
CHAPTER 4

THERMOELASTIC DAMPING AND VIBRATION

ANALYSIS FOR MICRO-BEAM RESONATORS

BASED ON MOORE-GIBSON THOMPSON HEAT

CONDUCTION MODEL

4.1 Thermoelastic Damping Analysis for Micro-Beam

Rasonators in the Frame of Moore-Gibson-Thompson

(MGT) Thermoelasticity Theory considering Size

E�ects

4.1.1 Introduction1

Rapid advancements of the micro and nanotechnologies have generated various micro

and nano scale structures, as for example Micro and nano resonators, which are of in-

terest to both the scienti�c community and engineering �elds. Resonator is a device

or system that exhibits resonance or resonant behavior. It naturally oscillates with

greater amplitude at some frequencies, called resonant frequencies, than at other fre-

quencies. Due to their small sizes and low weight, micro and nanomechanical resonators

can oscillate at very high resonant frequencies, which provides them with a remarkable

1The content of this sub chapter is published in Waves in Random and Complex Media, 1-18, 2021.



CHAPTER 4. Thermoelastic damping in micro and nanomechanical resonators...

ability to perform both sensing and detecting in advanced technological applications,

including ultra sensitive mass and force sensing, ultra low-power radio frequency (RF)

signal generation and timing, chemical and biological sensing, cooling, environmental

control, and quantum measurement. In order to design high-performance mechanical

resonators, the understanding of damping e�ects is important. Damping in Microme-

chanical resonators represents the all of the processes by which the energy associated

with the vibration of the resonator decays over time. Thermoelastic damping (TED) is

one of the most important loss mechanisms for micro and nanobeam resonators among

all the loss mechanisms. TED is totally based on the thermal and elastic nature of the

body. Many investigations have shown the experimental evidences about TED in in-

trinsic losses for the �exural micro and nanobeam resonators. It is impossible to remove

TED completely, however, it can only be reduced by design or fabrication of suitable

resonators. TED is observed to be the keystone that a�ects the performance of he

vacuum-operated micro and nanobeam resonators and the estimation of thermoelastic

damping (TED) in micro and nano-mechanical resonators is a signi�cant aspect of ac-

quiring a high quality factor (QF). The quality factor measures the resonance behavior

or performance of resonators. A high value of QF implies better identi�cation of less

damping and better sensitivity.

This chapter deals with the TED analysis for two di�erent beams, namely Euler�

Bernoulli beam model and Timoshenko beam in the context of MCST. It has two

subchapters. The present subchapter 4.1 adopts the frequency approach method to

derive the size-dependent expression of the inverse quality factor for evaluating TED

in rectangular micro/nano-beam resonator. In the context of the complex frequency

method, the expression of the inverse quality factor is Q−1 = 2|Im(ω)/Re(ω)|, where

the real part (Re) and the complex part (Im) of the frequency ω provide new eigen

frequencies and attenuation of vibration, respectively.

Eminent researchers have presented some pioneering work in the �eld of TED anal-
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ysis. The TED behavior (energy dissipation mechanism) in the �exural resonator for

the simple beam was �rst studied by Zener (1937; 1938). Thereafter, the modi�cation

of Zener's work was done by Lifshitz and Roukes (2000). They analyzed that the energy

dissipation of micro resonators increases signi�cantly with the decrease of size of the

beam. Hosseini (2018) obtained the analytical solution for heat- a�ected MEMS/NEMS

beam resonator for non-locally coupled thermoelasticity based on Green-Naghdi theory

(1993). The size-dependent TED analysis for electrically actuated micro-beams and

utilizing the couple stress theory in the context of DPL thermoelasticity is studied by

Borjalilou et al. (2019). Later on, Kumar and Mukhopadhyay (2020) investigated the

TED analysis for size-dependent microplate resonators utilizing the modi�ed couple

stress theory in the context of the TPL heat conduction model presented by Roychoud-

huri (2007).

Being inspired from above e�ective �ndings, the present subchapter of the thesis

attempts to investigate TED in micro/nano-beam resonators utilizing modi�ed couple

stress theory (MCST) under the Moore-Gibson-Thompson (MGT) generalized ther-

moelasticity theory (Quintanilla (2019)). Subsection 4.1.2 gives brief details of the

modi�ed couple stress theory (MCST) and derives a coupled heat conduction equation

based on the MGT thermoelasticity theory. For small �exural vibration, the TED in

the rectangular cross-section of a thin beam is analyzed by using the complex frequency

method based on MCST in Subsection 4.1.3. An explicit analytical expression for QF

has been derived for the microbeam resonator in Subsection 4.1.4. Furthermore, the

impact of the material length scale parameter on TED associated with MCST for silicon

micro-beam resonator is investigated in detail by comparing the present results with

those predicted by classical continuum theory (CCT). The obtained results are also

compared with the existing results for the Lord-Shulman (LS) and Green-Naghdi (GN-

III) thermoelasticity theories. Lastly, some importance conclusions regarding TED in

micro-beam resonators in the present context are highlighted.
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4.1.2 Problem formulation

4.1.2.1 Basics of the modi�ed couple stress theory (MCST)

Yang et al. (2002) introduced the modi�ed couple stress theory (MCST) theory for very

small deformations of a continuous spectrum in an isotropic material by considering the

strain energy density Us as a function of both the strain tensor and the curvature tensor

occupying a volume V in space. This modi�ed theory makes it easier to appropriately

model the structures at micro and nano scale. The de�ned tensors in MCST satisfy

Us =

�

V

(σijeij +Υijχij) dV, (4.1.1)

χij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, (4.1.2)

vi =
1

2
(curl(u))i , (4.1.3)

where vi represents the components of the in�nitesimal rotation vector v. σij and Υij

are the elements of the symmetric part of the Cauchy stress tensor σ and the deviatoric

part of the couple stress tensor Υ for the elastic material, respectively, de�ned by

σij = λekkδij + 2µeij − (3λ+ 2µ)αt θδij, (4.1.4)

Υij = 2µl2χij. (4.1.5)

Here, Lame constants can be written as λ = Eϑ
(1+ϑ)(1−2ϑ)

and µ = E
2(1+ϑ)

. l represents

the material length scale parameter and χij represents the component of the rotation

gradient tensor. For the linear elastic material, the components of the strain tensor in

terms of stress components and other parameters are expressed as

eij =
1

E
[(1 + ϑ)σij − ϑσkkδij] + αtθδij.
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4.1.2.2 Coupled heat conduction equation based on Moore-Gibson-Thompson

(MGT) thermoelasticity

Green and Naghdi proposed three new theories regarding heat conduction which are

subsequently called as theroelasticity theory of type I, II, and type III. The fusion of

the GN-III theory (1993) and Lord and Shulman thermoelasticity theory (1967) with

the linearized MGT heat conduction equation as introduced in the Quintanilla Moore-

Gibson-Thompson (MGT) model (2019) for isotropic material is described as follows:

q + τq
∂q

∂t
= − (K∇T +K∗∇υ) , (4.1.6)

where υ refers to thermal displacement that satis�es

υ̇ = T. (4.1.7)

For an isotropic solid body, a form of conservation of energy in the absence of heat

source is taken by

−∇q = ρcE
∂T

∂t
+

T0Eαt

(1− 2ϑ)

∂e

∂t
, (4.1.8)

The above relationship is a fusion of volumetric strain, temperature, and heat �ux for

the isotropic thermoelastic body. Therefore, with the help of Eqs. (4.1.6)-(4.1.8), the

coupled heat conduction equation in the absence of a heat source is obtained for the

Moore-Gibson-Thompson (MGT) thermoelasticity theory as

K∇2θ̇ +K∗∇2θ =

(
1 + τq

∂

∂t

)(
ρcE θ̈ +

T0Eαt

(1− 2ϑ)
ë

)
, (4.1.9)

where θ = T −T0 represents the change in temperature from the reference temperature

T0.

