n̂∑
i=1

aiPi,2(1)

− x

(
n̂∑

i=1

aiPi,6(1)−
1

120

n̂∑
i=1

aiPi,2(1)−
1

6

n̂∑
i=1

aiPi,4(1) +
1

36

n̂∑
i=1

aiPi,2(1)

)
.

(6.5.12)

Similarly, ∂2θ
∂x2 is expanded by Legendre wavelets as follows:

∂2θ

∂x2
(x, p) =

n̂∑
i=1

biΨi(x). (6.5.13)

Also, by double integrating Eq. (6.5.13) with respect to x from 0 to x, the following

equation is acquired:

θ(x, p) =
n̂∑

i=1

biPi,2(x) + x
dθ

dx
(0, p) + θ(0, p). (6.5.14)

Now by putting x = 1 in the above equations and making use of boundary conditions

given by Eq. (6.5.5), it is obtained that

θ(x, p) =
n̂∑

i=1

biPi,2(x)− x

n̂∑
i=1

biPi,2(1)− (x− 1)

(
θ0
t0p2

− θ0e
−pt0

t0p2

)
. (6.5.15)

Substituting Eqs. (6.5.6), (6.5.10)-(6.5.13) and (6.5.15) into Eqs. (6.5.1) and (6.5.2)

and discretizing the space variable x in collocation points 2i−1
2n̂

, i = 1, 2, ..., n̂, a system
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of algebraic equations is found which can be represented in the following matrix form:

PX = Q, (6.5.16)

where P is a 2n̂× 2n̂ matrix of known coe�cients, Q is known matrix of order 2n̂× 1

and X denotes the following vector of wavelet coe�cients:

X = [a1,0, a1,1, ..., a2r−1,0, ..., a2r−1,N−1, b1,0, b1,1, ..., b2r−1,0, ..., b2r−1,N−1]
T .

From Eq. (6.5.16), wavelet coe�cientsX are obtained. Then, by plugging these wavelet

coe�cients into Eqs. (6.5.12) and (6.5.15), the solutions for de�ection and temperature

are constructed in Laplace transform domain.

6.5.2 Inversion of Laplace transform

In order to obtain the numerical solutions for de�ection and change in temperature

for the time domain, the numerical inversion of the Laplace transform is adopted. For

this purpose, the approach of numerical inversion is used based on the Stehfest method

(Stehfest (1970)). In this approach, the inverse of a function u(x, p) can be evaluated

in time domain as

u(x, t) =
ln 2

t

2M∑
j=1

Nju

(
x,

j ln 2

t

)
, (6.5.17)

with

Nj = (−1)m+M

min (m,M
2
)∑

k=[m+1
2 ]

k
M
2 (2k)!

(M
2
− k)!k!(m− k)!(2k − 1)!

, (6.5.18)

where M is an integer and
[
m+1
2

]
denotes the integer part of real number m+1

2
.
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6.6 Numerical results and discussion

In this section, the bending analysis of the silicon nano-resonator is investigated by

the Legendre wavelet method under nonlocal strain gradient theory. The dimensionless

terms of de�ection and temperature changes in beam resonator are studied under the

recent MGT thermoelasticity theory. Now, in order to illustrate the problem and

examine the e�ects of nonlocal parameter, length scale parameter, aspect ratio, and

ramp type parameter on the responses of de�ection and temperature, computational

work is carried out on the basis of the analytical solution as obtained in the previous

section. The following numerical data at reference temperature T0 = 293K is used here

for �nding the nature of several comparisons:

E = 169GPa, cE = 713 J/kgK, ρ = 2330 kg/m3, αt = 2.59×10−6K−1, K = K∗ = 156W/mK.

Numerical computations and graphical outputs are achieved using MATLAB software.

The numerical solutions of the present problem are demonstrated in various graphs for

the values of r = 1 and N = 6.

6.6.1 Validation of numerical results

For the cases of de�ection and temperature distribution, the results of the current

�ndings are compared with the results of Zenkour et al. (2014) in Figs. 6.6.1(a,b).

