
CHAPTER 1

INTRODUCTION AND LITERATURE

REVIEW

1.1 Mathematical Modeling and Applications

Mathematical modeling is the characterization and simpli�cation of real-world problems

and the behavior of objects in terms of mathematics. In other words, the process

of developing mathematical formulae, equations, and algorithms to represent events

or systems of the real world is known as mathematical modeling. There are several

di�erent �elds where mathematical modeling is utilized, including:

� In physics, mathematical models are frequently employed to explain physical

mechanisms and predict results.

� In complex structures like bridges, electrical circuits, and buildings, engineers

use mathematical models to estimate performance, optimize designs, and ensure

security.

� Environmental systems, such as ecosystem dynamics, air pollution, water pollu-

tion, and climate change are studied and managed using mathematical models.

The formulation of the mathematical model for any device and phenomenon is based

on their behavior in �real world� and �conceptual world�. The external world where we

observe behaviors and various phenomena is called the real world. These behaviors and
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phenomena are either natural or produced by artifacts. However, the world of our mind

which tries to understand what is going on in the real or external world is the conceptual

world. We see the conceptual world in three di�erent ways: observation, modeling, and

prediction. Fig. 1.1.1 can illustrate this concept of mathematical modeling:

Figure 1.1.1: Graphical illustration of Mathematical modeling

Modeling, therefore, requires mathematical ideas and methods to investigate, assess

and anticipate the behavior of complex systems. The accuracy of the model depends

on both the state of knowledge about a system and how well the modeling is done. The

present thesis is aimed at studying some important aspects of various thermoelastic

systems using some recent thermoelastic models and understanding their e�ects in

vibration analysis of various micro and nano mechanical structures.
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1.2 Fourier's Law of Heat Conduction and its Draw-

back

In order to study Fourier's Law of heat conduction, we need to discuss the meaning of

heat, heat conduction and heat �ux.

� Heat is a type of energy that may be transmitted from the boundaries of a system

when there is a temperature di�erence. There are only three ways to transmit

heat: conduction, convection, and radiation.

� Heat conduction refers to the process of heat transfer when one area of a

material is hotter than the other, which is the result of direct contact between

the materials.

� Heat �ux is the rate of heat transfer per unit area. The following formula

determines the heat �ux (−→q ) mathematically:

−→q = lim
A→0

Q

A
,

where Q is the total amount of heat transfer and A refers to the area of surface.

1.2.1 Fourier's law of heat conduction:

In an isotropic and homogeneous medium, Fourier's law of heat conduction states that

the heat �ux −→q (−→℘ , t) is the instantaneous result of negative temperature gradient
−→
∇T (−→℘ , t):

−→q (−→℘ , t) = −K
−→
∇T (−→℘ , t),

where K is a thermal conductivity, ∇⃗ is gradient operator and −→℘ denotes position

vector in body.
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1.2.2 Drawbacks of fourier's law:

Even though Fourier's Law of heat conduction is a fundamental concept that exhibits

heat transfer by conduction, it has several restrictions and disadvantages. Consider the

following drawbacks:

� In some circumstances, especially when there are signi�cant temperature changes

or when dealing with non-linear materials, this law may fail to operate.

� At extremely short times (i.e., 10−12s to 10−15s), this Fourier's law is physically

unrealistic for heat conduction because it predicts an in�nite speed of heat prop-

agation

� Various materials, such as anisotropic materials, have varying thermal conduc-

tivity along various axes, so Fourier's law is not an adequate explanation for the

heat transfer behavior of those materials.

1.3 Thermoelasticity: De�nition and Applications

The subject thermoelasticity illustrates how the size and shape of a deformable solid

body can vary when it is placed in an elevated temperature �eld. This considers that

even in the absence of any external mechanical forces, deformation and, consequently,

stress may develop in the body. On the other hand, the time-varying deformation of a

body is always associated with a change in the heat content and, consequently, with a

change in the body temperature. Thermoelasticity theory is therefore an expansion of

elasticity theory that considers thermal e�ects, including thermal stress, strain, and also

deformation. It generalizes both the elasticity theory and the heat conduction theory.

The internal energy of the body under this theory, therefore, becomes a function of

the deformation and the temperature. It means that the concept of thermoelasticity
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admits that the heat conduction equation contains a deformation element alongside the

temperature term that appears in the equation of motion.

Due to its broad applications across di�erent sectors, thermoelasticity theory has

attracted a great deal of interest from engineers and researchers in a variety of scienti�c

and technological disciplines. The design and analysis of structural components that are

subject to heat and mechanical loads make use of thermoelasticity theories. Thermoe-

lasticity theory is employed in the aerospace industry to assess and create spacecraft

and aircraft parts that are impacted by extreme temperature changes. Various material

characterization techniques, such as measuring thermal expansion, use thermoelastic-

ity theory. Thermoelasticity also serves as the foundation for several other scienti�c

�elds, including aerothermoelasticity, viscothermoelasticity, magnetothermoelasticity,

porothermoelasticity, and thermo-piezoelectric theory.

