
CHAPTER 2

ON MOORE-GIBSON-THOMPSON

THERMOELASTICITY THEORY: DERIVATION

OF GALERKIN-TYPE SOLUTION

2.1 Introduction1

The present chapter of the thesis aims at analyzing the thermoelasticity theory based

on the Moore-Gibson-Thompson heat conduction model as proposed by Quintanilla

(2019). The MGT heat conduction law is developed by introducing thermal relaxation

parameter (τq) in the Green-Naghdi-III heat conduction relation (see section 1.3.2.5).

Subsequently some researchers have been interested in the MGT thermoelastic model

to study the wellposedness and stability of the solution by considering various approx-

imations. Pellicer and Quintanilla (2020) studied the uniqueness of solution and expo-

nential stability of MGT thermoelasticity theory. Bazzara et al. (2021) have discussed

the exponential decay of the radially symmetric solutions. In this context, Jangid and

Mukhopadhyay (2021) have obtained domain of in�uence results in the context of this

new thermoelasticity theory.

In order to broaden the theoretical analysis of this theory, the present chapter derives

the Galerkin-type solution for the MGT thermoelasticity theory. In the studies of elas-

ticity and thermoelasticity theories, the contemporary treatment for several boundary

1The content of this subchapter is published in Acta Mechanica , 232(4), 2021.
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value problems normally involves the construction of the Galerkin type representation

(Galerkin (1930)) of �eld equations by means of various elementary functions like har-

monic, metaharmonic and biharmonic, etc. These are the foundations to obtain the

fundamental solution of the theory. These metaharmonic functions are also known as

the solution of Helmholtz's equation. Some dynamical problems on the basis of the clas-

sical theory of elasticity can be found in the work reported by Nowacki (1964; 1969),

Sandru (1966) and the references therein. In the context of the isothermal theory, the

Boussinesq-Papkovitch-Neuber (BPN) (1973), and Green-Lame (GL) (1975) types so-

lutions for materials with voids, was elaborated by Chandrasekharaiah (1987; 1989).

Ciarletta (1995) derived fundamental solutions and general solutions for the dynamical

theory of binary mixture of an elastic solid. Ciarletta (1999) obtained a Galerkin type

representation of the solution for the linear theory of micropolar thermoelasticity (see

Eringen (1970; 1999), Boschi and Ie³an (1973), Nowacki (1986)) by considering the

GN-II theory. Scalia and Svanadze (2006) presented the Galerkin-type representation

of thermoelasticity theory with micro-temperatures. The Galerkin-type solution for the

equations for the three-phase-lag thermoelasticity theory was established by Mukhopad-

hyay et al. (2010). For Kelvin-Voigt material with void, Svanadze (2014) established

the representation of solution in case of the linear theory of thermo-viscoelasticity. Re-

cently, Gupta and Mukhopadhyay (2019) derived the Galerkin-type representation for

the modi�ed Green-Lindsay (MGL) thermoelasticity theory (Yu et al. (2018)).

The work in the chapter is arranged in the following way. In Section 2.2, the �eld

equations for isotropic elastic material under the Moore-Gibson-Thompson thermoelas-

ticity theory are presented. The Galerkin-type solution of basic governing equations in

terms of the elementary functions is derived in Section 2.3. In Section 2.4, a theorem

representing the Galerkin-type solution of equations for the steady oscillations is ob-

tained. Finally, in Section 2.5, the general solution of the system of equations in the

case of steady oscillations is developed in terms of elementary functions.
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2.2 Governing Equations

Let x = (x1, x2, x3) represents an arbitrary point in three-dimensional Euclidean space.