4.1.3 Modeling of beam resonator

In most cases, the rectangular cross-section of the beam is employed in MEMS res-

onators. Therefore, the Cartesian coordinate system is applied to the rectangular

cross-section of a micro-beam with length L (0 ⩽ x ⩽ L), width b (− b
2
⩽ y ⩽ b

2
)
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and thickness h (−h
2
⩽ z ⩽ h

2
). For the small �exural displacement of the beam, the

length of beam is �xed in −→x direction, the width along −→y direction and thickness in

the direction of −→z axis. At the initial temperature T0 (uniform reference temperature),

the movement of small thin beam will be strain-free and unstressed. The beam goes

through bending vibrations of small amplitude and the deformation is assumed to be

consistent with the linear Euler-Bernoulli theory (Park and Gao (2006)). That is, any

rectangular cross-section of a beam initially perpendicular to the beam axis remains

rectangular and perpendicular to the neutral axis after bending. It is further taken

that the beam's neutral axis is the one that runs through the length of the beam and

does not su�er any expansion or contraction during bending, which is similar to Euler

Bernoulli's beam theory. In Figs. 4.1.1(a,b), the thin micro beam goes through �exural

vibration about −→z axis. The components of the strain tensor in terms of transverse

displacement w are therefore given by (see Borjalilou et al. (2019))

exx = −z
∂2w

∂x2
, (4.1.10)

eyy = ezz = ϑz
∂2w

∂x2
+ (1 + ϑ)αtθ. (4.1.11)

Using above Eqs. (4.1.10) and (4.1.11), the resultant volumetric strain can be expressed

as ekk = exx + eyy + ezz = (2ϑ− 1) z
∂2w

∂x2
+ 2 (1 + ϑ)αtθ. (4.1.12)

Figure 4.1.1: A schematic of an Euler�Bernoulli beam's deformation.
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As per modi�ed couple stress theory for Euler-Bernoulli beam, the equation of motion

for thermoelastic coupling is given by (see Park and Gao (2006))

(
EI + µAl2

) ∂4w

∂x4
+

∂2It
∂x2

+ ρA
∂2w

∂t2
= 0. (4.1.13)

Together with the above equation, the following boundary conditions are taken at two

end sections of the beam x = 0 and x = L:

(
EI + µAl2

) ∂3w

∂x3
+

∂It
∂x

= 0 or δw = 0, (4.1.14)(
EI + µAl2

) ∂2w

∂x2
+ It = 0 or δ

(
∂w

∂x

)
= 0, (4.1.15)

where I is a moment of inertia, It denotes the thermal moment of a micro-beam with

cross section area A = bh, and w is the de�ection of the beam.

Therefore, the following is found in the present case:

I =

� �
A

z2dA =
bh3

12
, (4.1.16)

and

It =

� �
A

EαtθzdA = Eαtb

h/2w

−h/2

θzdz. (4.1.17)

For thin beams, the temperature changes take place higher along the z-axis (thickness

direction), so ∇2θ can be easily replaced by ∂2θ
∂z2

. That is, temperature gradient along

the y-axis (width direction) is neglected here. Hence, with the help of Eqs. (4.1.10)−

(4.1.12), Eq. (4.1.9) yields(
K∗

K
+

∂

∂t

)
∂2θ

∂z2
=

1

Ω

(
1 + τq

∂

∂t

)(
ϕ
∂2θ

∂t2
− △Ez

αt

∂4w

∂t2∂x2

)
, (4.1.18)

where △E =
Eα2

tT0

ρcE
is the non-dimensional relaxation strength, ϕ = (1−2ϑ)+2△E(1+ϑ)

(1−2ϑ)
and

Ω = K
ρcE

is thermal di�usivity.
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4.1.4 Quality factor of TED

For proceeding with TED of the beam resonator, the temperature distribution and

transverse displacement functions are assumed as (Lifshitz and Roukes (2000), Park

and Gao (2006))

w (x, t) = W0 (x) exp (iωt) , θ (x, y, t) = Θ0 (x, y) exp (iωt) , (4.1.19)

where ω is the frequency of vibration, W0 and Θ0 are both complex valued ampli-

tude functions. Substituting the above expressions (4.1.19) into the Eq. (4.1.18), it is

obtained that

∂2Θ0

∂z2
=

1

Ω

(−ω2 − iτqω
3)(

K∗

K
+ iω

) (
ϕΘ0 −

△Ez

αt

∂2W0

∂x2

)
. (4.1.20)

After simpli�cation, Eq. (4.1.20) can be rewritten as

∂2Θ0

∂z2
+ g2ϕΘ0 = g2

△Ez

αt

∂2W0

∂x2
, (4.1.21)

where g2 = ω
Ω

(ω+iτqω2)
(K∗

K
+iω)

.

Also, the complex valued parameter g can be written in the following form:

g =

√
ω

Ω

√
β1 − iβ2 =

ξξ1
h

− i
ξ

hξ1
β2, (4.1.22)

where

ξ = h

√
ω

2Ω
, ξ1 =

√√
β2
1 + β2

2 + β1,

β1 = ωϕ

[(
K∗

K
+ τqω

2
)][(

K∗

K

)2
+ ω2

] , β2 = ωϕ

[(
1− τq

K∗

K

)
ω
][(

K∗

K

)2
+ ω2

] .

The solution to the above Eq. (4.1.21) is given by

Θ0 = Ã1 sin (gz) + Ã2 cos (gz) +
△Ez

αtϕ

∂2W0

∂x2
, (4.1.23)
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where Ã1 and Ã2 are arbitrary constants.

Next, boundary conditions are considered at both upper and lower surfaces of the beam

in the form of adiabatic conditions (which means that there is no heat �ow on the top

and bottom surfaces of the beam). Therefore, the following is found:

∂Θ0

∂z
= 0 at z = ±h

2
. (4.1.24)

In view of the above two Eqs. (4.1.23) and (4.1.24), the values of arbitrary constants

Ã1 and Ã2 are acquired and a complete analytical form of the temperature distribution

is obtained across the thickness of the beam as

Θ0 =
△E

αtϕ

∂2W0

∂x2

(
z − sin (gz)

g cos
(
g h
2

)) . (4.1.25)

Substituting Eqs. (4.1.16) and (4.1.17) into Eq. (4.1.13), the equation of motion of the

beam is deduced as follows:

ω2W0 =
(EI)eq
ρA

[
1 +

△E

ΦΛ
(1 + p(ω))

]
∂4W0

∂x4
, (4.1.26)

where

p(ω) =
24

h3g3

[
hg

2
− tan

(
hg

2

)]
. (4.1.27)

Also, (EI)eq = (EI + µAl2) is equivalent sti�ness and Λ is the rigidity ratio de�ned by

Λ =
(EI)eq
EI

= 1 + 12
µ

E

(
l

h

)2

. (4.1.28)

Because of the fact that the thermoelastic coupling e�ect is very small, Eq. (4.1.26)

can be written as follows:

ω2
0W0 =

(EI)eq
ρA

∂4W0

∂x4
, (4.1.29)

where ω0 = p2n

√(
EI+µAl2

ρA

)
is a size-dependent isothermal frequency, pnL = (4.73, 7.853,

10.996, ...), n = 1, 2, 3 for clamped-clamped boundary conditions at both ends of the

beam.