1.3.1 Classical coupled theory of thermoelasticity and its limi-

tations

Thermoelasticity theory has made considerable progress through extensive research

work carried out in this area during the last several decades. However, investigations

in the �eld of thermoelasticity have been originated from extensive research work car-

ried out under the so-called theory of thermal stresses. This theory is based on the

simplifying assumption that the in�uence of the strain on the temperature �eld may be

neglected and this theory is therefore termed as uncoupled theory of thermoelasticity.

This theory is not well adapted to two unnatural occurrences because of its physical be-

havior. This theory is based on Fourier's law of heat conduction and the parabolic heat

equation leads to an in�nite speed of thermal waves, which contradicts the real-world

phenomenon. Furthermore, the absence of an elastic term in the heat equation under

this theory suggests that elastic changes do not result in heat e�ects, and vice versa.

The second issue of this uncoupled theory has been addressed by the thermoelasticity
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theory given by Biot (1956) for the �rst time. Based on irreversible thermodynamic

processes, Biot's theory states that any di�erence in temperature results in a change in

strain measurements of elastic bodies and vice versa; it is therefore called fully classi-

cal coupled thermoelasticity theory (CTE). It is worth recalling that Biot's theory was

based on the concept of coupling between strain and temperature �elds �rst postulated

by Duhamel (1837) and Neumann (1843) independently. Biot's theory is considered to

be an elegant model for studying the coupling e�ects of elastic and thermal �elds. How-

ever, it has been reported in the literature during the last several years that Fourier's

law involved in this theory leads to a di�usion-type heat conduction model that indi-

cates a fatal paradox regarding the in�nite speed of thermal waves. Hence, according

to this theory, it is possible to successfully explain thermo-mechanical interactions in

thermoelastic problems with low heat �uxes and large time responses. This classical

coupled thermoelasticity theory, however, fails to properly depict the thermoelastic re-

sponse of solids when exposed to short laser pulses, rapidly propagating crack tips,

and description of thermoelastic material at low temperatures, etc. Additionally, the

devices at the micro- and nanoscale have shown di�erent behavior that is incompatible

with the classical thermoelasticity theory.

1.3.2 Generalized thermoelasticity

The paradox related to the in�nite speed behavior of thermal propagation has aroused

immense focus from the mathematical and mechanical perspective, which suggests that

the classical theory needs a well-grounded modi�cation. It is worth to be mentioned

that as early as in 1867, Maxwell (1867) postulated for the �rst time that �the ther-

mal disturbance is a wave like phenomenon rather than di�usion phenomenon� and

indicated the modi�cation of Fourier law (see Chandrasekharaiah (1998)). Later on

several eminent researchers including Tisza (1947), Landau (1941), and Peshkov (1944)

discussed the wave like behavior of heat propagation, which is now referred to as the
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"second sound e�ect�. Experimental evidence of `second sound e�ect' in materials have

also been reported by various other researchers like Maurer and Herlin (1949), Pel-

lam and Scott (1949), Atkins and Osborne (1950), Ackerman et al. (1966), Ackerman

and Overton (1969), Bertman and Sandiford (1970), McNelly et al. (1970), Jackson

et al. (1970), Jackson and Walker (1971), Rogers (1971), etc. In view of this, several

researchers have contributed and modi�ed Fourier's law as well as coupled thermoelas-

ticity in order to address their shortcomings. The �rst group of generalized theories

incorporates the concept of phase-lags/thermal relaxation parameters for constitutive

variables in the Fourier law of heat conduction. The second group of thermoelasticity

theories uses an alternate improvement method to get reconditioned constitutive equa-

tions by keeping Fourier's law unchanged. Another thermoelastic theory is developed by

an alternative formulation of the coupled theory by introducing new constitutive �eld

variables in the derivation of governing equations. The objective of such generalized

theories has been to overcome the classical theory's apparent paradox related to in�nite

speed behavior. Because of their experimental evidence of the �nite speed of heat wave

propagation, generalized thermoelasticity theories are considered to be more e�cient in

solving practical thermodynamical problems than conventional thermoelasticity theory,

particularly those involving short time intervals and high heat �uxes. The following

subsections will provide a brief introduction to the generalized thermoelasticity theories

that are relevant to the present study.

1.3.2.1 Lord-Shulman thermoelasticity (LS) theory based on Cattaneo-

Vernotte law:

By including a time relaxation parameter τq with the heat �ux rate
−→̇
q term in Fourier's

law, Cattaneo (1958) and Vernotte (1958; 1961) have proposed the �rst modi�ed ver-

sion to Fourier's law of heat conduction. This modi�ed law, also known as CV law,

leads to a hyperbolic type heat transport equation allowing a �nite speed of the thermal
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signal. Subsequently, Lord and Shulman (1967) introduced the �rst generalized ther-

moelasticity theory (LS theory) with the non-Fourier e�ect-based Cattaneo-Vernotte

(CV) heat conduction law. This generalized theory establishes the �nite speed of ther-

mal signals and resolves the paradox of in�nite heat propagation of Biot's theory. The

heat conduction law (CV's law) under LS thermoelasticity theory for a homogeneous

and isotropic medium can be written as

−→q (−→℘ , t) + τq
∂−→q (−→℘ , t)

∂t
= −K

−→
∇T (−→℘ , t).

