CHAPTER 3

FUNDAMENTAL SOLUTIONS OF
MOORE-GIBSON-THOMPSON (MGT)
THERMOELASTICITY THEORY

3.1 Introduction!

The fundamental solution of a differential equation provides the building blocks for
solving problems involving impulse responses. Also, fundamental solution plays a sig-
nificant role in obtaining solutions to several problems on elastodynamic theory. It has
been discovered that there are several methods for constructing fundamental solutions
in the classical theories of elasticity and thermoelasticity. The Potential (boundary
integral equation) method is a powerful tool for constructing the fundamental solution
of boundary value problems. In this process, Galerkin-type representation (Galerkin
(1930)) plays a vital role. In the previous chapter, Galerkin-type representation of
solution under MGT thermoelasticity theory has been derived.

The present Chapter continues the theoretical investigation on the MGT thermoe-
lastic model by establishing the fundamental solution of field equations for this theory.
Proceeding with addressing the field equations in the context of MGT model, the fun-
damental solutions in a short time approximate manner are derived for the coupled

thermoelastic equations using Laplace transform. In the case of steady vibrations, the

IThe content of this chapter is is published in Zeitschrift fiir angewandte Mathematik und
Physik, 74(105), 2023.
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fundamental solutions of the field equations are also acquired. The following is a list
of related works that are available in the literature. In the classical theory of coupled
thermoelasticity, Hetnarski (1964a; 1964b) was the first to study the short-time ap-
proximated fundamental solutions. The books by Hormander provide comprehensive
information on fundamental solutions of differential equations (see Hormander (1963;
1983)). The work of Knops (1981) describes the methods for constructing fundamental
solutions to systems of differential equations involving elasticity and thermoelasticity. A
fundamental solution for the generalized thermoelastic LS model has been developed by
Wang and Dhaliwal (1993) for arbitrary distributions of body forces and heat sources.
Using the Galerkin representation, Ciarletta (1995) developed fundamental solutions
for a binary mixture of gases and elastic solids. Later on, Kothari et al. (2010) derived
the fundamental solutions for generalized thermoelasticity with three-phase lags based
on homogeneous and isotropic bodies. For Kelvin-Voigt materials with voids, Svanadze
(2014) presented a fundamental solution to the system of equations of steady vibrations
in the context of elementary functions. Using generalized thermoelasticity theory with
a single delay term, Kumari and Mukhopadhyay (2017) formulated fundamental solu-
tions in an unbounded medium. An analysis of the fundamental solution of the steady
oscillation equations in a porous thermoelastic medium and the dual-phase lag model

has been carried out by Biswas and Sarkar (2018).

3.2 Governing Equations

An Euclidean three-dimensional space W is considered where a homogeneous isotropic
thermoelastic body occupies the surface boundary W at a time to. Let @ = (21, x2, x3)
be a reference point in the Euclidean space W. A fixed system of rectangular Cartesian
axes Oxy, for k =(1,2,3) is considered to refer to the motion of the body. The following

are the field equations (as given in Chapter-2) under the Moore-Gibson-Thompson
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(MGT) thermoelasticity theory for homogeneous and isotropic material (Quintanilla

(2019)):

p(Au) — fgrad 0 + (A + p) {graddiv u} + pf = pu, (3.2.1)

KAQ + K*A — BT, {div @+7, div @'}

" o
—pCE {9 + 7,6 } = — (1 + Tqa) R. (3.2.2)

To get simplified forms of Eqs. (3.2.1) and (3.2.2), the following notations and operators

are introduced:

1 1
(58 m=(5) ey
ny = - ) ng = N ) ns = —,
p P p
a27

¢ = (D* +71,D%, D= forio1

ati’ 37 gl:ngA_D27 QQZ(KD + K*) A—pCE¢7

Ly =BTy
H = ! ° , Ly = determinant of #, L, =n?A — D?

—ng g2
2X2

Ci=— {(”% - ”g) L — 5T0¢L;'k2} , Cia = Ly,

where Lj; (i,j = 1,2) denote the co-factors of matrix H.

Using the aforementioned notations, Eqs. (3.2.1) and (3.2.2) are converted into the

following forms:

(ni — n3) grad div u + g1u — nagrad 0 = — f, (3.2.3)

G20 — BTop divu = — (1 + 7,D) R. (3.2.4)

Then, the following theorem is established:
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Theorem-3.2.1: Let

u = LqF + Ciigrad divF + (5 gradr, (3.2.5)

0= CgldiVF + 0227“, (326)

where F; and r are the fields of class of C” and C5, respectively. Also, (F},r) satisfy

the following equations in the domain of definition W x (0, %) :

Ligi F = —f, (3.2.7)

Lyr=—(141,D)R, (3.2.8)

then (u,0) satisfy Eqgs. (3.2.3) and (3.2.4).
Proof: This is the Galerkin-type solution of the governing equations of the MGT

theory. The complete proof of this theorem is given in Chapter-2.

