
CHAPTER 5

ANALYSIS OF SIZE EFFECTS ON

THERMOELASTIC DAMPING IN THE

KIRCHHOFF'S PLATE RESONATOR UNDER

MOORE-GIBSON-THOMPSON

THERMOELASTICITY

5.1 Introduction1

Extensive research work carried out during last several decades has indicated that

Kirchho� plate resonator is widely applicable to have ultra-high resonant frequency.

Due to their excellent characteristics, Kirchho�'s plate resonators have a wide range of

possible applications in the rapidly expanding nanotechnology sector. The rectangular

plate is one of the most important structures for sensors and resonators in the precise

estimation of thermoelastic damping (TED) response. Therefore, the study of such

structures has drawn signi�cant attention of researchers as it is critical to understand

the behavior of these micro/nanostructures with reasonable accuracy.

There have been some investigations of TED addressing microplate resonators in

the recent past. Guo et al. (2012) used the non-classical heat conduction model of

the dual-phase-lag (DPL) to derive an explicit formula for TED in micro plate. Zhong

et al. (2014) proposed the TED formulation for an entirely simply supported micro

1The content of this chapter is published in Thin-Walled Structures, 180, 2022.
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plate resonator to get the closed-form solution of equation for TED. Based on the

MCST, Razavilar et al. (2016) investigated the e�ect of the length scale parameter on

the TED in a rectangular micro plate. Kumar et al. (2017) examined the vibrations

analysis in circular plate resonators for thermoelastic medium under LS thermoelasticity

theory. Borjalilou et al. (2018) developed a closed-form relation for analyzing TED in

Kirchho� plates using the MCST and DPL heat conduction model. Devi and Kumar

(2018) investigated the thermoelastic damping and frequency shift in Kirchho� micro

plate resonators using the DPL heat conduction model. Borjalilou and Asghari (2019)

also performed an investigation using the DPL model to evaluate the size e�ect on

TED in Kirchho� rectangular micro plates. Kumar and Mukhopadhyay (2020) utilized

MCST and the three-phase-lag (TPL) (2007) heat conduction model to �nd a closed-

form expression for TED in thin rectangular micro plates. Wang et al. (2022) derived

the analytical solution of viscoelastic nanoplate to capture bending analysis based on

MCST.

From the literature review and the author's knowledge, TED analysis of Kirch-

ho� micro plate resonators based on MCST under new heat conduction model (MGT

model) has not been reported previously. This topic is therefore covered extensively

in the current chapter of the thesis. The main contribution of this chapter is there-

fore to examine the damping behavior of a Kirchho�'s micro plate resonator by taking

into consideration the MCST as non-classical continuum theory for the study of size

e�ects. Hamilton's principle is used in conjunction with the modi�ed couple stress and

Kirchho� plate theories to derive governing equations of motion based on the MGT

thermoelasticity theory. An explicit expression for determining TED in a microplate

resonator is established by solving these coupled equations, including small-scale e�ects.

The thermoelastic damping and frequency shift diagrams for various parameters are also

depicted to assess the behavior of the microplate resonator in the present context.
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5.2 Dynamic Model of Rectangular Micro-plate

The geometric aspect and coordinate representation (0 ⩽ x ⩽ a, 0 ⩽ y ⩽ b, −h/2 ⩽

z ⩽ h/2) of a rectangular micro-plate resonator with length a, width b and uniform

micro plate thickness h based on plane stress condition is considered as delineated in

Fig. 5.2.1. To examine TED in Kirchho� plate model (Reddy (1999)), the displacement

components are expressed as

ux = −z
∂w (x, y, t)

∂x
, uy = −z

∂w (x, y, t)

∂y
, uz = w (x, y, t) , (5.2.1)

where w (x, y, t) indicates the transverse de�ection of the micro-plate at time t.

Figure 5.2.1: The geometric view and coordinate representation of a rectangular micro-
plate resonator.

5.2.1 The Moore-Gibson-Thomson (MGT) thermoelasticity the-

ory

In view of the MGT thermoelasticity theory, the heat conduction equation for isotropic

material is expressed as
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K∇2∂θ

∂t
+K∗∇2θ =

(
1 + τq

∂

∂t

)(
ρcE

∂2θ

∂t2
+ T0β

∂2ekk
∂t2

)
, (5.2.2)

where β = Eαt

(1−2ϑ)
is the thermoelastic coupling parameter under the present theory.

Above equation under MGT thermoelasticity theory can extract the corresponding

equations of the LS and GN-III thermoelasticity theories as follows:

� LS thermoelasticity theory: when K∗ = 0, τq ̸= 0.