Here, τq is a time lag parameter, which is required to establish a steady-state heat

conduction in the medium.

1.3.2.2 Temperature-rate dependent thermoelasticity theory

The second generalization to the coupled theory of thermoelasticity is known as the

theory of thermoelasticity with two relaxation times that also admits �nite speed of heat

propagation. On the basis of a new entropy production inequality developed by Muller

(1971), a generalization of constitutive relations of thermoelasticity theory has been

proposed by Green and Laws (1972). Subsequently, Green and Lindsay (1972) obtained

an explicit version of these constitutive equations and developed a new modi�cation

of coupled thermoelasticity theory. This theory is also referred to as temperature-

rate-dependent thermoelasticity (TRDTE) theory as it includes temperature-rate terms

among the constitutive variables and two constants that act as thermal relaxation

times. This theory modi�es all the equations of the coupled theory, not only the heat

conduction equation. The classical Fourier's law of heat conduction is not violated in

this theory if the medium under consideration has a center of symmetry.
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1.3.2.3 Green-Naghdi (GN) thermoelasticity theory

By introducing thermal displacement variable, as the time integral of absolute tem-

perature function, in Fourier's law of heat conduction, Green and Naghdi (1991; 1992;

1993) proposed three versions of alternative thermoelasticity theory (GN theory) for

homogeneous and isotropic material. The GN theory is divided into three distinct un-

conventional types of generalized theories, called as GN-I, GN-II, and GN-III. As the

linearized form of the GN-I produces the in�nite speed of thermal wave, it is the same

as the well-known CTE. The GN-II model admits a �nite speed of heat propagation

and the GN-III model is a merger of the two earlier models (GN-I and GN-II) and

admits the dissipation of energy in general. The heat conduction law for type GN-III

theory is of the form:

−→q (−→℘ , t) = −
(
K
−→
∇T (−→℘ , t) +K∗−→∇υ(−→℘ , t)

)
.

Here, the essential material parameter K∗ is the conductivity rate of the material

and υ represents thermal displacement, where the relation υ̇ = T is available. The

above heat conduction law can be reduced into the heat conduction relation of other

two theories (GN-1 and GN-II) as follows:

� When K∗ = 0, then −→q (−→℘ , t) = −K
−→
∇T (−→℘ , t) (GN-I theory)

� When K = 0, then −→q (−→℘ , t) = −K∗−→∇υ(−→℘ , t) (GN-II theory)

1.3.2.4 Dual-Phase-Lag (DPL) and Three-Phase-Lag (TPL) thermoelastic-

ity theories

During 1995-1998, another modi�cation in Fourier's law and also in thermoelasticity

theory is proposed. This modi�ed model is now called as dual phase-lag model that

can explain all fundamental properties in di�usion, thermal waves, and phonon-electron

scattering in heat transport phenomenon associated with small-time responses. Tzou
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(1995) developed the theory of heat conduction by introducing the idea of phase-lag.

To account for the microscopic e�ects in the heat transport phenomenon and the na-

ture of interaction of phonon-electron, he introduced two phase-lag parameters, one for

the heat �ux vector and the other for the temperature gradient vector in the Fourier's

law. This modi�ed heat conduction relation is termed as dual-phase-lag heat conduc-

tion model. Later on, Chandrasekharaiah (1998) extended this DPL heat conduction

theory and established an alternative thermoelasticity theory called the dual-phase-lag

thermoelasticity theory. The heat conduction law for DPL thermoelasticity theory is

expressed as follows:

−→q (−→℘ , t+ τq) = −K
−→
∇T (−→℘ , t+ τT ),

where, the phase-lag (τq) of the heat �ux vector captures the thermal wave behavior,

a small-scale reaction in time. Moreover, the phase-lag τT of temperature gradient

captures the e�ect of phonon-electron interactions.

Subsequently, based on the type-III model developed by Green and Naghdi, Roy-

choudhuri (2007) introduced three phase-lag parameters in the heat �ux vector (−→q ),

temperature gradient
(−→
∇T

)
and thermal displacement gradient

(−→
∇υ
)
to elaborate

the e�ect of phono-electron interactions and phonon-scattering at a microscopic level.

The heat conduction constitutive relation for TPL (three phase-lag) thermoelasticity

theory involving three di�erent phase-lag parameters is given as follows:

−→q (℘⃗, t+ τq) = −
[
K
−→
∇T (℘⃗, t+ τT ) +K∗−→∇υ(℘⃗, t+ τυ)

]
.

Here, τυ is a phase-lag of thermal displacement gradient vector.