By the virtue of Eqs. (4.1.26) and (4.1.29), the relationship between ω0 and ω is found
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as follows:

ω = ω0

√
1 +

△E (1 + p(ω))

ΦΛ
. (4.1.30)

Now, it is well known that the relaxation strength △E << 1. Hence, Taylor's series of

the above relation is expanded up to �rst order term as follows:

ω = ω0

[
1 +

△E

2

(1 + p(ω))

ΦΛ

]
. (4.1.31)

Clearly, the di�erence between the magnitude of real and imaginary parts of p(ω) and

p(ω0) is very small (Borjalilou et al. (2019)). Therefore, the amount of thermoelastic

damping is very weak and p(ω) can be replaced by p(ω0). Therefore, the following is

obtained:

ω = ω0

[
1 +

△E

2

(1 + p(ω0))

ΦΛ

]
. (4.1.32)

The amount of the TED is expressed as the inverse of the QF (Lifshitz and Roukes

(2000), Zener (1938)) given by

Q−1 = 2

∣∣∣∣Im (ω)

Re (ω)

∣∣∣∣ , (4.1.33)

where Im (ω) represents attenuation of vibration and Re (ω) gives the new eigen fre-

quencies of the beam resonator in the presence of thermoelastic coupling. Therefore,

TED of the micro-beam on the basis of MCST theory and the Quintanilla Moore-

Gibson-Thompson (MGT) thermoelasticity theory is �nally derived in the closed form

as

Q−1 = 24
△E

ΦΛ

 β2

ξ2
(
ξ21 +

β2
2

ξ21

)2 −

{(
3ξ1β2 − β3

2

ξ31

)
sin (ξξ1)−

(
ξ31 − 3

β2
2

ξ1

)
sin

(
ξ β2

ξ1

)}
ξ3
(
ξ21 +

β2
2

ξ21

)3 (
cos (ξξ1) + cosh

(
ξ β2

ξ1

))
 .

(4.1.34)

4.1.5 Numerical results and discussion

In this subsection, the impact of the essential parameters such as dimensionless pa-

rameter ξ, aspect ratio (L
h
), and the relaxation parameter τq (10

−10 ≤ τq ≤ 10−8) on
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the quality factor (QF) of size-dependent beam resonators are investigated with the

help of numerical results. For the validation of the present analytical solutions, the

results obtained here are also compared with the corresponding results of the special

cases that are available in the literature (i.e. for classical continuum theory, LS, and

GN-III models). The graphs are plotted for the variation of the inverse quality factor

(Q−1) scaled by relaxation strength (△E) i.e. Q−1/△E with respect to normalized fre-

quency (ξ) and beam thickness (h). The utility of the present work for resonator design

considering Silicon material is illustrated. The computational work is carried out by

using MatLab and the results are shown in various �gures. The considered properties

of Silicon micro-beam at reference temperature T0 = 300K are listed in Table 4.1 (Tzou

(2014)).

Material properties for Silicon Values
Poisson's ratio (ϑ) 0.22
Mass density (ρ) 2330 kg/m3

Speci�c heat at constant volume (cE) 713 Jkg−1K−1

Young's modulus (E) 169GPa
Thermal conductivity (K) 70 Wm−1K−1

Thermal conductivity rate (K∗) 157 Wm−1K−1s−1

Thermal expansion coe�cient (αt) 2.6× 10−6 K−1

Table 4.1: Material properties for Silicon micro-beam

The in�uence of material length scale parameter (l) on size-dependent TED (scaled

by △E) versus normalized frequency ξ is shown in Figs. 4.1.2(a,b). We show the re-

sults for di�erent aspect ratios L
h
= 25 and L

h
= 40 with �xed thickness of the beam

as h = 1µm. It is observed that in cases of both the theories (i.e., the classical con-

tinuum theory and MCST) under MGT model, the damping factor (Q−1/△E) attains

its peak values at the same critical frequency ξ = 2.25. However, it is important to

note that the MCST calculates less values of TED than those of the CCT (classical

continuum theory). This e�ect is more signi�cant for lower values of aspect ratio (see

Figs. 4.1.2(a,b)). It is further observed that although the predicted results have a sim-
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ilar pattern for both classical continuum and modi�ed couple stress theories when the

MGT heat conduction equation is applied, however there is a pronounced in�uence of

the material length parameter on TED under MCST and MGT theory, and enhancing

in the value of QF under MCST can be achieved by increasing the length-scale param-

eter. The in�uence is more signi�cant for higher values of aspect ratio. Thus, the QF

of the beam resonator's sensitivity under MCST for MGT heat conduction theory is

better in comparison to the case of CCT. Moreover, TED for MCST can occur for a

longer time than CCT because of its lower energy dissipation rate.

ℓ = 0 (CCT)
ℓ = 2μm (MCST)
ℓ = 4μm (MCST)
ℓ = 6μm (MCST)
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Figure 4.1.2: Variation of the damping factor (Q−1/△E) for various values of material
length scale parameter l with aspect ratio (a) L

h
= 25 (b) L

h
= 40.

Fig. 4.1.3 depicts the �uctuation of the normalized frequency shift
(

1
△E

(Re(ω)− ω0)
ω0

)
and the normalized attenuation

(
1

△E

Im(ω)
ω0

)
with respect to the normalized frequency

(ξ) for �xed aspect ratio 25. Here, the variation is examined for �xed beam thickness

h = 1µm. Notably, the normalized attenuation reaches a peak value at the critical

frequency ξ = 2.25 and thereafter it tends to zero with the increase in frequency value.

The normalized frequency shift increases with the increase of frequency and �nally

attains a constant limiting value. Also normalized frequency shift intersects with the

normalized attenuation near the critical frequency, ξ = 2.25. This type of analogous

behavior for other thermoelastic model has been reported by Lifshitz and Roukes (2000).
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Figure 4.1.3: Fluctuation of normalized frequency shift 1
△E

(Re(ω)−ω0)
ω0

and normalized

attenuation 1
△E

(
Im(ω)
ω0

)
versus the function of normalized frequency ξ.

Figure 4.1.4: Variation of normalized frequency shift 1
△E

[
(Re(ω)−ω0)

ω0

]
with the normal-

ized frequency (ξ)

Fig. 4.1.4 displays the global behavior of normalized frequency shift
(
Re(ω)− ω0

ω0△E

)
with respect to dimensionless variable ξ for �xed micro-beam thickness h = 10−6m
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and relaxation parameter τq = 0.388× 10−9 under both theories (MCST and CCT) for

MGT thermoelastic model. The variation of normalized frequency shift for di�erent

aspect ratios ( l
h
) with length-scale parameter l has been plotted. It has been observed

that with the increase in the aspect ratio l
h
, the maximum amount (peak value) of TED

for normalized frequency shift decreases signi�cantly. Therefore, it is concluded that

MCST with MGT theory predict smaller values of TED, implying a higher QF of the

beam as compared to the case of CCT.

Figure 4.1.5: Variation of the damping factor (Q−1/△E) for di�erent relaxation param-
eter (τq) with aspect ratio (a) L

h
= 40 (b) L

h
= 50.

The TED of the micro-beam against normalized frequency ξ is illustrated for di�er-

ent relaxation time parameter τq in Figs. 4.1.5(a,b) of the MGT theory. The length-

scale parameter l = 2µm is taken in the numerical computation for two aspect ratios,

L/h = 40 and L/h = 50. It is observed that thermoelastic damping tends to its max-

imum peak as the value of the dimensionless variable ξ increases and after showing a

peak value, it starts decreasing. The peak value is reached more quickly in the case of

the MGT model as compared to GN-III model. Hence, it is noteworthy that the e�ect

of the time relaxation parameter has a dominant impact on the micro-beam's inverse

QF. Overall, one can conclude that the GN�III model has a maximum QF to allow the

beam resonator oscillate for a longer time than this newly proposed model. It can be

further concluded that the maximum QF can be obtained at lower values of relaxation
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parameter values which are close to zero. As the relaxation parameter gets higher, the

TED gets higher and becomes a cause of predicting less value of quality factor. Hence,

beam resonators with lower values of thermal relaxation parameter can perform more

e�ciently.
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LS
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Figure 4.1.6: Variation of the damping factor (Q−1/△E) for MGT, LS, and GN-III
models with aspect ratio (a) L

h
= 20 (b) L

h
= 40.