� GN-III thermoelasticity theory: when K∗ ̸= 0,τq = 0.

5.3 Governing Equations of Rectangular Micro-plate

Resonator

The equation of motion in terms of de�ection function, the variation in the strain energy

Us for the Kirchho�'s plate theory in the present context take the following form:

Us =

� a

0

� b

0

[(σxxexx + σyyeyy + 2σxyexy) + (Υxxχxx +Υyyδχyy +Υxyχxy)] dxdy,

(5.3.1)

where the nonzero strain and symmetric part of the rotation gradient tensors can be

de�ned as follows:

exx = −z
∂2w

∂x2
, eyy = −z

∂2w

∂y2
, exy = −z

∂2w

∂x∂y
, (5.3.2)

χxx =
∂2w

∂x∂y
, χyy = − ∂2w

∂x∂y
, χxy =

1

2

[
∂2w

∂y2
− ∂2w

∂x2

]
. (5.3.3)

By putting the Eqs. (5.3.2) and (5.3.3) into Eq. (5.3.1), the variation of strain energy

function can be written as
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Us =

� a

0

� b

0

{
−Nxx

(
∂2w

∂x2

)
−Nyy

(
∂2w

∂y2

)
− 2Nxy

(
∂2w

∂x∂y

)}
+

{
Pxx

(
∂2w

∂x∂y

)
− Pyy

(
∂2w

∂x∂y

)
+ Pxy

(
∂2w

∂y2

)
− Pxy

(
∂2w

∂x2

)}
dxdy, (5.3.4)

where

Nxx =

� h/2

−h/2

σxxzdz, Nyy =

� h/2

−h/2

σyyzdz, Nxy =

� h/2

−h/2

σxyzdz, (5.3.5)

Pxx =

� h/2

−h/2

Υxxdz, Pyy =

� h/2

−h/2

Υyydz, Pxy =

� h/2

−h/2

Υxydz. (5.3.6)

In Eqs. (5.3.5) and (5.3.6), the components Nxx, Nyy and Nxy are stress resultants. In

addition, the components Pxx, Pyy and Pxy denote couple stress resultants.

The variation of kinetic energy
(
Υ̂K.E

)
of the plate without taking into account rotating

inertia is decribed as (see Guo et al. (2012))

δ
(
Υ̂K.E

)
= ρh

� a

0

� b

0

∂w

∂t
δ

(
∂w

∂t

)
dxdy. (5.3.7)

Now, in order to obtain the governing equation of the motion and the related boundary

conditions of the plate, the application of the generalized Hamilton's principle (Dym

(1973)) is de�ned on the time interval [t1, t2] as follows:

δ

� t2

t1

(
Us − Υ̂K.E

)
dt = 0. (5.3.8)

Introducing Eqs. (5.3.4) and (5.3.7) into Hamilton's principle, the following governing

equation of the motion is obtained:

∂2Nxx

∂x2
+ 2

∂2Nxy

∂x∂y
+

∂2Nyy

∂y2
− ∂2Pxx

∂x∂y
+

∂2Pxy

∂x2
− ∂2Pxy

∂y2
+

∂2Pyy

∂x∂y
= ρh

∂2w

∂t2
(5.3.9)
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with the pertinent boundary conditions as

δw = 0 or

(
∂Nxx

∂x
+

∂Nxy

∂y
− 1

2

∂Pxx

∂y
+

∂Pxy

∂x
+

1

2

∂Pyy

∂y

)
nx

+

(
∂Nxy

∂x
+

∂Nyy

∂y
− 1

2

∂Pxx

∂x
− ∂Pxy

∂y
+

1

2

∂Pyy

∂x

)
ny = 0, (5.3.10)

δ

(
∂w

∂x

)
= 0 or Nxx + Pxy = 0 at x = 0, a, (5.3.11)

and

δ

(
∂w

∂y

)
= 0 or Nyy − Pxy = 0 at y=0, b, (5.3.12)

where nx and ny are the components of unit normal vector to the boundary of rectan-

gular plate.