10



CHAPTER 1. Introduction and Literature Review

1.3.2.5 MGT thermoelasticity theory

Recently, Quintanilla (2019) has developed an innovative Moore-Gibson-Thompson

(MGT) thermoelasticity theory that gained serious attention from researchers, which

is a combination (or generalization) of the Lord-Shulman and Green-Naghdi thermoe-

lasticity theory of type III. LS and GN-III models can be recovered when we omit the

dependence with respect to suitable variables in this model. The following is the heat

conduction law due to the MGT thermoelasticity theory:

−→q (−→℘ , t) + τq
∂−→q (−→℘ , t)

∂t
= −

(
K
−→
∇T (−→℘ , t) +K∗−→∇υ(−→℘ , t)

)
.

1.4 Development of Micro/Nano-Electromechanical Sys-

tems

Nowadays, Microelectromechanical systems (MEMS) and nanoelectromechanical sys-

tems (NEMS), which operate at the micro- and nanoscale, combine mechanical com-

ponents with sensors, actuators, and electronics. Due to their excellent characteristics,

Micro and Nanoelectromechanical systems (MEMS/NEMS) draw considerable atten-

tion for a great number of applications across various rapidly expanding mechanical

and civil engineering nanotechnology sectors. Nanotechnology has emerged in the last

decade, allowing the accurate prediction of the natural frequency of the nanobeam

for specialized applications such as micro-electromechanical resonators, nanoscale ac-

tuation, resonator sensors and detection, etc. MEMS-based devices are used in the

manipulation and control of �uid at small ranges in the order of microliters or picol-

iters. In optical systems, these devices are often used to develop digital projectors and

optical �lters with micro-mirror arrays to adjust the light path. A signi�cant impact of

MEMS and NEMS on the healthcare industry has been reported to enhance the func-
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tionality of biomedical diagnostic equipment, as well as improve their compatibility. In

the analysis of blood-cell separation, the MEMS specialized devices gained tremendous

popularity and evolved in the past two decades. The actual performance of dynamic

systems can be captured by the modeling of such MEMS/NEMS devices. Due to the

interaction of mechanical and electrical characteristics at the nanoscale, resonators are

the most common structures used in MEMS/NEMS systems. The micro and nano res-

onators maximize operating speed and sensitivity while utilizing minimal energy during

vibration.

1.4.1 Micro and nanomechanical resonators

Micro and nanomechanical resonators are devices that exhibit the resonance phenomenon

at a speci�c frequency. The rectangular beam and thin plates are the most common

structures for designing the sensor and resonators. The creation of nanoscale resonators

has gained signi�cant attention from researchers, recently. When resonators are devel-

oped, one of the essential features to ensure high sensitivity and resolution is the quality

factor (QF), which interprets dissipated energy due to both extrinsic and intrinsic en-

ergy loss mechanisms in the system. Therefore, QF control is an essential task for

microelectromechanical systems (MEMS). In the real world, maximum energy dissipa-

tion and a low-quality factor are fatal �aws that hinder the practical problem. During

the vibration process, a high QF for micro and nano resonators indicates low energy

dissipation, implying higher detection resolution and indicates excellence performance.

In an another way, a resonator's e�ciency and selectivity are measured by contrasting

the energy stored there with the energy lost during each cycle. By utilizing appropri-

ate intrinsic and extrinsic support technologies, quality factor enhancement is mainly

focused on reducing the various loss factors during oscillation. The QF of resonators

can be de�ned in the following way:
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Quality factor (QF) = 2π

(
Stored energy

Loss of energy(dissipated energy)

)
.

1.4.2 Thermoelastic damping (TED)

The comprise of several dissipation mechanisms like thermoelastic damping, support

loss, air damping, etc. could administer the performance of the resonator. A high

QF (a dimensionless parameter) is required as a priority to reduce energy loss during

vibration, thus being the goal of MEMS design. The following �ow chart characterizes

the several energy loss factors in the small-scale resonator.

Figure 1.4.1: Energy loss factors in resonators

The irreversible heat �ow within an elastic body is a signi�cant source of TED,

among many other energy dissipation mechanisms. The bending structure goes under

tension and compression at temperature increments or decrements, which produce a

thermal gradient inside the material of the deforming system. According to the practical

�ndings of the research, thermoelastic damping eventually came to be acknowledged as

one of the unavoidable sources of energy loss in microstructures. Moreover, there is no

way to recover the energy loss during the process of the deforming structure returning to

its initial zero-bending stress. Structural design is the only way to optimize TED, but it

cannot be completely eliminated. Therefore, in order to design high-performance small-

size resonators, it is required to examine the thermo-mechanical coupling phenomenon
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and construct a theoretical TED model. In many micro devices, maintaining the various

energy loss factors results in improved stability, less power consumption, and increased

resonator sensitivity.