3.3 Fundamental Solution

This section determines the fundamental solutions of the field Eqgs. (3.2.3) and (3.2.4)

based on Theorem-3.2.1 with the following initial conditions:

u(z,0) =u(x,0) =0,

0(x,0)=0(zx,0)=0, z€W, (3.3.1)
with
lim u; — 0,  lim uj, — 0,
lim 0 —0, lim6§;—0. (3.3.2)
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The initial conditions for the functions F; and r can be assumed as

O, %
o (2.0) =0, (‘3_t: (2,00 =0, 2 €W for (j =1,2,.,6; k=1,2,3).  (3.3.3)

Now, it is straight-forward that condition (3.3.3) implies the initial condition (3.3.1) in
view of Egs. (3.2.5) and (3.2.6).

By using above notations and operators, the generalization of Theorem-3.2.1 can be

written in the following way:

u=[(n] A= D*){(KD+ K*) A — pcpo} — BTons¢A] F+nsgrad r
— [(n} —n3) (KD + K*) A — pcgo) — BTyns¢) grad divF, (3.3.4)

0 = [BTo¢ (n3A — D?)] div F + [nfA — D?] r, (3.3.5)

together with the corresponding fields F; and r satisfying the following equations:

N ™ 13 nin;
(3.3.6)
[(A__;) (KD + K*)A — pcgd) — 5Ton3¢A] . (1+;qD)R
n? = =
(3.3.7)

In order to solve the above system of differential equations, the Laplace transform is

used which is defined as
Flop) = L{ft) = [t
0
where p is the Laplace transform parameter.

After using Laplace transform, Eqs. (3.3.4) — (3.3.7) yield the following equations:
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u= [(n% A— p2) {(Kp + K*) A — PCEE} — 5T0n35A} Finggrad 7

—[(n} —n3) (Kp+ K*) A — pcgé) — BTons¢] grad divF, (3.3.8)
0= {ﬁToang (A — i-i)] divF + {n% (A - i-i)} 7, (3.3.9)

2 1

with F; and T satisfy the following equations:

(3.3.10)
2 — — G1(p)Ga(p)—=
(2-5) (4~ KiGu0D) - iG] 7 = - SRR
1 1
(3.3.11)
where
BTong 1
pum— K = —0 - — 1 .
Ky = peg, 2 chn%7 Gl(p) (Kp+K*)7 GQ(p) ( +qu)
Let @? and a2 be the roots of the following equation:
2 P = = Ky =2
M — 2 + K1Gi(p)¢ + K1 KaGi(p)o | M + FGl(p)Cbp = 0.
1 1
Then, Eqgs. (3.3.10) and (3.3.11) can be written into the following forms:
) _
p ~ ~9\ T fiG1(p)
(A—@) (b —@) 7= —GDG0E (3.3.13)
ny
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where
~9 my + Mo ~2 mi — Mo
ay = T> Gy = Ta
2 _ 2 4+ GUPVK, (1 + Ky)n2d)” — 4G, (p) K n2dp?
= KGO0+ K mg:\/(p ()1 (14 Ko ) 4G ) oni?
1 1

Now, the fundamental solution is obtained for two separate cases namely: Concentrated

body force and Concentrated heat source in the upcoming section.

Case 1. Concentrated body force

For convenience, time-dependent body force f; is assumed as f7, which acts in x; (i =

i
1,2,3) directions at a fixed point y and the external heat source term R = 0 is consid-

ered. Therefore, it is found that

Fi = (Sijlp, and r = 0, (3314)

where d(t) is a function of ¢ and §(.) is the Dirac delta function.