The material is taken to be under plane stress condition assuming σzz = 0. The

relation between the non-zero components of the Cauchy stress tensor and axial strain

are obtained as

σxx =
E

(1− ϑ2)
(exx + ϑeyy)−

1

1− ϑ
Eαtθ, (5.3.13)

σyy =
E

(1− ϑ2)
(eyy + ϑexx)−

1

1− ϑ
Eαtθ, (5.3.14)

ezz = − ϑ

(1− ϑ)
(exx + eyy) +

1 + ϑ

1− ϑ
αtθ. (5.3.15)

By introducing Eq. (5.3.2) into Eqs. (5.3.13)− (5.3.15), it is found that

σxx = − Ez

(1− ϑ2)

(
∂2w

∂x2
+ ϑ

∂2w

∂y2

)
− 1

1− ϑ
Eαtθ, (5.3.16)

σyy = − Ez

(1− ϑ2)

(
∂2w

∂y2
+ ϑ

∂2w

∂x2

)
− 1

1− ϑ
Eαtθ, (5.3.17)

ezz =
ϑz

(1− ϑ)

(
∂2w

∂x2
+

∂2w

∂y2

)
+

1 + ϑ

1− ϑ
αtθ. (5.3.18)
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When Eqs. (5.3.3), (5.3.5), (5.3.6), (5.3.16) and (5.3.17) are combined, the stress resul-

tants in terms of plate de�ection in the thermoelastic condition are given as follows:


Nxx

Nyy

Nxy

 = −Λ


1 ϑ 0

ϑ 1 0

0 0 1− ϑ



wxx

wyy

wxy

− 1

1− ϑ


NT

NT

0

 , (5.3.19)


Pxx

Pyy

Pxy

 = µl2h


0 0 2

0 0 −2

−1 1 0



wxx

wyy

wxy

 , (5.3.20)

where Λ = 1
12
Eh3 1

(1−ϑ2)
and NT = Eαt

� h/2

−h/2
θzdz denote the bending rigidity and

thermal moments, respectively.

Therefore, the equation of motion is expressed in terms of the de�ection function w by

substituting Eqs. (5.3.19) and (5.3.20) into Eq. (5.3.9) as

(
Λ+ µl2h

)(∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
+

1

1− ϑ

(
∂2NT

∂x2
+

∂2NT

∂y2

)
+ ρh

∂2w

∂t2
= 0.

(5.3.21)

The above equation can be mainly characterized by three parts: the �rst part with

Λ and ρh re�ects the conventional plate model; the second part with µl2h exhibits

the size-e�ect and the third part with NT represents the thermoelastic coupling e�ect.

Furthermore, by setting l = 0, this new model reduces to the conventional thermoelastic

plate model, which ignores the size impact. Some researchers have previously shown

that temperature gradients in thin plates along the z-direction are substantially more

considerable than gradients in the x and y directions (Lifshitz and Roukes (2000)).

Therefore, it is permissible to examine one-dimensional heat conduction. The term of

∇2θ in the Eq. (5.2.2) can therefore be replaced by ∂2θ
∂z2

. Thus, the Eq. (5.2.2) yields
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(
K

∂

∂t
+K∗

)
∂2θ

∂z2
=

(
1 + τq

∂

∂t

)(
ρcE

∂2θ

∂t2
+ T0β

∂2ekk
∂t2

)
. (5.3.22)

By substituting the components of volumetric strain, i.e. (exx, eyy and ezz) into the Eq.

(5.3.22), one can obtain

Ω

(
∂

∂t
+

K∗

K

)
∂2θ

∂z2
=

(
1 + τq

∂

∂t

)(
1 +

2△E (1 + ϑ)

(1− ϑ) (1− 2ϑ)

)[
∂2θ

∂t2
− △Ez

αt

(
∂4w

∂x2∂t2
+

∂4w

∂y2∂t2

)]
,

(5.3.23)

where Ω = K
ρcE

and △E =
Eα2

tT0

ρcE
denote the thermal di�usivity and relaxation strength

of the material, respectively. The relation can be simpli�ed due to the low amount

of relaxation strength (i.e.,△E ≪ 1). Hence, the following is the �nal version of the

energy equation:

Ω

(
∂

∂t
+

K∗

K

)
∂2θ

∂z2
+

(
1 + τq

∂

∂t

)
△Ez

αt

(
∂4w

∂x2∂t2
+

∂4w

∂y2∂t2

)
=

(
1 + τq

∂

∂t

)
∂2θ

∂t2
.

(5.3.24)

5.4 Quality Factor (QF) of TED

In a micro resonator, less energy dissipation, enhanced stability, and increased sensitiv-

ity are all bene�ts of a high QF. In order to obtain the expression of QF in the present

context, the coupled thermoelastic equations are considered to have simple-harmonic

vibrations to identify the e�ect of thermoelastic coupling as follows:

w (x, y, t) = W0 (x, y) exp (iωt) , θ (x, y, z, t) = Θ0 (x, y, z) exp (iωt) , (5.4.1)
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where W0 indicates the mechanical amplitude, Θ0 is the temperature distribution in

the micro plate. ω is an angular frequency per cycle of vibration.