1.4.3 Some micro-structure based beam and plate theories

1.4.3.1 Classical Euler-Bernoulli beam theory

A fundamental model is used to examine the performance of beam when loads are

imposed, and it is referred to as the classical Euler-Bernoulli beam theory or engineer

beam theory. In the 18th century, Leonhard Euler and Daniel Bernoulli developed it,

and it remains an important discovery in structural engineering and mechanics. The

Euler-Bernoulli beam theory analyses the small de�ection caused by lateral stress by

obeying Hooke's law for homogeneous and isotropic material. The classical beam theory

implies that irrespective of deformation, the cross-sections of the beam stay plane and

normal to the longitudinal axis of the beam. This implies that shear deformation and

rotational e�ect phenomenons do not occur in this beam model. The comprehensive

study of small de�ection, bending stress, and the e�ect of applied forces can be analyzed

utilizing the Euler-Bernoulli beam theory.

The fourth-order linear di�erential equation of motion which governs the beam's

behavior can be written as

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
− f(x, t) = 0.

Here, E, I, ρ and A denote Young's modulus, moment of inertia, density, and beam

cross section, respectively. w is a small de�ection in the beam and f(x, t) represents

the lateral load.
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1.4.3.2 Timoshenko beam theory

In the twentieth century, the Timoshenko beam theory was one of the remarkable

development of structural dynamics consisting of shear and rotatory inertia e�ects

as contributed by Stephen Timoshenko. Timoshenko beam theory is an extension of

the Euler-Bernoulli beam theory that gives an improved representation of thick beam

behavior under high shear forces. Timoshenko beam theory, which makes more accurate

predictions than the conventional beam theory, is frequently utilized in engineering

constructions with thick cross-sections or when the height-to-length ratio of the beam

is small. Shear deformations and rotational e�ects play a key role in the di�erence

between the Timoshenko beam and Euler-Bernoulli beam theories. In addition, this

beam theory allows the shape of the cross-section can not remain plane and normal

after deformation because of shear forces. The Timoshenko beam theory leads to the

following partial di�erential equation to predict the motion of the beam:

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
− ρI

(
1 +

E

KG

)
∂4w

∂x2∂t2
+

ρ2I

KG

∂4w

∂t4
− f(x, t) = 0.

Here, G is a shear modulus.

1.4.3.3 Kirchho� plate theory

Kirchho� plates are one of the most basic and crucial structural components in solid

mechanics because of their practical importance. Kirchho� plate theory, also known

as Kirchho�-Love theory, is named after the German physicist Gustav Kirchho� and

is used to describe stress and deformation behavior in thin elastic plates under various

loading conditions. When aspect ratios (height-to-length) are low, the Kirchho� plate

theory neglects shear stress and shear deformation. The following assumptions form

the foundation of this theory:

� The thickness of plate is thin as compared to its length and width, and it does
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not alter when deformed.

� A plate formed of homogeneous and isotropic material experiences only small

deformation, guaranteeing its linear elastic properties.

� Deformation does not a�ect the middle surface of the plate, which remains plane

and normal to the surface.

Kirchho� plate theory provides the following equation of motion for moments, shears,

and uniform or non-uniform loads:

Z

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂z4

)
+ 2ρh

∂2w

∂t2
+ f(x, y, t) = 0.

Here, bending sti�ness and load at a plate surface are denoted by Z and f(x, y, t),

respectively. Also, h refers to the plate thickness.

1.4.4 Background of non-classical continuum theories

There has been signi�cant interest placed on small-scaled structures due to their excep-

tional characteristics, however, it may be challenging to comprehend their mechanical

properties. For a full understanding of mechanical behavior and capture of size e�ects,

it is therefore vital to incorporate these advanced small-scaled structures into classical

and non-classical continuum elasticity theories, including couple stress theory (Toupin

(1962), Mindlin and Tiersten (1962), Koiter (1964)), nonlocal elasticity theory (Erin-

gen (1972; 1983)), strain gradient theory (Lam et al. (2003)), modi�ed couple stress

theory (Yang et al. (2002)), and nonlocal strain gradient theory (Lim et al. (2015)).

These higher-order continuum theories incorporate the additional material length scale

parameters, which capture the size e�ect at the micro and nanoscale.
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1.4.4.1 Nonlocal elasticity theory

The nonlocal continuum theory is an attractive approach for modeling of nanostruc-

tures' mechanical properties. Firstly, the literature of Kroner (1967) and Kunin (1968)

can be traced as the origins of nonlocal elastic continuum mechanics for long-range

interactions. Thereafter, Eringen (1972; 1983) proposed the improved formulation of

nonlocal elasticity theory to overcome the drawback related to sharp geometrical singu-

larities in classical (local) elasticity theory. Also, it was well known that the Eringen's

nonlocal elasticity theory is applicable for both linear isotropic and homogeneous ma-

terials.

Eringen's nonlocal elasticity theory is a mathematical framework widely employed

for investigating the behaviors of micro/nano structural elements that exhibit nonlocal

e�ects. The nonlocal theory of elasticity di�ers from the classical theory of elasticity in

that the stress here is in�uenced by strain at nearby points as well because of atomic

forces and micro/nanoscale e�ects. The integral type constitutive equations of Eringen's

theory were introduced �rst, afterwards, a di�erential form with a kernel function was

introduced to capture nonlocal e�ects as follows:

(
1− κ∇2

)
σnonlocal
ij = σlocal

ij , κ = (e0a)
2 .