Then, Eq. (3.3.12) takes the following form:

(A_pi) (A=) (A -@)T = 2,

ny
where
g —_Gip)d(z —y)di(p)
== 2,2 :
ning
If ¥, satisfy the equations
P\ = o o
(A - m) ':[/1 = Zl, (A - a%) EPQ = Zla (A - CL%) !pg = Zl- (3315)
2

o1
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then, by virtue of Eq. (3.3.15), ¥ can be written as

U= 23: Bn(p)¥,, (3.3.16)
n=1
where
Bulp) =
(5 -) (5 -3)
1
Ba(p) = (% —'d%) (a% - a%)’
1

I
(5-a) @-@)

Using the condition at infinity (3.3.3), the solutions of Eq. (3.3.15) can be expressed as

7, - G0 (-za)

ennd : (3.3.17)
7, = —Giii )leg(g ) o) (3.3.18)
T,y = —Gﬁi ?%(5 )e<*52d>, (3.3.19)
where d = |z — y|.
When x # y, we have
[(n} —n3) (Kp+ K*) A = pepg) — BTonsd] = n(p)¥ + 72(p)¥s + v3(p) s,
(3.3.20)

2\ 1 L _ -
(A_%)WZT,&Q(%_%), (A-B)(A-R)T =T, (3321)

where
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106 = 28— 3) (L = Gy — sG]

2

G1(p) [(”% - n%) (ﬁf - Gl(p)Kl(,_b) - ﬁTon:aGl(p)ﬂ ;

Y3(p) = G1(p) [(”? - ng) (Zig - Gl(p)Kla) - 5T0n3G1(p)ﬂ .

In view of Egs. (3.3.8), (3.3.9), (3.3.20), and (3.3.21), the fundamental solutions for

the displacement components and temperature in the Laplace transform domain are

obtained as

G _ nl

5= Gy V10— e+ 20) T + 2600 ;. (3.3.22)
7= (i?T Tff) (V2= 73) - (3.3.23)

Case 2. Concentrated heat source

For this case f; = 0 and R = 0 (v — y) da(t) are considered, where dy(t) is any time

dependent function. Here, F; = 0 and 7 satisfies the following equation:

(A_ﬁﬂﬁ_@ﬁ:_ﬁﬁ%ﬁﬁmx_w@@. (3.3.24)

Now, let A; and A, satisfy the equations

(A — CLl) /11 ZQ, (A — CL2> /12 Zg, (3325)

where

z,= -GG 5T

ni

Then, 7 is obtained as
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= L (AT, (3.3.26)

(af —a3)

where A;, (i = 1,2) can be obtained as

— Gi(p)Ga(p)dy ~
Az‘ _ 1(p> 2(2p) 2(p) 6(_aid), i = 1,2 (3327)
dmnid

From Egs. (3.3.8), (3.3.9) and (3.3.27), the fundamental solutions for the displacement
component @(4) and temperature component 5(4) with the presence of concentrated heat

source is obtained in the Laplace transform domain as follows:

p— n A A

u§4) _ m (4, _/12)7“ (3.3.28)

1 = e [0 =) T () B). (329
(af —a3)

3.4 Short-time Approximated Fundamental Solutions

Since inversion of Laplace transforms involved in the solutions of different field variables
as derived in previous sections is highly complicated, derivation of closed form analytical
fundamental solution is a formidable task. Hence, the closed form fundamental solutions
in the physical domain is obtained for small time. Therefore, assuming the Laplace
transform parameter p to be very large and neglecting the higher powers of %, the roots

ajand a; are acquired in the following forms:

~ v,
a; = Vp + V2 + 7;37

- Vo
ag =~ Va1p + Va9 + $,

o4
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where

7911 = 5 1912 =

1921 = 77 1922

R

A1:b1+ b%—b5,

RNV
B1 = b2 +

B, Jig 1 ¢ 1 B
2V2VAL 8V2 AV
By By = 1 C 1 Bj
V2V A 8V2 AY%

bibs o

VB —bs 20— b5

o 802y /B — by — 4b3bs — 8bybs /B — by + Ababobs — B + 4 (B — bs) (2babs — by)
1 p—

Ay = by — /0] = bs,

Bgzbg—

8 (b2 — bs)*? ’
b1bs be

+ :
VI — b 2/BF — b

o _ 802y /B — by + 4b3bs — 8bsbs /B — by — Abibobs + 0§ — 4 (B — bs) (2bibs — by)
L=

8 (b2 — bs)* ’

1 C
blz(_2+pETq+

ny K
K*\°
= {Tq<K) B
4dpcgT,
bs = b
5 KTL% ) 6

5T0n37_ bo—(1—+ K~ PCE i BTons
n? v) TK K ' Kn? )’
pes  BTons [ ENT (KN (pes
K = Kn?) K "\ K K ' Kn?

_Apcg
 Kn?