With the time variable t, an isotropic elastic material that occupies the region W is

considered. Following Quintanilla (2019), the �eld equations for the Moore-Gibson-

Thompson (MGT) thermoelasticity theory in presence of body force f and heat source

R are taken as follows:

µ (∆u)− β grad θ + (λ+ µ) {grad div u}+ ρf = ρü, (2.2.1)

K∆θ̇ +K∗∆θ − βT0 {div ü+τq div
...
u}

−ρcE

{
θ̈ + τq

...
θ
}
= −

(
1 + τq

∂

∂t

)
R. (2.2.2)

Further, the following notations are introduced:

n1 =

(
λ+ µ

ρ

)
, n2 =

µ

ρ
, n3 =

β

ρ
,

g1 (∆, D) = n2∆−D2, g2 (∆, D) = (KD +K∗)∆− ρ cE@1,

@1 (D) =
(
D2 + τq D

3
)
, Dk =

∂k

∂tk
for k = 1, 2, 3.

Therefore, Eqs. (2.2.1) and (2.2.2) take the following forms:

n1 grad div u+ g1u− n3 grad θ = −f , (2.2.3)

g2 θ − β T0 @1 divu = − (1 + τqD)R. (2.2.4)
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2.3 Galerkin-type Solution of Equations of Motion

Now, the matrix di�erential operators are introduced as follows:

Γ (Dx, D) =

 Γ(1) Γ(2)

Γ(3) Γ(4)


4×4

,

where

Γ(1) (Dx, D) =
[
Γ
(1)
kj

]
3×3

, Γ(2) =
[
Γ
(2)
k1

]
3x1

, Γ(3) =
[
Γ
(3)
1j

]
1×3

, Γ(4) = [Γ44]1×1 ,

Γ
(1)
kj (Dx, D) = g1δkj + n1

∂2

∂xk∂xj

,

Γ
(2)
k1 (Dx, D) = −n3

∂

∂xk

,

Γ
(3)
1j (Dx, D) = (−β T0□1)

∂

∂xj

,

Γ44(Dx, D) = g2, Dx =

(
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)
, (2.3.1)

where δkj represents the Kronecker delta for k, j = 1, 2, 3.

After implementing above operators, Eqs. (2.2.3) and (2.2.4) are written as

Γ (Dx, D)U (x, t) = F (x, t) , (2.3.2)

where U = (u, θ), F = {−f ,−(1 + τq D)R} , where (x, t) ∈ W × (0,∞).

Now, in view of the above, the system of equations can be presented as follows:

g1 u+ n1grad divu− β T0□1 grad θ = F ′, (2.3.3)

g2 θ − n3divu = F0, (2.3.4)

where F ′ = (F ′
1, F

′
2, F

′
3) and F0 are the vector component and scalar function, respec-

tively de�ned on the domain W × (0,∞) .

Using matrix operator as de�ned above, Eqs. (2.3.3) and (2.3.4) can be reformulated
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as

Γ T (Dx, D)U (x, t) = M (x, t) , (2.3.5)

where Γ T represents the transpose of the matrix Γ and M=(F ′, F0).

Now, implementing the operator �div� to Eq. (2.3.3), yields

Ω1 div u− βT0 @1 ∆θ = div F ′, (2.3.6)

where Ω1 =
(

λ+2µ
ρ

)
∆−D2.

Therefore, above Eqs. (2.3.4) and (2.3.6) take the matrix form as

Ω (∆, D)V = F̃ , (2.3.7)

where V = (div u, θ), F̃ = (f1, f2) = (div F ′, F0) ,

with

Ω (∆, D) = [Ωkj (∆, D)]2×2 =

 Ω1 −βT0 @1 ∆

−n3 g2


2×2

.

Now, system (2.3.7) yields

ℓ1 (∆, D)V = Φ, (2.3.8)

where

Φ = (Φ1, Φ2) , Φj =
2∑

k=1

Ω∗
kjfk, ℓ1 (∆, D) = det Ω (∆, D) , (2.3.9)

for j = 1, 2 and Ω∗
kj are the co-factors of the elements of the matrix Ω.