Here, σlocal
ij , σnonlocal

ij and ∇2 are local stress, nonlocal stress and Laplacian operator,

respectively. κ is a non-local parameter, where a represents internal characteristic

length and e0 is a material constant.

1.4.4.2 Modi�ed couple stress theory (MCST)

The classical continuum theory assumes that the matter in a body is distributed con-

tinuously. The purpose of this uniform distribution is to investigate the behavior of

materials at a macroscale. However, the mechanical behavior of micro/nano structures
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in engineering �elds became questionable to many researchers due to the lack of an

internal material length-scale parameter in classical deformation theory for MEMS. To

solve the di�culties in the classical continuum theory (CCT) regarding material length-

scale parameters, it was an advantage to reformulate and extend the CCT theory with

the material length-scale parameters. Therefore, the size dependent continuum theo-

ries were introduced with the conjunction of couple stresses. During the early 1960s,

researchers such as Koiter (1964), Mindlin and Tiersten (1962) developed the couple

stress theory with the merit of accounting for two additional material constants. Later

on, alternative elasticity theory, such as modi�ed couple stress theory (MCST) has

been proposed to adequately account for the accurate size e�ect. MCST is character-

ized by only one additional material length scale parameter, instead of two classical

material constants. Based on the couple stress theory and containing only one length

size parameter, Yang et al. (2002) introduced the MCST for isotropic materials where

the curvature tensor and couple stress tensor are both symmetric. The de�ned strain

energy function Us in MCST satis�es

Us =

�

V

(σijeij +Υijχij) dV,

where

Υij = 2µl2χij.

Here, Υ represents the couple stress tensor and χij represents the component of the

rotation gradient tensor χ. l refers to the material length size parameter.

1.4.4.3 Nonlocal strain gradient theory (NSGT)

The discrepancy between experimental and classical continuum mechanics results aris-

ing from a wide variety of nanoscale investigations demonstrates that the classical theory

might not be able to accurately predict the response of nanostructures since it does not
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take into account the size-scale parameters. An improved size-dependent strain gradi-

ent theory based on three length scale parameters for the dilatation gradient vector, the

curvature tensor and the deviatoric stretch gradient tensor were proposed by Lam et

al. (2003). However, more length scale parameters involved in this non-classical theory

have created signi�cant confusion among researchers over recent years and e�orts are

made to reduce the number of independent material constants. Several studies have

con�rmed that the size e�ect in nonlocal theory leads to sti�ness softening, whereas

the size-dependent strain gradient theory illustrates the sti�ening-hardening in�uence

in microstructural deformation. By combining nonlocal elasticity theory and strain gra-

dient theory, Lim et al. (2015) developed a comprehensive higher-order nonlocal strain

gradient theory (NSGT) based on the observation that materials at small scales exhibit

either softening or sti�ening behaviors in a more accurate way. Two non-classical scale

parameters (the nonlocal parameter and the strain gradient coe�cient) are used in this

pure nonlocal strain and strain gradient driven theory. Total stress is a key postulate

of this theory, which is determined by the nonlocal e�ects of strain and strain gradient

�elds. According to this proposed theory, total stress tensor σT
ij(x) is fusion of both non

local elastic stress tensor σ(0)
ij (x) and higher order strain gradient stress tensor σ(1)

ij (x),

which is de�ned as follows:

σT
ij(x) = σ

(0)
ij (x)−∇σ

(1)
ij (x),

where ∇ is a gradient operator.

1.5 Literature Review

In view of the wide applications to numerous problems in engineering and technol-

ogy, thermoelasticity theories have aroused much interest in the last few decades and

several researchers have applied coupled thermoelasticity theories to investigate various
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problems concerning thermoelastic interactions in di�erent kinds of media. Extensive

review works carried out on various thermoelasticity theories are available in the re-

view articles and books written by Chandrasekharaiah ((1986); (1998)), Hetnarski and

Eslami (2009) and Ignaczak and Ostoja-Starzewski (2009) and also in the Ph.D. theses

of Roushan Kumar (2010), Harendra Kumar (2022). The present section of the thesis

will give the state of art of the literature relevant to the present thesis and gain an

understanding of some recent generalized thermoelasticity theories and their uses in

vibration analysis of various small scale structures.

Studies of elasticity and thermoelasticity theory normally use Galerkin represen-

tation (Galerkin (1930)) of �eld equations to solve boundary value problems. These

representations are constructed using several elementary functions, including harmonic,

metaharmonic, and biharmonic functions. These are the foundations to obtain the fun-

damental solution of the theory. Therefore, the Fundamental solution and Galerkin-

type representation of the solution of thermoelasticity theory are of much interest of

researchers. First, Iacovache (1949) proposed the solution of the equations of classical

elastokinetics in the form of a Galerkin-type solution (1930). Nowacki (1964; 1969)

and Sandru (1966) formulated Galerkin's and Papkovitch's type representations of the

solution in the thermodynamics and micropolar elasticity theories. Gurtin (1973) and

Nowacki (1975) provided the representation of solutions to some dynamical problems in

the case of classical elasticity. Chandrasekharaiah (1987; 1989) formulated a complete

solution of coupled systems for homogeneous and isotropic elastic material with voids.