BTons

1—7'K* b——4pCEK* 1—7'K*
“K) T K] "K )’

By substituting the approximated roots into the Eqgs. (3.3.22), (3.3.23), (3.3.28) and

(3.3.29), the following fundamental solutions for displacement components and temper-

ature field in two cases are obtained:

Case 1:

=) _ ) —za
' 4mnid

Yis  Yiu
+(—2+—3

p p

79 _ di(p) 0 KYHJF

 4rdKn? 95

2 d Y Y] _p
5 — 9 1(29)2 o, N2 -
Ox;0x; |4mdKnj p? p3

Y, Y,
) e—(ﬂllp+ﬁ12+%>d + (_125 + %) €_<1921p+1922+ﬂ?>d}:| , (3.4.1)

p p

é + Y—129) {6_(191117"”912""%)03 _ e—(1921p+1922+19f’)d}:| '
p p

(3.4.2)
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Case 2:

—(4) d2(p) 9 Z1 Z12 {*(1911p+1912+m)d 7(1921p+1922+%)d}

(4) _ -, 7 p )% » , 3.4.3
U 4dnid Ox; |\ p? + p? c c ( )

7 _ /) KZlg N % N %) o~ (Priptdiat 22)a (Zm N % N %) o~ (Dorpot 228 )a ]

(3.4.4)

3.5 Laplace Inversion

The inversion of Laplace transforms are carried out by using the following formulas:

LB =1 L e =5 (t ),

—ypd ] 0 t < ’yd
$1|:e A :Xz(t—”}/d): ,
p i i1
(t (l'ldl))' £ ’Yd
. e—% T ¢ v/2
Z pv—i-l - (;) Jv (2\/%) ’ R‘e<v)>_1a7 > 07

Z1 [6_%} =4(t) — \/ng (2v1), ~v>0,
where J,() is the Bessel function.
Now, the time-dependent functions d;(t), i = 1,2 are assumed as d;(t) = da(t) = ().

After taking Laplace inverse of the Eqs. (3.4.1)-(3.4.4), the fundamental solutions in

the physical domain are obtained for both cases as follows:
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G __ 1 _d 5.,_672LYX t—i Yio X t—i
B 4mn3d [5 (t ng)] 9 gm0z |Amd | ng s
t—911d
+ Vi3 {e—%zd) 1913;1 7 (2\/1913 (t — v1d) d) }
t —911d
{e_wmd) <19 ;1 )Jz (2\/1913 (t — V11d) d)}

13

t — V9d
—(¥22d) 21 _
+ Y5 {e Doad J1 (2 Yo3 (t 1921d) d> }

e~ (022d) <t ;2i21d> Jo (QW)}H , (3.5.1)

gy 1 9
47n3d dj

V13d
}/17{6_(1912(1) <5 (t — 1911d) - f 1; dJl (2\/1913 (t - 1911d> d))
— Vi1

Vosd
_ o~ (922d) _ _ 23 _
(& (5 (t 1921d) r— 1921dJ1 <2\/1923 (t 1921d) d)) }

+ Vi {e*wl?d) o (2\/1913 (t — Ond) d) (0 g (2\/1923 (t — Ud) d) }

t—d11d
+ Yig {@wud),/ 1913;1 Ji (2\/1913 (t — 011d) d)

t — Ua1d
_ e*(1922d) 21 Jl <2\/1923 (t — 1921d) d) }] . (352)
Pasd
Case 2:
w__1 90 ~(912d) [t —Vnd —
" 4mn3d Ox; Zn {e Vrad Ji (2\/1913 (t —911d) d)

t — va1d
— e~ (02d) | T;dljl (2\/1923 (t — V21d) d) }

—(912d) (LT Und _
+ Z19 {6 < 91ad ) Jo (2 %3 (t 1911d) d)

e (0) (ﬁ) 7o (2/95 (F — 1) ) H , (3.5.3)

a7
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1
4mnid

’1913d

oW = Zlge_wl?d){é(t—ﬁud)— — (2 ﬁlg(t—ﬁlld)d)}
— V11

+ Zuy {e_w”d)Jo (2 D13 (t — 011d) d)}

t—nd
+ Zis {e-wlzd) N T;C;Jl (2 D13 (¢ — 011d) d) }

~ Zyge~ (922d) {5 (t—dmd) — /2245 (2\/1923 (t — Uo1d) d) }

t —VYa1d

19236[

— 71 {e*“?wd)Jo (2 Da3 (t — U21d) d)} — Zis {ewﬂd) t=vad (2\/m) H .

(3.5.4)

3.6 Representation of Fundamental Solutions for Steady

Oscillation

In this section, Eqgs. (3.2.5) and (3.2.6) are used to determine the fundamental solutions
of the field equations in the case of steady vibration. The complex-valued functions can

be assumed in the periodic form as

f =Re [f*e(_i“t)}, R =Re [R*e(_i“t)], (3.6.1)

F =Re [F*e(_m)], r = Re [r*e(_’“t)], (3.6.2)

along with displacement vector uw and the temperature 6 given as
u = Re [u*e(’i‘”t)], 0 = Re [9*6“””}, (3.6.3)
where 1 = y/—1 and w represents the oscillation frequency.