In view of the Eqs. (5.3.24) and (5.4.1), the following form is obtained:

∂2Θ0

∂z2
+ g2Θ0 = g2

△E

αt (1− ϑ)
z

(
∂2W0

∂x2
+

∂2W0

∂y2

)
, (5.4.2)

in which

g2 =
ω

Ω

(ω + iω2)(
K∗

K
+ iω

) .
The complex parameter g can be expressed as follows:

g =

√
ω

Ω

√
β1 − iβ2 =

ξ

h

(
ξ1 − i

β2

ξ1

)
, (5.4.3)

where

ξ = h

√
ω

2Ω
, ξ1 =

√√
β2
1 + β2

2 + β1,

β1 = ω

(
K∗

K
+ τqω

2
){(

K∗

K

)2
+ ω2

} , β2 = ω

(
1− τq

K∗

K

)
ω{(

K∗

K

)2
+ ω2

} . (5.4.4)

The general solution of Eq. (5.4.2) for the unknown function Θ0 is derived as

Θ0 (x, y, z) = A1sin (gz) + A2cos (gz) +
△E

αt (1− ϑ)
z

(
∂2W0

∂x2
+

∂2W0

∂y2

)
, (5.4.5)

where Ai (i = 1, 2) are arbitrary coe�cients. These unknown coe�cients A1 and A2 can

be found out by applying thermal boundary conditions at the top and the adiabatic

base surfaces of the micro plate. Many elements, including environmental temperature,

structural size, material properties, boundary conditions, resonance frequencies, and so

on, a�ect the practical micro/nano scale thermoelastic problems, making them exceed-
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ingly complex. The heat �ux between the surfaces and surroundings of the micro/nano

structures is adequately small. Therefore, the adiabatic boundary conditions on both

surfaces are taken as follows

∂Θ0

∂z
= 0 at


z = h/2

z = −h/2

. (5.4.6)

In view of the Eq. (5.4.6), the temperature distribution in the micro-plate is obtained

as

Θ0 (x, y, z) =
△E

αt (1− ϑ)
z

(
∂2W0

∂x2
+

∂2W0

∂y2

)[
z − sin (gz)

z cos
(
gh
2

)] . (5.4.7)

Using Eqs. (5.3.21), (5.4.1) and (5.4.7), the equation of motion takes form as

ρhω2W0 =

{
Λ+ µl2h+

Eh3

12 (1− ϑ)2
△E (1 + f(ω))

}(
∂4W0

∂x4
+ 2

∂4W0

∂x2∂y2
+

∂4W0

∂y4

)
.

(5.4.8)

Here f(ω) is a complex valued function, which is derived as

f (ω) =
24

h3g3

{
hg

2
− tan

(
hg

2

)}
. (5.4.9)

When the thermoelastic coupling is ignored, i.e., (△E = 0), then the Eq. (5.4.8) reduces

to the form in the isothermal case as

ρhω2
0W0 =

(
Λ+ µl2h

)(∂4W0

∂x4
+ 2

∂4W0

∂x2∂y2
+

∂4W0

∂y4

)
, (5.4.10)

where ω0 indicates the isothermal frequency. In the case of isothermal conditions, it is

su�cient to set the thermal expansion coe�cient αt equal to zero.

By using the Eqs. (5.4.8) and (5.4.10), the coupling between ω and ω0 is acquired as

follows:
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ω = ω0

√
1 +

(
1+ϑ
1−ϑ

)
△E (1 + f(ω))

P
, (5.4.11)

where P represents the ratio of bending rigidity which is de�ned as

P = 1 + 6 (1− ϑ)

(
l

h

)2

.

It is well known that ω0 depends at supporting boundary conditions of plate. Thereafter,

the simply supported (SS) boundary condition can be implemented at all four edges of

micro plate. Moreover, the admissible de�ection function can be taken as:

W0 (x, y) =
∞∑

m=1

∞∑
n=1

Ψmn sin
(mπ

a
x
)

sin
(nπ

b
y
)
, (5.4.12)

where Ψmn, (m,n = 1, 2, ..) is constant. Here,m and n represent the modes of vibration.