Galerkin-type representations were established by Ciarletta (1991; 1995; 1999) in vari-

ous contexts, including thermoplastic materials with voids, micropolar theories without

energy loss, and binary mixture dynamics, respectively. Svanadze (1993) obtained the

Galerkin-type solution of steady-state oscillations of an elastic mixture. Svanadze and

de Boer (2005) further proposed the Galerkin-type representation for a liquid-saturated

porous medium consisting of an incompressible solid skeleton. Scalia and Svanadze
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(2006) established the Galerkin-type solution of equation of motion in the context of

elementary functions. Mukhopadhyay et al. (2010) derived the Galerkin-type solution

for the linear theory of TPL thermoelasticity. In the context of theory of generalized

thermoelastic di�usion, Kothari and Mukhopadhyay (2012) obtained the Galerkin-type

representation of �eld equations of motion and established various theoretical results.

By utilizing the Kelvin-Voigt materials with voids, Svanadze (2014; 2017) established

the Galerkin-type solution for linear thermoelasticity and micropolar viscoelasticity,

respectively. Recently, Gupta and Mukhopadhyay (2019) derived the Galerkin-type

solution of �eld equations in the context of modi�ed Green-Lindsay (MGL) thermoe-

lasticity theory (Yu et al. (2018))

The fundamental solution was �rst studied by Hetnarski (1964a; 1964b) in the

context of the classical theory of coupled thermoelasticity. Dragocs (1979a; 1979b;

1984) proposed the fundamental solution in thermoelasticity and micropolar elastic-

ity. Svanadze (1988) obtained the fundamental matrix in order to obtain the funda-

mental solutions of linearized equations in the context of theory of elastic mixtures.

Sherief (1986) established the short-time approximated fundamental solutions with a

continuous heat source under generalized thermoelasticity theory. Under the spheri-

cally continuous heat source, Sherief (1992) further derived the fundamental solution

for thermoelasticity theory containing two relaxation times. Wang and Dhaliwal (1993)

obtained the fundamental solution of a system of generalized thermoelastic equations

under arbitrarily distributed body forces and heat sources. By using Hankel and Laplace

transform methods, Ezzat (1995) derived the fundamental solution for stress and tem-

perature distribution under cylindrical regions. Svanadze (1996) established the fun-

damental solution of the oscillation equation utilizing the theory of a mixture of two

elastic solids. Ie³n (1998) used the Galerkin-type solution to determine the fundamental

solution in the frame of a linear theory of thermoelasticity. By means of elementary

functions, Svanadze (2004) constructed the fundamental solution of the equation of
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equilibrium under the micro-temperature e�ect. Svanadze and De Cicco (2005) derived

the fundamental solution of a set of di�erential equations in the case of thermomi-

crostretch elastic solids. Svanadze et al. (2006) constructed the fundamental solution

of steady oscillations utilizing the theory of micropolar thermoelasticity in the case

of theory without energy dissipation. By utilizing elementary functions in the linear

theory of micropolar thermoelasticity, Ciarletta et al. (2007) obtained the fundamen-

tal solution to a system of steady oscillation for materials with voids. For the case of

homogeneous and isotropic bodies, Kothari et al. (2010) constructed the fundamental

solution for TPL thermoelasticity theory. Subsequently, by Kumar and Kansal (2012),

elementary functions were used to derive fundamental solutions to di�erential equations

in micropolar thermoelastic di�usion with voids under steady oscillations. Svanadze and

De Cicco (2013) derived the fundamental solution of dynamical equations in the con-

text of linear theory of elasticity with double porosity. Scarpetta (1990) established the

fundamental solutions for micropolar elasticity and the system of steady vibration us-

ing the thermoelasticity theory of double porosity. Sherief and Hussein (2017) used the

instantaneous point heat source to obtain the fundamental solution of thermoelasticity

with two relaxation times. Kumari and Mukhopadhyay (2017) derived the fundamental

solution under the heat source and body force for the heat conduction model with a

delay term. Biswas and Sarkar (2018) and Biswas (2020) constructed the fundamental

solution for DPL thermoelasticity in a homogeneous porous medium for the system

of steady oscillations. Under the Bio-thermoelastic medium, Kumar et al. (2020)

computed the fundamental solutions of steady vibration with DPL thermoelasticity

theory. By means of a perfect isotropic conductor, El-Bary and Atef (2021) derived

the fundamental solution of magneto-thermo-viscoelasticity with two relaxation time

parameters. Under the e�ect of micro temperature and micro concentrations, Tarun

(2022) constructed the fundamental solution for isotropic micromorphic thermoelastic

di�usion materials.
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Various thermoelasticity theories have been employed to study the vibration prob-

lems of beams and plates. In the work by Zener (1937; 1938), internal friction caused

by thermoelastic damping was examined on the basis of quality factor (QF) for the �rst

time. For the rectangular cross-section of a microbeam, Zener's analytical model has

been veri�ed at the micro-scale level. Shieh (1975) studied the thermoelastic vibration

and damping behavior within the framework of a circular Timoshenko beam. Alblas

(1981) investigated the TED in vibrating three-dimensional elastic beams. By extending