Zenkour et al. (2014) obtained the vibration behavior of nanobeam in the context of

a re�ned nonlocal thermoelasticity theory for the LS heat conduction model. This is a

particular case of the present study as by making K∗ = 0 in the MGT heat conduction

equation, results for the LS thermoelasticity theory is derived. From Figs. 6.6.1(a,b),

it is revealed that how e�ectively the current study agrees with the results reported

by Zenkour et al. (2014). It can be observed that the temperature distribution and
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de�ection agree well. This shows that the current numerical procedure is accurate and

e�ective.

Figure 6.6.1: Comparison of de�ection and temperature change between present work
and the work by Zenkour et al. (2014)

6.6.2 Nonlocal e�ect in de�ection

Figure 6.6.2: (a) E�ect of nonlocal parameter in normalized de�ection at time t = 25.
(b) E�ect of nonlocal parameter in normalized de�ection at time t = 50.
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Figs. 6.6.2(a,b) are plotted to show the dimensionless de�ection along with distance

x at two di�erent dimensionless times t = 25 and 50 . Here, the non-negative constants

t0 = 50, b = 0.5 × h, L
h
= 10 and θ0 = 0.1 are considered. It is observed that with

intensifying the nonlocal parameter e0a, the non-dimensional de�ection w is signi�cantly

in�uenced. It is further observed that the de�ection ascends to larger maximum when

small scale parameter e0a increases. Moreover, it is shown that the de�ection gets higher

value as time increases. The sti�ness softening e�ect due to the nonlocal parameter is

clearly seen in both the graphs 6.6.2(a,b).

6.6.3 E�ect of length scale parameter

Figure 6.6.3: (a) E�ect of strain gradient parameter ls on dimensionless de�ection at
time t = 25. (b) E�ect of strain gradient parameter ls on dimensionless de�ection at
time t = 50.

Figs. 6.6.3(a,b) are depicted to demonstrate the e�ects of strain gradient parameter

ls in bending of nanobeam with respect to x at two di�erent time t. This �gure displays

non-dimensional de�ection w for the three level values of length scale parameter ls (i.e,

ls = 0, 0.3, 0.5 nm), where the nonlocal parameter is kept �xed as e0a = 0.2 nm. It is
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well known that the e�ect of nonlocal and length scale parameters is characterized based

on material molecular behavior. It is important to note from the �gure that whenever

enhancing the length scale parameter, the opposite e�ect is observed in comparison to

the nonlocal e�ect because enhancing it reduces peaks of de�ection. Hence, when the

strain gradient parameter is taken into account, the sti�ness-hardening nature of beam

resonator is illustrated. Also, it is noted that larger amplitude of de�ection is attained

as time increases.

6.6.4 E�ect of di�erent aspect ratio L
h

Figure 6.6.4: (a) E�ect of di�erent aspect ratio L
h
on de�ection when ls > e0a. (b)

E�ect of di�erent aspect ratio L
h
on de�ection when ls < e0a.

Figs. 6.6.4(a,b) are focused on illustrating the e�ect of three-level aspect ratios L
h

(L
h
= 10, 20, 30) on dimensionless de�ection w. It is clearly noted that the nonlocal and

strain gradient length scale parameters a�ect amplitudes of de�ection di�erently. When

the strain gradient parameter is greater than the nonlocal parameter (i.e., ls > e0a),

the resonator exhibits a lower value of the amplitude of vibration, which shows the

sti�ness hardening e�ect. In the case of ls < e0a, the amplitude of dimensionless
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de�ection ascends, which is responsible for sti�ness-softening. Moreover, one can �nd

that the de�ection peaks get a higher value when aspect ratio increases. In this case, the

oscillation frequency of the beam resonator shrink, which causes more energy dissipation

during vibration. The peak values of de�ection are attained at a larger distance when

ls > e0a.

6.6.5 De�ection and temperature under di�erent theories

Figure 6.6.5: De�ection under di�erent classical and non-classical theories at t = 25.