Substituting Eqs. (5.4.12) into (5.4.10), the following expression is found for ω0:

ω0 = π2

√
Λ+ µl2h

ρh

((m
a

)2
+
(n
b

)2)
. (5.4.13)

As it is well known that the amount of relaxation strength△E is very less i.e., (△E ≪ 1),

hence, expanding Eq. (5.4.11) using Taylor's series and neglecting the higher order

terms of △E, it is obtained that

ω = ω0

{
1 +

(
1+ϑ
1−ϑ

)
△E (1 + f(ω))

2P

}
. (5.4.14)

In view of the insigni�cant discrepancy between the magnitude of real and imaginary

parts of f(ω) and f(ω0), we can rewrite f(ω) by f(ω0) as follows:

ω = ω0

{
1 +

(
1+ϑ
1−ϑ

)
△E (1 + f(ω0))

2P

}
. (5.4.15)

In the end, the real and imaginary parts of the angular frequency ω can be determined
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as follows:

Re(ω) = ω0

1 + 1 + ϑ

2 (1− ϑ)

△E

P

1 + 12

(
ξ21 −

β2
2

ζ2

)
ξ2
(
ξ21 +

β2
2

ξ21

)2 ,

−24

(
ξ31 − 3

β2
2

ξ1

)
sin (ξξ1)+

(
3ξ1β2 − β3

2

ξ31

)
sinh

(
ξβ2

ξ1

)
ξ3
(
ξ21 +

β2
2

ξ21

)3 (
cos (ξξ1) + cosh

(
ξβ2

ξ1

))

 , (5.4.16)

Im(ω) = ω0
12 (1 + ϑ)

(1− ϑ)

△E

P

 β2

ξ2
(
ξ21 +

β2
2

ξ21

)2
−

(
3ξ1β2 − β3

2

ξ31

)
sin (ξξ1)−

(
ξ31 − 3

β2
2

ξ1

)
sinh

(
ξβ2

ξ1

)
ξ3
(
ξ21 +

β2
2

ξ21

)3 (
cos (ξξ1) + cosh

(
ξβ2

ξ1

))
 . (5.4.17)

Furthermore, the normalized frequency shift and normalized attenuation can be ex-

pressed in terms of the real and imaginary parts of ω as

Normalized frequency shift =
[Re (ω)− ω0]

ω0△E

, (5.4.18)

Normalized attenuation =
Im (ω)

ω0△E

. (5.4.19)

In term of the inverse QF, the quantity of TED is given by

Q−1 = 2

∣∣∣∣ Im(ω)
Re(ω)

∣∣∣∣ . (5.4.20)

In view of the Eqs. (5.4.16) and (5.4.17), the analytical expression of inverse quality

factor utilizing MCST and MGT thermoelasticity theory for Kirchho�'s micro plate

resonator is �nally obtained as follows:

Q−1 =
24 (1 + ϑ)

(1− ϑ)

△E

P

 β2

ξ2
(
ξ21 +

β2
2

ξ21

)2 −

(
3ξ1β2 − β3

2

ξ31

)
sin (ξξ1)-

(
ξ31 − 3

β2
2

ξ1

)
sinh

(
ξβ2

ξ1

)
ξ3
(
ξ21 +

β2
2

ξ21

)3 (
cos (ξξ1) + cosh

(
ξβ2

ξ1

))
 .

(5.4.21)
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5.5 Results and Discussion

This section illustrates the analytical results of the present problem with suitable ex-

ample and investigates the thermoelastic damping (TED) behavior in Kirchho�'s plate

resonator. It attempts to evaluate the size dependency e�ects in the present context

in details. Furthermore, detailed numerical observations are given for frequency shift

analysis and the normalized attenuation based on four di�erent materials (copper, gold,

silicon, and lead). Table 5.1 shows the mechanical and thermal properties of four dif-

ferent types of materials (Devi and Kumar (2018), Tzou (2014)). The study of some

parameters, such as microplate thickness, mode of vibration, aspect ratio, relaxation

time parameter, and material type, are explored to understand their e�ects on the

quality factor/TED in the present context.

Material and thermal properties Gold (Au) Silicon (Si) Copper (Cu) Lead (Pb)

Young's modulus E (GPa) 79 169 110 16

Poission's ratio ϑ 0.40 0.22 0.35 0.44

density ρ
(
kgm−3

)
19, 300 2330 8940 11, 340

Thermal conductivity K
(
Wm−1K−1

)
315 70 386 35.3

Thermal conductivity rate K∗ (Wm−1K−1s−1
)

150 157 70 150

Speci�c heat cE
(
Jkg−1K−1

)
129.1 713 385.9 128

Thermal expension coe�cient αt

(
10−6K−1

)
14.2 2.6 16.5 28.9

Table 5.1: The material and thermal properties at 300 K.

5.5.1 Analysis of thermoelastic attenuation and frequency shift

Figs. 5.5.1(a,b,c,d) show the graphical depiction of the normalized frequency shift and

normalized attenuation in rectangular microplate resonators along with the dimension-

less variable ξ for four di�erent materials as mentioned above. Here, the dimensions of

the microplate resonator are �xed by setting length a = 50µm and width b = 30µm.