Using the operator ℓ1 (∆, D) with Eq. (2.3.3) and then utilizing Eq. (2.3.8) gives the

relation as follows:

ℓ1 (∆, D) g1u = Φ
′
, (2.3.10)
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where

Φ
′
=ℓ1F

′ − grad(n1Φ1 − βT0 @1 Φ2). (2.3.11)

Next, in view of Eqs. (2.3.8) and (2.3.10), the following relation is found:

S (∆, D)U (x, t) = Φ̃, (2.3.12)

where Φ̃ =
(
Φ

′
, Φ2

)
and

S (∆, D) = [ℓkj (∆, D)]4×4 ,

ℓyy = ℓ1 (∆, D) g1, for y = 1, 2, 3,

ℓ44 = ℓ1 (∆, D) , ℓkj = 0, k, j = 1, 2, 3, 4 k ̸= j. (2.3.13)

Further, introducing the operators as

ηk1 (∆, D) = − (n1Ω
∗
k1 − βT0 @1 Ω

∗
k2) ,

ηk2 (∆, D) = Ω∗
k2, k = 1, 2. (2.3.14)

It follows from Eqs. (2.3.9) and (2.3.11) that

Φ′ = (ℓ1I + η11 grad div )F ′ + η21 grad F0, (2.3.15)

Φ2 = η12 div F ′+η22F0, (2.3.16)

where I denotes identity matrix.

Clearly, in view of Eqs. (2.3.15) and (2.3.16), it is obtained that

Φ̃(x, t) = ZT (Dx, D)M (x, t) , (2.3.17)
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where

Z (Dx, D) =

 Z(1) Z(2)

Z(3) Z(4)


4×4

,

Z(1) (Dx, D) =
[
Z

(1)
kj

]
3×3

, Z(2) =
[
Z

(2)
k1

]
3×1

, Z(3) =
[
Z

(3)
1j

]
1×3

, Z(4) = [Z44]1×1 ,

Z
(1)
kj (Dx, D) = ℓ1 (∆, D) δkj + η11 (∆, D)

∂2

∂xk∂xj

,

Z
(2)
k1 (Dx, D) = η12 (∆, D)

∂

∂xk

,

Z
(3)
1j (Dx, D) = η21 (∆, D)

∂

∂xj

,

Z44 = η22 (∆, D) , for k, j = 1, 2, 3. (2.3.18)

Now, by virtue of Eqs. (2.3.5), (2.3.12) and (2.3.17), the following equation is obtained:

S U = ZTΓTU.

Hence,

Γ (Dx, D)Z (Dx, D) = S (∆, D) , as ZTΓT=S. (2.3.19)

Thus, the following lemma is proved.

Lemma-2.3.1: The matrix di�erential operators Γ, Z, and S satisfy Eq. (2.3.19),

where Γ, Z, and S are de�ned by Eqs. (2.3.1), (2.3.18) and (2.3.13), respectively.

Now, let M ′
y(x, t), (y = 1, 2, 3) and ĥ(x, t) be functions de�ned on the region W ×

(0,∞) with M ′ = M ′
y for y = 1, 2, 3 and M̃ =

(
M ′, ĥ

)
.

Then, the following theorem is established that gives the Galerkin-type solution of Eqs.

(2.2.3) and (2.2.4).
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Theorem-2.3.1: Let

u = Z(1)M ′ +Z(2)ĥ, (2.3.20)

θ = Z(3)M ′ +Z(4)ĥ, (2.3.21)

where M ′
y and ĥ are �elds of class C7 and C5, respectively, also satisfy the following

equations:

ℓ1 (∆, D) g1M
′ = −f , (2.3.22)

ℓ1 (∆, D) ĥ = − (1 + τq D)R (2.3.23)

on the region W × (0,∞). Then, U = (u, Θ) yields as the solution of Eqs. (2.2.3) and

(2.2.4).