Fig. 6.6.5 depicts the range of dimensionless de�ection modeled by classical elasticity

theory (CT), nonlocal beam theory (NBT), strain gradient theory (SGT), and the

present theory (NSGT) with respect to space variable x. The magnitude of e0a and

ls are assumed to be 0.1 nm and 0.5 nm, respectively. It is shown that the maximum

span of amplitude is extracted under NBT, while the lowest range of de�ection occurs

for SGT. In terms of sti�ness behavior, SGT and NBT theories have the highest and
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lowest values, respectively. The sensitivity of dimensionless temperature θ for various

continuum and non-continuum theories is illustrated in Fig. 6.6.6. It is observed that

the parameters ls and e0a have no in�uence on dimensionless temperature. Therefore,

the CT, NBT, SGT, and NSGT theories demonstrate exactly the similar behavior of

temperature.

Figure 6.6.6: Temperature under di�erent classical and non-classical theories at t = 25.

6.6.6 E�ect of ramp time parameter t0

Fig. 6.6.7 shows the in�uence of ramp time parameter t0 (t0 = 25, 50, and 75) on the

de�ection w for t = 25, whereas the behavior of temperature θ for di�erent ramping

parameter is displayed in Fig. 6.6.8. From Fig. 6.6.7, it is concluded that as ramping

parameter t0 increases, de�ection decreases. It is further detected that temperature in

magnitude decreases with the increase in ramping parameter. This is clearly veri�ed in

Fig. 6.6.8. Hence, the non-dimensional de�ection and temperature are observed to be

signi�cantly impacted by the ramping time parameter t0.
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Figure 6.6.7: E�ect of ramp type parameter t0 on de�ection at time t = 25.

Figure 6.6.8: E�ect of ramp type parameter t0 on temperature at time t = 25.

149



CHAPTER 6. Legendre wavelet method on size dependent analysis...

6.7 Conclusion

This work analyzes the bending and temperature changes of nanobeam resonators un-

der the higher order nonlocal strain gradient (non-continuum) theory and the MGT

thermoelasticity model. The Legendre Wavelet method combined with the Laplace

transform technique is utilized to get the numerical solutions of coupled partial dif-

ferential equations. Validation of results with the corresponding results available in

literature shows successful implementation of the present method. The various graph-

ical results are displayed at di�erent time for di�erent parameters such as nonlocal

parameter, length scale parameter and non-negative ramp time parameter. The signif-

icant �ndings of the current work are listed below:

� By increasing small-scale parameter e0a, a sti�ness-softening e�ect is produced.

On the contrary, an increase in the length-scale parameter ls produces sti�ness-

hardening.

� The peak of de�ection rises and the frequency of oscillation deduces as the value

of nonlocal parameter e0a ascends.

� Sti�ness hardening produces lower amplitude of de�ection and increases vibration

frequency with intensifying strain gradient length scale parameter ls.

� The range of dimensionless de�ection maximizes by increasing the aspect ratio of

the beam's length-to-height ratio (L/h).

� The nonlocal beam theory (NBT) exhibits the highest de�ection amplitude under

MGT model, while the strain gradient theory depicts a less range of dimensionless

de�ection. It can be concluded that the declination of vibration frequency is

maximum under nonlocal beam theory. However, the temperature changes under

all the elasticity theories coincide with each other.
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� With a rise in ramp time parameter t0, the non-dimensional de�ection and tem-

perature changes in the beam resonator decrease.

151




	LEGENDRE WAVELET METHOD ON SIZE DEPENDENT BENDING ANALYSIS OF NANOBEAM UNDER NONLOCAL STRAIN GRADIENT THEORY 
	IntroductionThe content of this chapter is communicated to an International Journal.
	Theoretical Preliminaries
	The basics of nonlocal strain gradient theory (NSGT)
	Equation of motion of nanobeam resonator
	Coupled heat conduction equation for the Moore–Gibson–Thompson (MGT) Theory

	Deflection and Temperature Field
	Legendre Wavelets
	Function approximation
	Convergence of Legendre wavelets

	Solution Procedure
	Space discretization by Legendre wavelets
	Inversion of Laplace transform

	Numerical results and discussion
	Validation of numerical results
	Nonlocal effect in deflection
	Effect of length scale parameter
	Effect of different aspect ratio Lh
	Deflection and temperature under different theories
	Effect of ramp time parameter t0

	Conclusion