Figs. 5.5.1(a,b,c,d) are plotted for the constant microplate thickness h = 6µm, where
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the value of phase-lag parameter is taken as τq = 0.388 × 10−10s. By observing the

Figs. 5.5.1(a,b,c,d), the three main points can be summarized. Firstly, the behavior

of normalized attenuation, which is the amount of dissipation of thermoelastic energy

from the micro-plate resonator, �rst rises to a maximum at ξ = 2.25 and then declines

concerning dimensionless variable ξ. Secondly, the intersecting point between the nor-

malized frequency shift and normalized attenuation can be seen at the same point near

ξ = 2.25 in cases of all four structural materials universally. The same observation has

been found in the literature (Borjalilou and Asghari (2019), Resmi et al. (2021)) for

other thermoelastic models. Lastly, it has been founded that as the frequency shift

diminishes, attenuation reduces as well, causing an increase in the quality factor. In

the current work, the order of Lead (Pb) > Gold (Au) > Copper (Cu) > Silicon (Si)

is determined as the material order in which attenuation and frequency shift decrease

with the function of ξ.

By neglecting the size e�ect (l = 0), the Fig. 5.5.2 shows the discrepancy in nor-

malized attenuation for four di�erent materials. In this numerical manipulation, the

plate thickness h = 5µm and relaxation parameter τq = 0.388 × 10−10s are adopted.

It is noticeable that the normalized attenuation of the microplate resonator increases

�rst before reaching a maximum value of TED, then decreases with increasing ξ after

its peak. As it is clear that the maximum rate of thermoelastic energy dissipation is

found for lead material and silicon-based material resonators exhibit the slowest rate

of thermoelastic energy dissipation. The statistics depict that the variety of materials

signi�cantly a�ects the vibrational response of microplate resonators when ξ increases.

Furthermore, it has been discovered that a resonator composed of silicon will have a

longer time of vibration response.

Fig. 5.5.3 shows a frequency shift analysis as a function of normalized frequency ξ for

di�erent materials with a �xed length scale parameter l = 1µm. The obtained results in

Fig. 5.5.3 show that as the frequency shift diminishes, it causes an increase in the quality
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factor in di�erent materials in the order of Lead (Pb) > Gold (Au) > Copper (Cu) >

Silicon (Si). Thus, the rate of energy dissipation (thermoelastic damping) will be higher

for the resonator, which is composed of Lead (Pb).

Fig. 5.5.4 displays the in�uence of the internal material length scale parameter on

frequency shift. Here, we plotted the nature of frequency shift for four di�erent aspect

ratios with l, by �xing l/h = 0, 0.1, 0.2, 0.3. By setting the values of l, we found the

variation of frequency shift for both theories (CCT and MCST) separately. It can

be clearly seen that the impact of internal material length parameter l is prominent

in the study of frequency shift. Furthermore, this is discovered that as the material

length-scale parameter's ratio l/h is increased, the normalized frequency shift reduces

dramatically. This discovered truth will be the primary reason for the high-quality

factor and low energy dissipation during vibration. Moreover, it is found that the

predicted size-dependent normalized frequency shifts are lower in MCST as compared

to the CCT, which means that any alteration in material length scale parameter leads

to lower values of frequency shift.

Figure 5.5.1: Comparison of normalized attenuation and frequency shift with respect
to ξ at �rst mode (1, 1) for four di�erent materials (Cu,Si, Au and Pb).

117



CHAPTER 5. Thermoelastic damping in the Kirchho�'s plate resonator...

copper

Silicon

Gold

Lead

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

ξ

N
o
rm
al
iz
ed
at
te
n
u
at
io
n

Figure 5.5.2: Comparison of normalized attenuation without considering small-scale
e�ect ( l = 0) for various materials.
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Figure 5.5.3: Comparison of frequency shift considering small-scale e�ect ( l = 1µm)
for various materials.
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Figure 5.5.4: Comparison of frequency shift with respect to ξ at �rst mode (1, 1) for
di�erent aspect ratios of l/h.

5.5.2 In�uence of material length-scale parameter on TED

To see the dominance of material length scale parameter on TED, Figs. 5.5.5(a,b) are

plotted under the simply supported (SS) boundary conditions for the �rst mode (1, 1)

and the second mode (2, 2) of vibration, respectively. Both �gures illustrate the size-

dependent TED with respect to a function of the normalized variable ξ for di�erent

aspect ratios (l/h = 0, 0.1, 0.2, and 0.3). It has been revealed that MCST estimates

lower damping values than the conventional continuum theory (l = 0). For both modes,

it is witnessed that the TED increases initially and then converges to an equilibrium

state after reaching its maximum peak value. It is also concluded that the resulting

QF values predicted for the �rst mode are more signi�cant than those obtained for the

second mode. Hence, it can be worthy to say that rate of energy dissipation is much

lesser at the �rst mode (1, 1).