Proof: From Eqs. (2.3.20) and (2.3.21), it is achieved that

U(x, t) = Z(Dx, D)M̃ (x, t). (2.3.24)

Also, from Eqs. (2.3.22) and (2.3.23), the following is found:

S (∆, D)M̃(x, t) = F (∆, D) . (2.3.25)

Next, in view of Eqs. (2.3.19), (2.3.24) and (2.3.25), ΓU = ΓZM̃ = SM̃ = F is

obtained.

This completes the proof of theorem 2.3.1.

2.4 Galerkin-type Solution of System of Equations for

Steady Oscillations

It is assumed that
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u(x, t) = Re[ũ(x) e−iωt], θ(x, t) = Re[θ̃(x) e−iωt],

f(x, t) = Re[f̃(x) e−iωt], R(x, t) = Re[R̃(x) e−iωt].

Therefore, from Eqs. (2.2.1) and (2.2.2), the system of equations of the steady oscilla-

tions for the MGT thermoelasticity theory are obtained as follows:

µ (∆ũ) + (λ+ µ) {grad div ũ} − β grad θ̃ + ρf̃ = −ω2ρũ, (2.4.1){
K∆(−iω) +K∗∆+ ρcE

(
ω2 + iτqω

3
)}

θ̃ + βT0

{
ω2 div ũ+ iτqω

3 div ũ
}

= − (1− iτqω) R̃, (2.4.2)

where (x, t) ∈ W×(0,∞), i =
√
−1, and ω(> 0) represents the frequency of oscillation.

Now, the following notations are introduced:

Υ (∆) = [Υkj(∆)]2×2 =

 ω2ρ+ (λ+ 2µ)∆ βT0 (ω
2 + iτqω

3)∆

−β (K∗ − iωK)∆ + ρ cE (ω2 + iτqω
3)


2×2

,

ℓ̃1 (∆) = detΥ(∆),

ek1(∆) = −
[
(λ+ µ)Υ ∗

k1 + βT0

(
ω2 + iτqω

3
)
Υ ∗
k2

]
,

ek2(∆) = Υ ∗
k2 for k = 1, 2.

If the equation ℓ̃1 (−λ) = 0 has two roots namely λ2
1 and λ2

2, then ℓ̃1 (∆) can be written

as

ℓ̃1 (∆) =
(
∆+ λ2

1

) (
∆+ λ2

2

)
.

Further, the matrix di�erential operators R and ℓ̃ are introduced which are de�ned by
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R (Dx, D) =

 R(1) R(2)

R(3) R(4)


4×4

,

where R(1) (Dx, D) =
[
R

(1)
kj

]
3×3

, R(2) =
[
R

(2)
k1

]
3×1

, R(3) =
[
R

(3)
1k

]
1×3

, R(4) = [R44]1×1 ,

R
(1)
kj (Dx) = ℓ̃1 (∆) δkj + e11 (∆)

∂2

∂xk∂xj

,

R
(2)
k1 (Dx) = e12 (∆)

∂

∂xk

,

R
(3)
1k (Dx) = e21 (∆)

∂

∂xk

,

R44 = e22 (∆) , for k, j = 1, 2, 3 (2.4.3)

and

ℓ̃ (∆, D) =
[
ℓ̃kj(∆)

]
4×4

, ℓ̃yy = ℓ̃1(∆)
[
ω2ρ+ µ∆

]
, y = 1, 2, 3,

ℓ̃44 = ℓ̃1(∆), ℓ̃kj = 0, k, j = 1, 2, 3, 4, k ̸= j. (2.4.4)

Let Q̃y, for y = 1, 2, 3 and s are functions on W . Here Q̃=
(
Q̃1, Q̃2 ,̃ Q3

)
and Q =(

Q̃, s
)
. Hence, by taking into account the Theorem-2.3.1, the Galerkin-type solution

to the system of equations for steady oscillations is derived by the following theorem.