Figs. 4.1.6(a,b) depict the variation of TED versus normalized frequency (ξ) based

on three generalized theories, namely GN-III, MGT, and LS theories for the �xed value

of length-scale parameter as l = 0.4µm and for two di�erent values of aspect ratio

(L
h
= 20, 40). Results are shown for the uniform micro thickness of the beam resonator

and time relaxation parameter. It is seen that the thermoelastic damping predicted

by the LS model has a large di�erence from the results predicted by MGT and GN-III

theories. It can be clearly observed that by increasing the aspect ratio, the amount of

TED decreases simultaneously and the behavior of TED for the MGT theory is close to

the GN-III theory. It can be observed that the di�erence between MGT and the GN-III

model becomes smaller with an increase of the ratio of beam length to beam thickness,

L
h
. Figs. 4.1.6(a,b) further demonstrate that the peak value of TED for the GN-III

model does not change apparently, with the change of the aspect ratio L
h
. However, the

peak value of TED for MGT and LS models decreases as the aspect ratio increases. It

is recognized that the variation of QF between LS and this results for other two theories
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(GN-III and MGT) is considerable for both the aspect ratios. It can be noted that the

high QF makes the micro-beam less �exible and increases its stability so that stable

responses of the beam resonator can be observed. Thus, it is clear that dissipation of

internal energy will occur slowly for MGT and GN-III models as compared to the LS

model. Hence, the MGT heat conduction model predicts better results as compared to

the Catteneo-Vernotte model.
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Figure 4.1.7: Variation of Q−1

△E
against beam height h for CCT and MCST with aspect

ratio (a) L
h
= 20 (b) L

h
= 30.

The dependency of the QF of vibration on the beam thickness (h) with di�erent

length-scale parameters l is plotted in Figs. 4.1.7(a,b). It is noted that the MCST gives

a higher value of QF in comparison to those obtained by the CCT in both the plots.

This implies that the rate of dissipation of energy is much higher in the case of CCT,

so that the resonator will not sustain for a longer duration as compared to the MCST

theory. There is also a prominent e�ect of the aspect ratio L
h
. It is found that the

increase in aspect ratio makes a sharp peak under both the theories (MCST and CCT)

and the damping factor sharply decreases after attaining the peak value. Moreover,

for the case of higher aspect ratios, the damping factor increases rapidly with the

increase in the material length scale parameter and the peak values for both theories

are attained at larger values of beam thickness. This is an important observation of the

78



CHAPTER 4. Thermoelastic damping in micro and nanomechanical resonators...

present investigation and highlights the scope of designing beam resonators with better

performance.

h= 6μm

h= 10μm
h= 9μm

h= 12μm

0 5.×10-7 1.×10-6 1.5 ×10-6 2.×10-6 2.5 ×10-6 3.×10-6

0.04

0.06

0.08

0.10

0.12

ι

Q
-
1

Δ
E

Figure 4.1.8: Variation of Q−1

△E
with the length-scale parameter l for di�erent values of

beam thickness.

To illustrate the dependency on the material length-scale parameter, TED (scaled

by the relaxation strength △E) for various values of a micro-beam thickness (h =

6, 9, 10 and 12µm) is exhibited in Fig. 4.1.8. It is deduced that for h = 9µm, the value

of nanobeam thickness possesses a lower QF than the value as determined at the beam

thickness of h = 10µm. Furthermore, it can be seen that the peak value of TED is

captured fairly at the critical thickness h = 6µm. Fig. 4.1.8 further demonstrates that

the e�ect of beam thickness on TED is not monotone in nature for the present context.

A similar type of prediction has been observed for dual phase-lag thermoelasticity as

reported by Borjalilou and Mohsen Asghari (Borjalilou et al. (2019)).

4.1.6 Conclusion

The present investigation analyses the thermoelastic damping (TED) behavior in micro-

beam resonators utilizing the modi�ed couple stress theory (MCST) and the recently

proposed thermoelasticity theory based on the Moore-Gibson-Thompson (MGT) heat
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conduction equation. The coupled dynamical governing equation of motion is obtained

by using the Hamilton principle. To analyze the prediction of the quality factor of

micro-beam resonators in the present context and of the resonator's better quality

performance, an attempt is made to illustrate the prominent impact of the new model

on TED. After deriving the closed form analytical expression of the damping factor, the

�ndings are illustrated through graphical results for a suitable material. The variation of

TED have been compared and analyzed with those obtained by the classical continuum

theory (CCT) and the modi�ed couple stress theory (MCST) against dimensionless

variable ξ, beam thickness h, and length-scale parameter l. The prediction of the new

model is also compared with the same predicted by other thermoelastic models which

were obtained as a special case of the present investigation. The conclusions arising out

of the work can be highlighted as follows:

� The non-classical continuum theory (MCST) along with the MGT theory predicts

a higher value of quality factor than the classical continuum theory for larger

values of the material length scale parameter.

� The size-dependent normalized frequencies shift to lower values under the MCST,

with the �xed beam thickness at the micro-scale.

� Intensifying relaxation parameter τq of MGT theory and reducing the aspect ratio

of the beam cause a sharpening e�ect on TED. This implies that for a lower aspect

ratio, the rate of energy dissipation is much higher.

� Under MCST and MGT theory, the TED does not show monotone behavior with

the variation in the thickness of the beam.

� The result of quality factor under the GN-III model is considerably larger than

those estimated by the MGT and LS models. However, the GN-III model and the

new model show comparatively close predictions as compared to the LS model,

80



CHAPTER 4. Thermoelastic damping in micro and nanomechanical resonators...

implying that the MGT heat conduction model can achieve higher performance of

the micro-beam resonator as compared to the Catteneo-Vernotte heat conduction

model.
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4.2 Thermoelastic Vibration of Timoshenko Beam un-

der the Modi�ed Couple Stress Theory andMoore-

Gibson-Thompson (MGT) Heat Conduction Model

4.2.1 Introduction2

Vibration analysis is typically performed using beams that are usually sub-micron and

micron thick, which are commonly used in sensors and actuators. This inspired the

design of Timoshenko beam models adopting higher-order continuum theories that in-

clude extra material constants. In this subchapter 4.2, the variational formulation

of the micro structure-dependent Timoshenko beam model is developed considering

Hamilton's principle and modi�ed couple stress theory (MCST) in the context of the

Moore-Gibson-Thompson (MGT) heat conduction model.

Many researchers have performed signi�cant contributions to vibration analysis for

thick Timoshenko beam. Ma et al. (2008) investigated micro-structure dependent

Timoshenko beam model under the modi�ed couple stress theory. In the framework

of MCST, Asghari et al. (2010) evaluated a nonlinear formulation of the Timoshenko

beam to represent the characteristics of both shear deformation and rotating inertia.

In a subsequent study, Asghari et al. (2011) used the functionally graded Timoshenko

beam to capture the size e�ect based on the MCST. The dynamical stability of a func-

tionally graded non-classical Timoshenko beam was examined using MCST by Ke and

Wang (2011). Roque et al. (2011) studied the Timoshenko nanobeams with a nonlocal

formulation and meshless method. Analysis and modeling the size e�ect on vibration of

functionally graded nanobeams based on nonlocal Timoshenko beam theory studied by

Rahmani and Pedram (2014). Kumar (2020) established the formula for the dynamic

de�ection and thermal moment under the TPL heat conduction model. Recently, Ku-

2The content of this sub chapter is accepted in Mathematics and Mechanics of Solids (MMS), 2023.
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mar and Mukhopadhyay (2021) constructed the mathematical and graphical responses

of dimensionless de�ection and thermal moment Timoshenko beam considering DPL

heat conduction model.

It is evident that the governing equations for dynamic motion determined by the

MCST and MGT heat conduction theories of a Timoshenko microbeam have not yet

been developed. Subchapter 4.2 focuses on ful�lling this gap in the literature. This

current work utilizes Hamilton's principle and includes axial and bending loads. The

valid analytical formula for dimensionless de�ection and normalized thermal moment

is derived by using the Fourier series and the Laplace transform approach with the

appropriate boundary conditions. The �nding of the current subchapter 4.2 reveals that

the MCST theory has a signi�cantly higher energy dissipation rate due to de�ection

attenuation than the CCT theory.