By assuming the �xed values of normalized frequency ξ = 2.25 and dimensions of

micro plate i.e., length a = 50µm and width b = 40µm, the comparison of TED with

the function of microplate thickness for �rst mode (1, 1) is illustrated in Fig. 5.5.6.
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Fig. 5.5.6 demonstrates that the non-classical continuum theory (MCST) takes into

consideration at lower TED values than the conventional continuum theory (CCT).

It is shown that when MCST is used to determine the quality factor, the results are

higher than when using the classical continuum theory. It is a signi�cant �nding of

the current study and this emphasizes the importance of building an e�cient plate

resonator. Fig. 5.5.6 shows that the energy dissipation rate estimated under the current

model is considerably higher when the material length scale parameter is small.

Figure 5.5.5: (a) Comparison of TED for �rst mode (1, 1). (b) Comparison of TED for
ssecond mode (2, 2).
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Figure 5.5.6: Comparison of TED values for CCT and MCST with di�erent aspect
ratios l/h along with �rst mode (1, 1).

120



CHAPTER 5. Thermoelastic damping in the Kirchho�'s plate resonator...

5.5.3 E�ect of aspect ratios (a/h, b/h) and dimensions of micro-

plate on TED

Figs. 5.5.7(a,b) represent the in�uence of employing di�erent aspect ratios on TED

while keeping a constant micro plate width b = 40µm. The outcomes are based on

�xed micro-plate thickness h = 1µm. The �gures are plotted under the �rst and second

modes, respectively. It's worth noting that when the aspect ratio a/h increases, the

QF increases dramatically for both modes, but the peak value of TED declines. When

comparing the �rst and second modes, it is noteworthy that the �rst mode indicates

the most TED.

Fig. 5.5.8 depicts the discrepancy in TED as the function of plate thickness h for

di�erent values of length of microplate a (a = 20µm, 25µm, 30µm and 35µm). All

curves are plotted under the �xed b = 30µm, and the material length parameter is

assumed to be l = 1µm. It can be seen that as the length of micro plate is increased,

the peak value of TED remains relatively consistent. Also, the peaks of TED are

observed to be too sharp for higher values of the length of the plate resonator. It

concludes that the resonator will have fewer vibration responses under a higher value

of the microplate's length. So, this is a considerable reason for having a less quality

factor at a higher value of the microplate's length.

Figs. 5.5.9(a,b) display the in�uence of employing distinct aspect ratios, (b/h =

20,25,30 and and 35) on TED versus ξ while keeping a constant micro plate length

a = 50µm. The e�ect of aspect ratios b/h is obtained in the context of �rst and

second modes, separately. It is clear that when the microplate resonators are wider,

the quality factor increases with both modes. When the aspect ratio b/h increases,

the peak value of damping decreases signi�cantly. Also, it has been observed that the

energy dissipation rate is higher for the �rst mode as compared to the second mode.
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Figure 5.5.7: (a) Comparison of TED for di�erent aspect ratios of a
h
corresponding to

�rst mode. (b) Comparison of TED for di�erent aspect ratios of a
h
corresponding to

second mode.
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Figure 5.5.8: Comparison of TED along plate thickness for di�erent values of length of
plate a.

Fig. 5.5.10 depicts the variation of damping against a plate thickness h for distinct

values of width of microplate b (b = 20µm, 25µm, 30µm and 35µm). By keeping a

constant length scale parameter l = 1µm, the minimum and maximum of peak values

are obtained under the �xed plate length a = 50µm. The peak value of TED grows

signi�cantly as the width of microplate b increases. Therefore, it implies that the rate

of energy dissipation (TED) gets higher when the width of the microplate increases.
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As a result, the quality factor prediction is lower for the larger width of microplate

resonator. According to the �nding mentioned earlier, better vibration responses can

be achieved with a smaller width of a microplate.
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Figure 5.5.9: (a) Comparison of TED variation for di�erent aspect ratios of b
h
corre-

sponding to �rst mode. (b) Comparison of TED variation for di�erent aspect ratios of
b
h
corresponding to second mode.
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Figure 5.5.10: Comparison of TED variation with the function of plate thickness for
di�erent values of the width of the plate.
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5.5.4 E�ect of relaxation parameter on TED

Fig. 5.5.11 illustrates the variation of TED with the function of normalized variable

ξ along with the �rst mode i.e., (1, 1). This diagram demonstrates the importance of

considering the relaxation parameter. With constant plate thickness h = 6µm and

increasing relaxation parameter, the peak of TED grows signi�cantly. As can be seen

here, increase in the relaxation parameter value, decreases QF dramatically. It's also

possible to deduce that energy dissipation is slower when relaxation parameters are

smaller. The GN-III model predicts a higher QF than the current MGT model, which

is notable.