Theorem-2.4.1: Let

ũ = R(1)Q̃+R(2)s, (2.4.5)

θ̃ = R(3)Q̃+R(4)s, (2.4.6)

where Q̃y and s are �elds of class C6 and C4, respectively, and also satisfy the following

equations:
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ℓ̃1 (∆)
[
ω2ρ+ µ∆

]
Q̃ = −f̃ , (2.4.7)

ℓ̃1 (∆) s = − (1− iτq ω) R̃, (2.4.8)

on W . Then,
(
ũ, θ̃

)
is the solution of Eqs. (2.4.1) and (2.4.2).

2.5 General Solution of System of Equations for Steady

Oscillations

If external body force f̃ and external heat source R̃ are assumed to be absent, then

Eqs. (2.4.1) and (2.4.2) can be written as

(
ω2ρ+ µ∆

)
ũ+ (λ+ µ) {grad div ũ} − β grad θ̃ = 0, (2.5.1){

(K∗ − iωK)∆+ρcE
(
ω2 + iτqω

3
)}

θ̃ + βT0

{
ω2+i τq ω

3
}
div ũ = 0. (2.5.2)

Firstly, the coming lemma for the above system of equations is proposed.

Lemma-2.5.1: If
(
ũ, θ̃

)
is yielded as a solution of Eqs. (2.5.1) and (2.5.2), then

ℓ̃1 (∆) div ũ = 0, (2.5.3)

ℓ̃1 (∆) θ̃ = 0, (2.5.4)(
ω2ρ′ + µ∆

)
curl ũ = 0. (2.5.5)

Proof: Firstly, by applying the operator div to Eq. (2.5.1), it is acquired that

{
ω2ρ+ (λ+ 2µ)∆

}
div ũ− β∆θ̃ = 0, (2.5.6)
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After eliminating θ̃ from Eqs. (2.5.2) and (2.5.6), the following is obtained:

ℓ̃1div ũ = 0.

Again, elimination of div ũ from Eqs. (2.5.2) and (2.5.6), gives

ℓ̃1θ̃ = 0.

Additionally, by applying the �curl� operator to Eq. (2.5.1), it is found that(
ω2ρ+ µ∆

)
curl ũ = 0.

This proves the Lemma-2.5.1.

Theorem-2.5.1: If
(
ũ, θ̃

)
is evaluated as a solution of Eqs. (2.5.1) and (2.5.2), then

ũ(x) = β grad
2∑

k=1

ϕk(x) + Ψ (x), (2.5.7)

θ̃(x) =
2∑

k=1

akϕk(x), (2.5.8)

where ϕk (k = 1, 2) and Ψ = (Ψ1,Ψ2,Ψ3) satisfy the following equations:

(
∆+ λ2

k

)
ϕk(x) = 0, (2.5.9)(

∆+
ω2ρ

µ

)
Ψ (x) = 0, x ∈ W (2.5.10)

divΨ (x) = 0, (2.5.11)

and

ak = − (λ+ 2µ)λ2
k + ω2ρ, for k = 1, 2. (2.5.12)

Proof: Suppose
(
ũ, θ̃

)
be a solution of Eqs. (2.5.1) and (2.5.2). Then, by taking into

consideration ∆ũ = grad divũ− curl curl ũ and Eq. (2.5.1), it is obtained that
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ũ =
1

ω2ρ

[
grad

{
− (λ+ 2µ) div ũ+ βθ̃

}
+µ curl curl ũ

]
. (2.5.13)

Now, introducing the notation Ψ (x) as

Ψ (x) =
µ

ω2ρ
curl curl ũ (2.5.14)

with Eq. (2.5.5) and in view of div curl ũ = 0 for x ∈ W , it is seen that Eqs. (2.5.10)

and (2.5.11) can be easily obtained.

Now, let

ϕy = by


2∏

k = 1

k ̸= y

(
∆+ λ2

k

)

θ̃, (2.5.15)

where

by =


ay

2∏
k = 1

k ̸= y

(
λ2
k − λ2

y

)


−1

, y = 1, 2. (2.5.16)

Hence, Eqs. (2.5.4) and (2.5.15) yield Eqs. (2.5.8) and (2.5.9).