4.2.2 Dynamic equations formulation of Timoshenko microbeam

Figure 4.2.1: Coordinate system and loading of a deformed Timoshenko beam

83



CHAPTER 4. Thermoelastic damping in micro and nanomechanical resonators...

4.2.2.1 Kinematic relations

Coordinate system of a rectangular microbeam with transverse distribution f(x, t) and

axial body load G(x, t) per unit length is depicted in Fig. 4.2.1. The rectangular Tim-

oshenko beam is considered with length L, width b and height h along the x−, y −

and z − directions, respectivly. After a rigid body displacement in the x− z plane, the

displacement components of a deformed microbeam can be described as follows (Ma et

al. (2008), Borjalilou et al. (2019)):

ux = u(x, t) + zφx(x, t), uy = 0, uz = w(x, t), (4.2.1)

where ux, uy, and uz are the displacement components along x, y, and z − directions,

respectively. Also, φx is the angle of rotation of cross section with respect to vertical

direction, y-axis. Moreover, the notations u(x, t) and w(x, t) stand for a beam's axial

and transverse displacement, respectively. Indeed, it is supposed that all cross-sections

stay plane after both transverse and axial loads but they may experience a rigid body

displacement as well as rotation.

To develop the governing equations of motion with the help of strain energy, the non-

zero components of strain tensor eij and volumetric strain ekk are found �rstly. Using

Eq. (4.2.1), the non-zero components of strain tensor eij can be obtained as follows:

exx =
∂u

∂x
+ z

∂φx

∂x
, (4.2.2)

exz = ezx =
1

2

(
φx +

∂w

∂x

)
. (4.2.3)

Therefore, the volumetric stain ekk can be expressed as

ekk = exx + eyy + ezz =
∂u

∂x
+ z

∂φx

∂x
, (4.2.4)
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as eyy = ezz = 0. Also, the non-zero component of rotation vector v is as follows:

vy =
1

2

(
φx −

∂w

∂x

)
. (4.2.5)

Further, the non-zero components of symmetrical part of curvature tensor is as

χxy = χyx =
1

4

(
∂φx

∂x
− ∂2w

∂x2

)
. (4.2.6)

It is notable that the beam's thickness h (z − direction) is very small in proportion

to its length L (x − direction) and width b (y − direction). Therefore, axial strain in

the z−direction (along thickness) ezz is assumed to be zero. Because the width of the

microbeam is su�ciently small as compared to its length L, it is possible to infer from

the plane stress condition that the stress components in the width b direction are zero.

By assuming the aforementioned explanation, the normal and shear stress components

can be expressed as

σxx = Eexx − βθ and σxz=2µexz, (4.2.7)

where β = Eαt

(1−2ϑ)
. From Eq. (4.2.7), the non-zero components of the stress tensor can

be calculated as follows:

σxx = E

(
∂u

∂x
+ z

∂φx

∂x

)
− βθ, (4.2.8)

σxz = σzx = µ

(
φx +

∂w

∂x

)
. (4.2.9)

Also, the non-zero components of the couple stress tensor are obtained as

Υxy = Υyx =
1

2
µl2
(
∂φx

∂x
− ∂2w

∂x2

)
. (4.2.10)
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4.2.2.2 Hamilton's principle for Timoshenko microbeam based on MCST

Hamilton's principle is used to get the equation of motion and related boundary condi-

tions in this subsection. The strain energy due to bending can be expressed as (Kumar

and Mukhopadhyay (2021))

Us =
1

2

� L

0

�
A

[σxxexx + σxzexz + σzxezx +Υxyχxy +Υyxχyx] dAdx. (4.2.11)

Using Eqs. (4.2.8)− (4.2.10), the strain energy is obtained as

Us =
1

2

� L

0

�
A

[
E

(
∂u

∂x
+ z

∂φx

∂x

)2

− βθ

(
∂u

∂x
+ z

∂φx

∂x

)

+ µ

(
φx +

∂w

∂x

)2

+
µl2

4

(
∂φx

∂x
− ∂2w

∂x2

)2
]
dAdx. (4.2.12)

Moreover, the kinetic energy of beam is given by (Ma et al. (2008))

Υ̂K.E =
1

2

�
V

ρ

[(
∂ux

∂t

)2

+

(
∂uy

∂t

)2

+

(
∂uz

∂t

)2
]
dV

=
1

2

� L

0

�
A

ρ

[(
∂u

∂t
+ z

∂φx

∂t

)2

+

(
∂w

∂t

)2
]
dAdx, (4.2.13)

Now, we introduce the following components:

I =
bh3

12
, m1 =

�
A

ρdA, m2 =

�
A

ρz2dA, (4.2.14)

and

I1 =

�
A

βθzdA = b

� h/2

−h/2

βθzdz, (4.2.15)

I2 =

�
A

βθdA = b

� h/2

−h/2

βθdz, (4.2.16)
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where I, ρ refer the moment of inertia of cross section and density of microbeam,

respectively. Also, I1 and I2 indicate resultants of thermal moments.
The variation in work done by external forces in the deformed beam can be expressed

as (Kumar and Mukhopadhyay (2021), Kumar (2020))

δW =

� L

0

f(x, t)w(x, t)dx+

� L

0

G(x, t)u(x, t)dx+
(
N̂fu(x, t)

)∣∣x=L

x=0

+
(
V̂fw(x, t)

)∣∣x=L

x=0
+
(
M̂sφx

)∣∣x=L

x=0
+
(
M̂avy

)∣∣x=L

x=0
, (4.2.17)

where N̂f and V̂f represent the resultant forces in axial and transverse direction cased

by classical stresses, respectively. Here, M̂s symbolizes the resultant moment in an end

section induced by classical stress σij and vy indicates component of rotation vector.

The parameter M̂a is resultant bending moment caused by the higher order stress Υij.

For a system with prede�ned con�gurations at t1 ≤ t ≤ t2, the Hamilton's principle

states that actual motion minimizes the di�erence between kinetic energy and total

potential energy. The application of Hamilton's principle can be expressed as

δ

� t2

t1

(
Υ̂K.E − Us +W

)
dt = 0. (4.2.18)

In view of the above principle, we obtain the governing equations of motion and cor-

responding boundary conditions when we set the coe�cients of δu, δφx and δw to be

zero. Therefore, in the virtue of Eqs. (4.2.12), (4.2.13), (4.2.17) and (4.2.18), we obtain

the governing equations of moion as

δu :
∂

∂x

[
− (EA)

∂u

∂x
+

I2
2

]
= −m1

(
∂2u

∂t2

)
+G(x, t), (4.2.19)

δφx : −
[
(EI) +

(
µAl2

4

)](
∂2φx

∂x2

)
+ (µA)

(
φx +

∂w

∂x

)
+

(
µAl2

4

)(
∂3w

∂x3

)
+

1

2

(
∂I1
∂x

)
= −m2

(
∂2φx

∂t2

)
, (4.2.20)
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δw : − (µA)
∂

∂x

[
φx +

∂w

∂x
+

(
l2

4

)(
∂2φx

∂x2
− ∂3w

∂x3

)]
(4.2.21)

= −m1

(
∂2w

∂t2

)
+ f (x, t) .