Figure 5.5.11: Comparison of TED variation with ξ at the �rst mode (m = 1, n = 1)
for distinct values of relaxation parameters τq.

5.5.5 E�ect of plate thickness on TED

The impact of microplate thickness on TED as a function of length scale parameter

considering di�erent microplate thickness (h = 6µm, 8µm, 10µm and 12µm) is shown

in Fig. 5.5.12. The curves are plotted for �xed plate length a (a = 50µm) and width b

(b = 30µm). As expected, the in�uence of thickness of the plate resonator on damping

is notable. In Fig. 5.5.12, a greater amount of TED is obtained at h = 10µm, although
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less TED is exhibited at h = 12µm. Here, the non-monotonic behavior is characterized

by distinct values of plate thickness h. Hence, it will be an arduous task to predict the

thermoelastic nature of any rectangular structure due to its non-monotone behavior

when dealing with the di�erent plate thicknesses. By applying MCST to the plate

resonator, similar �ndings are reported in works (Borjalilou and Asghari (2019), Kumar

and Mukhopadhyay (2020)) for other thermoelastic model.
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Figure 5.5.12: Comparison of TED with the function of material length scale parameter
l for distinct microplate thickness.

5.5.6 Damping for di�erent thermoelastic models

Figure 5.5.13: Normalized frequency shift and Normalized attenuation with respect to
ξ for nonclassical thermoelastic models.
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Figure 5.5.14: Damping with respect to ξ for classical and nonclassical thermoelastic
models.

Figs. 5.5.13(a,b) represent the normalized frequency shift and normalized attenua-

tion as function of ξ function and for three generalized thermoelastic models, namely,

LS, GN-III, and MGT models. Here, the dimensions of the microplate resonator are

�xed by setting length a = 50µm with �xed material length scale parameter l = 1µm.

The changes in normalized frequency shift and normalized attenuation under the MGT

model are found to be identical to those seen under the LS model. These two generalized

models attain their peak value at almost the same frequency, while energy dissipates

as the frequency gets higher. As a result, clarifying the di�erences in variation between

these two thermoelastic heat conduction models is challenging. Moreover, as seen in

Figs. 5.5.13(a,b), the GN-III model calculates a lower values of frequency shift and

normalized attenuation of TED than the MGT and LS models. It exhibits a prominent

behavior of TED when compared with other two theories. Fig. 5.5.14 shows that the

classical model has a higher quality factor, which is a signi�cant factor in improved

resonance performance.
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5.6 Conclusion

Over the last decade, signi�cant e�orts have been put into developing size-dependent

systems based on a higher-order continuum mechanics process. This Chapter provides

an in-depth investigation of the development of the higher-order continuum theory for

capturing size e�ects in small-sized structures. By employing the MCST and the MGT

generalized thermoelasticity theory, the study of QF of TED in micro-sized thin Kirch-

ho�'s plate resonator is discussed by frequency generation approach. The partial di�er-

ential equations are solved by using an analytical method. For deriving the analytical

expressions of QF, Hamilton's principle has been used to derive the governing equation

of motion of the microplate under the plane stress condition. The analytical results are

illustrated with a numerical example. The present results are further compared with

the results of classical theory to delineate the small-scale size e�ects on the amount of

TED based on various parameters. The numerical results allow us to draw the following

conclusions:

� All estimations show that MCST produces lower TED values and better QF

prediction than classical theory.

� When the frequency shift decreases, normalized attenuation decreases as well, and

the QF increases.

� TED is reduced signi�cantly when a dimensionless length scale parameter (l/h)

is used to account for size e�ects.

� Microplates made of lead and silicon have the greatest and lowest TED values,

respectively, when the TED values of copper, gold, silicon, and lead are com-

pared. The TED for microplates made of copper and gold is in between the TED

prediction for silicon and lead.
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� When the width of microplate resonators is maintained constant, there is a sig-

ni�cant variance in energy dissipation with aspect ratio of the plate, although the

peak values of TED are attained to be almost the same.

� The QF decreases as the relaxation parameter in the MGT model is increased.

� TED delineates non-monotonic behavior as a function of plate thickness by keep-

ing the phase-lag parameter constant.

� The results of the MGT model are more similar to the comparable results of

the LS model, and the GN-III thermoelastic model predicts less thermoelastic

attenuation and frequency shift than the MGT and LS models.
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