Further, using Eqs. (2.5.1), (2.5.8), (2.5.9) and (2.5.12), it is obtained that

div ũ = −β
2∑

k=1

λ2
kϕk. (2.5.17)

Hence, Eq. (2.5.13) yields

ũ =
1

ω2ρ

[
grad

{
(λ+ 2µ) β

2∑
k=1

λ2
kϕk + βθ̃

}
+µ curl curl ũ

]
. (2.5.18)
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Finally, with the help of Eqs. (2.5.12) and (2.5.14), Eq. (2.5.18) yields

ũ(x) = β grad
2∑

i=1

ϕk(x) + Ψ (x).

It completes the proof of Theorem 2.5.1.

Theorem-2.5.2: If
(
ũ, θ̃

)
is provided as in Eqs. (2.5.7) and (2.5.8), where ϕk and Ψ

satisfy Eqs. (2.5.9)-(2.5.11), then
(
ũ, θ̃

)
is considered as the solution of Eqs. (2.5.1)

and (2.5.2) on W.

Proof: With the help of Eqs. (2.5.9) and (2.5.10), Eq. (2.5.7) can be represented as

∆ũ = −β grad
2∑

k=1

λ2
kϕk −

ω2ρ

µ
Ψ , (2.5.19)

grad div ũ = −β grad
2∑

k=1

λ2
kϕk. (2.5.20)

Firstly, changing ũ and θ̃ as de�ned in Eqs. (2.5.7) and (2.5.8) on the left-hand side of

Eq. (2.5.1). Then, by using Eqs. (2.5.9), (2.5.12) and (2.5.20), it is found that

(
ω2ρ+ µ∆

)
ũ+ (λ+ µ) grad div ũ− β grad θ̃

= −β grad
2∑

k=1

{
(λ+ 2µ)λ2

k + ak
}
ϕk − ω2ρΨ

+ω2ρ

(
β grad

2∑
k=1

ϕk + Ψ

)
.

After rearranging above expression, the following is obtained:

(
ω2ρ+ µ∆

)
ũ+ (λ+ µ) grad div ũ− β grad θ̃ = 0,

which is the �eld Eq. (2.5.1).

Similarly, substituting ũ and θ̃ on the left-hand side of Eq. (2.5.2) as given in Eqs.
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(2.5.7) and (2.5.8) and utilizing Eqs. (2.5.9), (2.5.12) and (2.5.17), �nally the following

is acquired:

{
(K∗ − iωK)∆ + ρcE

(
ω2 + iτqω

3
)}

θ̃ + βT0

(
ω2 + iτqω

3
)
div ũ

=
{
(K∗ − iωK)∆ + ρcE

(
ω2 + iτqω

3
)}( 2∑

k=1

akϕk

)
+ β2T0

(
ω2 + iτqω

3
)(

−
2∑

k=1

λ2
kϕk

)

=
2∑

k=1

[
ak
{
(K∗ − iωK) (−λ2

k) + ρcE
(
ω2 + iτqω

3
)}

+ β2T0

(
ω2 + iτqω

3
)
(−λ2

k)
]
ϕk

=0 (by using ℓ̃1
(
−λ2

k

)
= 0 for k = 1, 2).

Hence, the �eld Eq. (2.5.2) is satis�ed.

Therefore, the general solution of the system of Eqs. (2.5.1) and (2.5.2) is obtained in

terms of the metaharmonic functions ϕk and Ψ .

2.6 Conclusion

The Moore-Gibson-Thompson thermoelastic model proposed by Quintanilla (2019) is

studied theoretically in the current chapter. The Galerkin-type solution of basic govern-

ing equations is acquired in terms of the elementary functions. A theorem representing

the Galerkin-type solution of equations for the steady oscillations in the framework

of discussed linear thermoelastic model is provided. Finally, the general solution of

the system of equations in the case of steady oscillations is also derived in terms of

metaharmonic functions.
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