Also, the pertinent boundary conditions at associated edges x = 0 and x = L are taken

as (Kumar and Mukhopadhyay (2021))

[
(EA)

(
∂u

∂x

)
−
(
I2
2

)]
= N̂f or δu = 0, (4.2.22)[

(EI) +

(
µAl2

4

)](
∂φx

∂x

)
−
(
µAl2

4

)(
∂2w

∂x2

)
−
(
I1
2

)
=Ms +

M̂a

2
or δφx = 0,

(4.2.23)

(µA)

[
φx +

∂w

∂x
+

(
l2

4

)(
∂2φx

∂x2
− ∂3w

∂x3

)]
=V̂f or δw = 0, (4.2.24)(

µAl2

2

)(
∂2w

∂x2
− ∂φx

∂x

)
= −M̂a or δ

(
∂w

∂x

)
= 0. (4.2.25)

4.2.3 Heat conduction equation for microbeam

By neglecting the presence of any external heat source, the MGT heat conduction

equation takes following form (see Eq. 4.1.9 of Chapter 4.1):

(
K

∂

∂t
+K∗

)(
∂2θ

∂x2
+

∂2θ

∂z2

)
−
(
1 + τq

∂

∂t

)(
ρcE

∂2θ

∂t2
+ T0β

∂2ekk
∂t2

)
= 0, (4.2.26)

where ekk =
∂u
∂x

+ z ∂φx

∂x
.

From Eq. (4.2.26), one can obtain

(
K

∂

∂t
+K∗

)(
∂2θ

∂x2
+

∂2θ

∂z2

)
−
(
1 + τq

∂

∂t

)[
ρcE

∂2θ

∂t2
+ T0β

(
∂3u

∂t2∂x
+ z

∂3φx

∂t2∂x

)]
= 0.

(4.2.27)
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Alternatively, multiplying Eq. (4.2.27) by bβz and integrating with respect to z from

−h
2
to h

2
, it is obtained that

(
K

∂

∂t
+K∗

)(
∂2I1
∂x2

+ bβ

� h/2

−h/2

z
∂2θ

∂z2
dz

)
−
(
1 + τq

∂

∂t

)[
ρcE

∂2I1
∂t2

+ IT0β
2 ∂

3φx

∂t2∂x

]
= 0.

(4.2.28)

The temperature along the beam thickness direction (z−direction) is supposed to vary

in term of sin (gz) function. Therefore, putting θ (x, z, t) = θ̃ (x, t) sin(gz) and g = π/h

into Eq. (4.2.28), yields

(
K

∂

∂t
+K∗

)(
∂2I1
∂x2

− g2I1

)
=

(
1 + τq

∂

∂t

)[
ρcE

∂2I1
∂t2

+ IT0β
2 ∂

3φx

∂t2∂x

]
, (4.2.29)

where

I1 = − 1

g2

� h/2

−h/2

bβz
∂2θ̃

∂z2
dz.

Using Eqs. (4.2.19)− (4.2.21) and Eq. (4.2.29), the coupled governing equations in the

context of MCST are found as

δu : −E

(
∂2u

∂x2

)
= −ρ

(
∂2u

∂t2

)
+

G(x, t)

A
, (4.2.30)

δφx : −M

(
∂2φx

∂x2

)
+

(
µ

n2
x

)(
φx +

∂w

∂x

)
+
(µ
4

)( l

nx

)2(
∂3w

∂x3

)
+

1

2I

(
∂I1
∂x

)
= −ρ

(
∂2φx

∂t2

)
, (4.2.31)

δw : − µ
∂

∂x

[
φx +

∂w

∂x
+

(
l2

4

)(
∂2φx

∂x2
− ∂3w

∂x3

)]
= −ρ

(
∂2w

∂t2

)
+

f (x, t)

A
, (4.2.32)
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(
K

∂

∂t
+K∗

)(
∂2I1
∂x2

− r2I1

)
=

(
1 + τq

∂

∂t

)[
ρcE

∂2I1
∂t2

+ IT0β
2 ∂

3φx

∂t2∂x

]
, (4.2.33)

where M = E +
(
µ
4

) (
l
nx

)2
and nx =

√
I
A
= h

2
√
3
is radius of gyration of body about

the axis of rotation.

Boundary conditions at both end x = 0 and x = L are reduced in simpli�ed forms as

E

(
∂u

∂x

)
=

N̂f

A
or δu = 0, (4.2.34)

M

(
∂φx

∂x

)
−
(µ
4

)( l

nx

)2(
∂2w

∂x2

)
− I1

2I
=

Ms +
M̂a

2

I
or δφx = 0, (4.2.35)

µ

[
φx +

∂w

∂x
+

(
l2

4

)(
∂2φx

∂x2
− ∂3w

∂x3

)]
=

V̂f

A
or δw = 0, (4.2.36)(

µl2

2

)(
∂2w

∂x2
− ∂φx

∂x

)
= −M̂a

A
or δ

(
∂w

∂x

)
= 0. (4.2.37)

The following dimensionless quantities are de�ned to simplify above coupled thermoe-

lastic equations:

x′ =
x

L
, τ ′ =

tϵ

L
, ϵ =

√
E

ρ
, φ = φx, u′ =

u

h
, Ω =

w

h
, τ1 =

τqϵ

L
, Φ =

I1
EAh

,

(4.2.38)

where Ω and Φ stand for dimensionless de�ection and thermal moment, respectively.

Here, u′ and φ are the axial displacement and rotation angle of cross-section of beam,

respectively.

Eqs. (4.2.38) and (4.2.29)−(4.2.33) provide the following non-dimensional forms (drop-

ping the primes for simplicity):

δu : −
(
∂2u

∂x2

)
= −

(
∂2u

∂τ 2

)
+G∗, (4.2.39)
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δφ : −C1

(
∂2φ

∂x2

)
+ C2φ− C3

(
∂3Ω

∂x3

)
+ C4

(
∂Ω

∂x

)
+ C5

(
∂Φ

∂x

)
= −ρ

(
∂2φ

∂τ 2

)
,

(4.2.40)

δΩ : C6

(
∂3φ

∂x3

)
− C7

(
∂φ

∂x

)
+ C8

(
∂4Ω

∂x4

)
− C9

(
∂2Ω

∂x2

)
= −

(
∂2Ω

∂τ 2

)
+ f ∗, (4.2.41)(

p0 +
∂

∂τ

)(
∂2Φ

∂x2
− C10Φ

)
−
(
1 + τ1

∂

∂τ

)(
C11

∂2Φ

∂τ 2
+ C12

(
∂3φ

∂τ 2∂x

))
= 0,

(4.2.42)

where

p0 =
K∗L

Kϵ
, G∗ =

G (x, t)
EAh
L2

, f ∗ =
f (x, t)

EAh
L2

.

At the constant temperature, the simply supported microbeam is considered with con-

stant force per unit length i.e., f(x, t) = f0δ(t). It is assumed that there is no axial

body force i.e., G (x, t) = 0. Then, the coupled thermoelastic equations are derived as

follows:

δu :
∂2u

∂x2
=

(
∂2u

∂τ 2

)
, (4.2.43)

δφ : −C1

(
∂2φ

∂x2

)
+ C2φ− C3

(
∂3Ω

∂x3

)
+ C4

(
∂Ω

∂x

)
+ C5

(
∂Φ

∂x

)
= −

(
∂2φ

∂τ 2

)
,

+ C5

(
∂Φ

∂x

)
= −

(
∂2φ

∂τ 2

)
, (4.2.44)

δΩ : C6

(
∂3φ

∂x3

)
− C7

(
∂φ

∂x

)
+ C8

(
∂4Ω

∂x4

)
− C9

(
∂2Ω

∂x2

)
= −

(
∂2Ω

∂τ 2

)
+ f ∗

0 δ(τ), (4.2.45)(
p0 +

∂

∂τ

)(
∂2Φ

∂x2
− C10Φ

)
−
(
1 + τ1

∂

∂τ

)(
C11

∂2Φ

∂τ 2
+ C12

(
∂3φ

∂τ 2∂x

))
= 0, (4.2.46)

where f ∗
0 = f0L2

EAh
.