In view of Eq. (3.6.3), the field Egs. (3.2.5) and (3.2.6) reduce to the following forms:
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u' =[(nIA +w?) {(K(—iw) + K*) A — pep (—w? +itw®) } — BTons A (—w® + itw®) | F*

= [(n} = n3) {(K (i) + K°) & = pe (o +im)}

—BTons (—w2 + iquS)] grad divF™ + nzgrad r*, (3.6.4)
w? w?

0* = | BTyn’ (—w2 + iqu3) (A + —2)} divF™ + [n% (A + —2)} r. (3.6.5)
n ny

In addition, the complex valued functions (F*,r*) satisfy the following system of equa-

tions:

2 2 2y BTons (—w? +iTyw?) . I
(@+ot) (0o (0+0d) - T A P - ey
(3.6.6)

BTong (—w? + iT,w?) . R* (1 —itw)
(&) (2 - ST A =

(3.6.7)
where
w w peg (w? —ityw?)
o =—, Oy=—, 03= , :
Yoy TP P (K (—iw) + K*)
Here, the operator N (A) is defined by
Tong (—w?* + iT,w?)
N (D)= A2 2 1 g2) - Lo LA+ o303, 3.6.8
( ) + {(0-2+0-3> n% (K(—ZW)+K*) +U203 ( )

If & and & are the roots of N (—\) = 0, then above operator can be rewritten as

NA)=(A+&) (A+8). (3.6.9)

Therefore, Eqs. (3.6.6) and (3.6.7) can be expressed in the following forms:
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(A+al) (A+8) (A+8G)F = —%, (3.6.10)
(A+&) (A+&)r = —R*%QS, (3.6.11)

where Q] = (K(—iw) + K*)f1 and Q5 = (1 —irw).

Now consider following two cases:

Case 1:

Here f =0 (x —y) d;;, R* =0, F} = ®0;;, and r* = 0 are considered. Therefore, the
Eq. (3.6.10) takes the following form:
(A4 X) (A +22) (A +X) b= -t (3.6.12)

where R = 5(%3")@, A= U%, Ag = f%; and A3 = 5%-

3,2
ning

If the functions @; (i = 1,2, 3) satisfy the following equations:

(A+MN) P =—R, (A+X)Dr=-R, (A+)N)P;=—R (3.6.13)

then @ can be expressed in the form as

n=1
where
3
D= J] (M=X), (n=1,23)
J=1,(3#n)

Hence, the following is found:
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= D, end). 3.6.14
47Tdn1n2 Z ( )

In view of Eqs. (3.6.14), (3.6.4) and (3.6.5), one can find

u " =8yun} (K (~iw) + K°)

(A+&) (A+&) |2

— [(n% - ng) {(K(—iw) + K*) A — pcg (—w2 + iqu3)}
— BTons (—w2 + iqug)} D jin, (3.6.15)

00 —BTyn2 (~w? + ir®) (A +0%) B, (3.6.16)

Case 2:

Now, let ff =0, R* =0 (z —y) and F} = 0, r* =  are assumed, where ) satisfies

the following equation:

Q@5

(A+X) (A+X)Q=— 50 (x—vy), (3.6.17)
1
then, (2 can be obtained as follows:
0= @163 [elR2d) — elRsd)] (3.6.18)

4rdn? (A3 — \3)
In view of Eqs. (3.6.4), (3.6.5) and (3.6.18), the solutions for displacement u;(4) and

temperature distribution 8*®* are obtained in the following forms:

U;k(4) = n397j y (3619)
0@ =nt (A +03) Q. (3.6.20)

This completes the solution of steady oscillations.
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3.7 Conclusion

The present Chapter examines a non-classical thermoelastic model in accordance with
the MGT heat conduction law. This includes fundamental solutions in the context
of MGT theory for the homogeneous and isotropic body. Two cases are considered;
namely concentrated body force and concentrated heat source for investigating the fun-
damental solutions for thermoelasticity in the context of MGT model. The problem
is formulated to obtain solutions for the distributions of displacement components and
temperature in the Laplace transform domain. Then fundamental solutions are estab-
lished in the physical domain for the short-time approximated displacement components
and temperature fields by applying the Laplace inversion technique. Lastly, the system
of equations as a fundamental solutions in the case of steady oscillations are obtained

in the present context.
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