It is considered that the supports at edges of beam exhibits no de�ection. It is also
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expected that the supports at the microbeam's edges do not generate any bending

moment. Therefore, the pertinent initial and boundary conditions are taken in the

following way:

u
∣∣
τ=0

=
∂u

∂τ

∣∣
τ=0

= 0, φ
∣∣
τ=0

=
∂φ

∂τ

∣∣
τ=0

= 0,

Ω
∣∣
τ=0

=
∂Ω

∂τ

∣∣
τ=0

= 0, Φ
∣∣
τ=0

=
∂Φ

∂τ

∣∣
τ=0

= 0, (4.2.47)

u
∣∣x=1

x=0
=

∂2u

∂x2

∣∣∣∣∣
x=1

x=0

= 0,

(
C1

(
∂φ

∂x

)
+ C3

(
∂2Ω

∂x2

)
− C5 (Φ)

)∣∣∣∣∣
x=1

x=0

=

(
∂φ

∂x

)∣∣∣∣∣
x=1

x=0

= 0,

Ω

∣∣∣∣∣
x=1

x=0

= C6

(
∂φ

∂x

)
+ C8

(
∂2Ω

∂x2

)∣∣∣∣∣
x=1

x=0

= 0, Φ

∣∣∣∣∣
x=1

x=0

= 0. (4.2.48)

4.2.4 Solution of the problem

In this subsection, the Laplace transform technique is employed to solve Eqs. (4.2.44)−

(4.2.46) with the initial conditions (4.2.47).

Therefore, it is obtained that

φ (x, p) =

� ∞

0

φ (x, τ) e−pτdτ,

Ω (x, p) =

� ∞

0

Ω (x, τ) e−pτdτ, (4.2.49)

Φ (x, p) =

� ∞

0

Φ (x, τ) e−pτdτ.

Here, p is the Laplace transform parameter.
By the virtue of Eq. (4.2.49) and applying homogeneous initial conditions (4.2.47), the

coupled thermoelastic Eqs. (4.2.44)− (4.2.46) can be written as

−C1

(
∂2φ (x, p)

∂x2

)
+
(
C2 + p2

)
φ (x, p)− C3

(
∂3Ω (x, p)

∂x3

)
+C4

(
∂Ω (x, p)

∂x

)
+ C5

(
∂Φ (x, p)

∂x

)
= 0, (4.2.50)
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C6

(
∂3φ (x, p)

∂x3

)
− C7

(
∂φ (x, p)

∂x

)
+ C8

(
∂4Ω (x, p)

∂x4

)
−C9

(
∂2Ω (x, p)

∂x2

)
+ p2Ω (x, p)− f ∗

0 =0, (4.2.51)

(p0 + p)

(
∂2Φ (x, p)

∂x2
− C10Φ (x, p)

)
− (1 + τ1p)

(
C11p

2Φ (x, p)

+C12p
2

(
∂φ (x, p)

∂x

))
=0. (4.2.52)

In order to write the basic kinematic functions in the dynamic analysis, one can use

the Fourier series, which are appropriate with the boundary conditions speci�ed by Eq.

(4.2.48).

By employing the Fourier series, the following equations are obtained:

φ (x, p) =
∞∑

m=1

φm (p) cos(mπx),

Ω (x, p) =
∞∑

m=1

Ωm (p) sin(mπx), (4.2.53)

Φ (x, p) =
∞∑

m=1

Φm (p) sin(mπx).

Also, the normalized constant force f ∗
0 can be taken as

f ∗
0 =

∞∑
m=1

Fmsin(mπx) , (4.2.54)

where

Fm = 2

1w

0

f ∗
0 sin(mπx)dx =

4f ∗
0

mπ
, m = (1, 3, 5....) .

Putting Eqs. (4.2.53) and (4.2.54) into Eqs. (4.2.50)−(4.2.52), the following is obtained:
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(
C1 (mπ)2 + C2 + p2

)
φm +

(
C3 (mπ)3 + C4 (mπ)

)
Ωm + C5 (mπ) Φm =0,

(4.2.55)(
C6 (mπ)3 + C7 (mπ)

)
φm +

(
C8 (mπ)4 + C9 (mπ)2 + p2

)
Ωm =Fm,

(4.2.56)

−
(
p2 + τ1p

3
)
(mπ)C12φm +

[
(p0 + p)

(
(mπ)2 + C10

)
+
(
p2 + τ1p

3
)
C11

]
Φm =0.

(4.2.57)

Solving Eqs. (4.2.55)− (4.2.57) for Ωm (p) gives the following expression:

Ωm (p) = Fm
a0 + a1p+ a2p

2 + a3p
3 + a4p

4 + a5p
5

b0 + b1p+ b2p2 + b3p3 + b4p4 + b5p5 + b6p6 + b7p7
. (4.2.58)

The solution of normalized de�ection Ωm (τ) is obtained after taking Laplace inverse

transform of Eq. (4.2.58). The solution yields

Ωm (τ) = Fm

6∑
i=1

(
a0 + a1βi + a2β

2
i + a3β

3
i + a4β

4
i + a5β

5
i

b1 + 2b2βi + 3b3β2
i + 4b4β3

i + 5b5β4
i + 6b6β5

i + 7b7β6
i

)
e(βiτ),

(4.2.59)

where βi are the solutions of the equation b0+b1β+b2β
2+b3β

3+b4β
4+b5β

5+b6β
6+b7β

7 =

0. As a result of the inverse Laplace transform of Eq. (4.2.49), the normalized de�ection

can be calculated as follows:

Ωm (x, τ) =

∞∑
m=1,3,..

Ωm (τ)sin(mπx)

=

∞∑
m=1,3,..

[
Fm

6∑
i=1

(
a0 + a1βi + a2β

2
i + a3β

3
i + a4β

4
i + a5β

5
i

b1 + 2b2βi + 3b3β2
i + 4b4β3

i + 5b5β4
i + 6b6β5

i + 7b7β6
i

)
e(βiτ)

]
sin(mπx).

(4.2.60)

Furthermore, the normalized thermal moment can be obtained as
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Φm (x, τ) =
∞∑

m=1,3,..

Φm (τ)sin(mπx)

=
∞∑

m=1,3,..

[
Fm

6∑
i=1

(
f2β

2
i + f3β

3
i

b1 + 2b2βi + 3b3β2
i + 4b4β3

i + 5b5β4
i + 6b6β5

i + 7b7β6
i

)
e(βiτ)

]
sin(mπx),

(4.2.61)

where f2 = −C12d2 (mπ) , f3 = −C12d2 (mπ) τ1.

4.2.5 Numerical results and discussion

A detailed numerical simulation for a Silicon Timoshenko beam is conducted in this

subsection in order to estimate the dimensionless de�ection and thermal moment as

derived in the previous subsection. At the reference temperature T0 = 300K, the

numerical data for Silicon beams is the same as in the previous subchapter 4.1.

The two aspect ratios are considered here, namely length to height of the beam
(
L
h

)
,

and material length scale to height of beam
(
l
h

)
. The ranges of dimensionless relaxation

parameter τ1 and material length scale parameter l are considered as (1.2 ≤ τ1 ≤ 1.3)

and (0 ≤ l ≤ 0.6), respectively. It is assumed that transverse load f = EAh
L2 , so f ∗

0 = 1.
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Figure 4.2.2: Size-dependent de�ection for CCT and MCST with respect to dimension-
less time τ

Under the MGT heat conduction model, a comparison is performed in Fig. 4.2.2
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for midspan normalized dynamic de�ection for classical (l = 0) and the non classical

(MCST) theories in the dimensionless time interval (0− 3). The graph in Fig. 4.2.2

clearly illustrates how the amplitude of dynamic de�ection is gradually attenuated

under both the theories. This attenuation causes a higher vibration frequency in case

of MCST with MGTmodel as compared to the CCT with MGTmodel implying that the

energy dissipation rate, which causes the attenuation of de�ection, is much higher under

MCST than CCT for MGT heat conduction model. Moreover, as dimensionless time τ

increases, the vibration frequency increases while the amplitude of normalized de�ection

decreases. In the small period of time, crest value for dimensionless midspan dynamic

de�ection is essentially identical under two theories. However, a signi�cant di�erence is

observed as time passes. The maximum and minimum amplitudes of de�ection varies

signi�cantly and the peaks are attained earlier in case of MCST as compared to CCT.
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Figure 4.2.3: Variation of thermal moment for CCT and MCST with respect to dimen-
sionless time τ (L/h = 10)

Fig. 4.2.3 depicts the midspan dimensionless thermal moment for the dimension-

less time period (0�20) to emphasize di�erences in results under CCT and MCST. The

aspect ratio of microbeam length to thickness is considered as L
h
= 10 for these curves

to simulate the thermal moment propagation under MGT heat conduction model. It

is important to note here that the phase di�erence of the midspan thermal moment

becomes wider as the dimensionless time τ intensi�es. For both the theories, it can
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be noticed that as τ increases, the amplitude of thermal moment increases while the

frequency of vibration decreases. It is further observed that peak values of thermal mo-

ment under MCST is su�ciently less than that predicted by CCT, which is reasonable

cause for more energy dissipation inside the microbeam. This becomes more signi�cant

as time increases. Fig. 4.2.3 clearly shows that in contrast to the dynamic de�ection

behavior, the thermal moment's peak points arise at greater values as time increases.

Figs. 4.2.4(a,b) plot the behavior of midspan normalized de�ection for di�erent as-

pect ratios with microbeam length to thickness L
h
=30, 60, and 90. Here, the occurrence

of steady state form of dimensionless de�ection is separately illustrated for the cases

when material parameter l = 0.3 and 0.6. Contrasting e�ect of aspect ratio L
h
and

material length parameter l on normalized de�ection is clearly visible. In terms of as-

pect ratio, it is noticeable that as L
h
intensi�es, the steady state amplitude of de�ection

attains its peak value while occurrence of oscillation diminishes. From these plots, one

can observe that energy dissipation rate is higher for larger values of material length

parameter l. Hence, the oscillation under lower material length parameter l will occur

for longer period as compared to oscillation under higher value of parameter l.
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Figure 4.2.4: (a) Size-dependent de�ection for di�erent aspect ratio L/h when l =0.3.
(b) Size-dependent de�ection for di�erent aspect ratio L/h when l =0.6.
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For MCST theory, the e�ect of aspect ratio (microbeam length to thickness) in

midspan thermal moment against dimensionless time τ is highlighted in Figs. 4.2.5(a,b).

Here, we consider several values of , L
h

(
L
h
= 12, 14 and 16

)
. The e�ects of aspect ratio

in simulation of thermal moment propagation for initial range of dimensionless time

interval is barely noticeable. However, as time progresses, the elevation in the peaks of

thermal moment propagation becomes more prominent inside the microbeam indicating

a signi�cant e�ect of aspect ratio on thermal moment. The phase discrepancy between

the transient outputs of the thermal moment occurs owing to a variation in aspect

ratio, like the dynamic de�ection performance. It can be seen that the impact of

thermal moment gradually reduces with an increase in the value of material parameter

l.

The e�ect of length scale parameter ratio l
h
,
(
l
h
= 0, 0.2, 0.4 and 0.6

)
to microbeam

thickness in the dimensionless midspan de�ection is depicted in the Fig. 4.2.6 which

presents the results for CCT and MCST to highlight the normalized de�ection against

to dimensionless time τ . The amplitude of de�ection under classical couple stress theory(
l
h
= 0
)
arrives maximum as compared to MCST. According to classical theory, due

to the less frequency of vibration, the rate of attenuation in normalized de�ection is

substantially slower than MCST. It is also worth noting that increase in the ratio (l/h)

increases the phase di�erence drastically. Moreover, the peak values of normalized

de�ection is obtained at smaller time with the increase in aspect ratio l
h
.
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Figure 4.2.5: Variation of thermal moment for di�erent aspect ratio (L/h) with length
to height (a) when l=0.3 (b) when l=0.6.
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Figure 4.2.6: Size-dependent de�ection for ratios with material length scale parameter
to thickness (l/h) along dimensionless time τ
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Figure 4.2.7: Thermal moment propagation for ratios with material length scale pa-
rameter to thickness (l/h) along dimensionless time τ

The propagation of dimensionless thermal moment for length scale parameter ratio

l
h
,
(
l
h
= 0, 0.2, 0.4 and 0.6

)
against dimensionless time τ is demonstrated in Fig. 4.2.7

The CCT and MCST have been considered to illustrate the size e�ect. The signi�cant

diminution in thermal moment propagation is visible for a higher aspect ratio. This

means that by using CCT, the thermal moment response becomes greater than the

extracted thermal moment propagation under MCST.

The variation of thermal moment versus time for di�erent reference temperature T0,
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(293K, 400K, and 500K) is plotted in Fig. 4.2.8. The outcomes of these plots are

shown under assumption of aspect ratio L
h
= 0.5. The responses of the thermal moment

under di�erent reference temperature is prominent. As the temperature intensi�es, the

change in thermal moment is quite signi�cant. It is observed that the domain of thermal

moment increases as reference temperature goes to a higher range.

In order to illustrate the behavior of three generalized thermoelastic theories (LS,

GN-III and MGT), the midspan de�ection is plotted as a function of the time in Fig.

4.2.9. In this numerical simulation, the aspect ratio is �xed as L
h
= 0.3 in the context of

MCST. It is observed that amplitude of de�ection via all three models exactly match

with each other. It means that all three generalized thermoleastic theories provide

steady state de�ection in this time range. Therefore, the frequency of vibration does

not alter measurably as a result of incorporating relaxation time into the model. This

graph shows that these theories have negligible diminution in amplitude of normalized

de�ection. However, Fig. 4.2.10 demonstrates that the thermal moment's response for

the MGT is signi�cantly di�erent from the response under the GN-III model, although

the responses under MGT and LS models are identical. Higher amplitudes of thermal

moment are observed in case of MGT model as compared to the GN-III model.
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Figure 4.2.8: Thermal moment variation for di�erent reference temperature T0 with
respect to dimensionless time τ
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Figure 4.2.9: Size-dependent de�ection for di�erent generalized thermoelasticity theo-
ries (LS, GN-III and MGT) with respect to dimensionless time τ .
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Figure 4.2.10: Thermal moment variation for di�erent generalized thermoelasticity the-
ories (LS, GN-III and MGT) with respect to dimensionless time τ .

4.2.6 Conclusion

This current work investigates behavior of de�ection and the propagation of thermal

moment of the simply supported Timoshenko beam in the context of MGT heat conduc-

tion model. In order to capture the dynamic behavior of Timoshenko beam, the CCT

and non-classical (MCST) theories are considered into present work. The normalize

coupled thermoelastic equations and boundary conditions are obtained by employing

the Hamilton's principal (variational approach). Under the MGT model, �ndings are
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compared to those acquired by the MCST and CCT. Several features of the theories are

highlighted in previous section. The following are some key conclusions of this work:

� MCST under MGT heat conduction has a signi�cantly higher energy dissipation

rate due to de�ection attenuation than the CCT theory.

� The elevation in the peak values of thermal moment gets more noticeable as

time goes on. The peak values of thermal moment increase progressively as time

intensi�es.

� The e�ects of aspect ratios
(
L
h
and l

h

)
on de�ection and thermal moment propaga-

tion are prominent. If the aspect ratio increases in proportion to the length scale

parameter l, there is a faster frequency response, resulting in increased energy

dissipation.

� As the reference temperature rises, the thermal moment's propagation range also

rises.

� There is no signi�cant di�erence between the vibration characteristics of the de-

�ection for the MGT, LS, and GN-III models.

� MGT and LS models display a wider range of thermal moment, while the GN-III

model displays a smaller range of thermal moment. The MGT model predicts

more similar behavior with LS theory.
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