Zener's work on simple beams, Lifshitz and Roukes (2000) introduced TED as an im-

portant fundamental dissipation source of energy. Srikar and Senturia (2002) estimated

the upper bound of QF by designing the polysilicon �exural beam resonator. Hao et

al. (2003) presented the closed-form analytical expression for support loss with �exural

vibration. Vengallatore (2005) evaluated the TED in a micromechanical three-layered

Euler-Bernoulli beam with silicon coating. Lepage and Golinval (2005) considered �nite

element modeling in order to assess TED in MEMS.

E�orts have also been made by researchers to accurately study the vibration prob-

lems of small-scale structures considering the size e�ects. In order to account for the

size e�ect, Park and Gao (2006) developed an Euler-Bernoulli beam model based on the

modi�ed couple stress theory (MCST). Park and Gao (2008) derived the closed-form

expression of honeycomb micromechanics structure by using MCST. Later, Ma et al.

(2008) developed the non-classical Timoshenko beam model which incorporated both

bending and axial deformations. Wang and Feng (2009) studied the surface e�ect on

buckling and vibration behavior by using the re�ned Timoshenko beam theory. As-

ghari et al. (2010) formulated the nonlinear Timoshenko beam model in the context

of MCST to delineate size e�ects. A numerical and analytical solution is presented by

�im³ek (2010) for the vibration of a microbeam under the action of moving particles

based on MCST. Akgöz and Civalek (2011) employed the higher-order continuum the-

ories in the mechanical modeling of micro-scaled beams. Asghari et al. (2011) analyzed
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the size-dependent behavior of functionally graded Timoshenko beam on the basis of

MCST. Ke and Wang (2011) investigated the dynamic stability of functionally graded

beam via MCST. Roque et al. (2011) studied the bending and buckling of Timoshenko

beams using nonlocal formulations of Eringen's elasticity theory. Sharma (2011) de-

rived the analytical formula for frequency shift in an anisotropic beam at micro/nano

scale. Rezazadeh et al. (2012) used the plane stress and strain condition to obtain an

analytical expression for the QF of TED. Guo et al. (2012) derived the explicit expres-

sion for TED of beam resonator based on DPL thermoelasticity theory. �im³ek et al.

(2013) developed the Timshenko beam model to predict the bending analysis in the

context of MCST. �im³ek and Reddy (2013) examined the bending and free vibration

of functionally graded beam based on MCST. Akgöz and Civalek (2013) studied the

vibration response of Euler-Bernoulli beam in conjunction with MCST. Barretta et al.

(2015) studied the bending formulation of functionally graded Euler-Bernoulli beam

in the framework of nonlocal thermodynamic theory. Mohammadabadi et al. (2015)

investigated the size-dependent thermal buckling e�ects of micro composite laminated

beams in the context of MCST. Fathalilou and Rezazadeh (2016) investigated the ef-

fect of the length scale parameter on the TED in microbeam using MCST. Sha�ei et

al. (2017) used the rotary tapered Euler-Bernoulli microbeam to study the transverse

vibration based on MCST. Li et al. (2018) proposed a standard experimental method

to calculate the internal material length scale parameter based on MCST. Borjalilou et

al. (2019) studied a small-scale TED analysis in micro-beams utilizing the MCST and

DPL heat conduction model. Hamidi and Hosseini (2020) derived the exact solution

of a gold microbeam resonator via TED considering MCST and GN III theory. Rahi

(2021) illustrated the analytical approach to capture vibration analysis of multi-layer

microbeam based on MCST. Kumar and Mukhopadhyay (2023) studied the TED in a

nanobeam resonator using the non-classical continuum and the generalized thermoelas-

ticity theories.
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Gao (2015) developed the new Timoshenko beam model using surface elasticity

theory incorporating microstructure. Dehrouyeh-Semnani and Bahrami (2016) exam-

ined the accuracy of the size e�ect in the complex Timoshenko beam model based on

MCST. Karttunen et al. (2016) derived the general closed-form solution of the Tim-

oshenko beam model in terms of plane stress distributions by using MCST. Ghayesh

et al. (2019) studied an asymmetric vibration analysis of a functionally graded de-

formable Timoshenko beam. In this respect, we also refer the work by Esen (2020),

Kumar (2020), Kumar and Mukhopadhyay (2021), Weng et al. (2021), Abdelrahman

et al. (2021), Liu and Peng (2022), Yuan et al. (2022), Zhang et al. (2022), Loya et al.

(2022) and Ye et al. (2023).

Ma et al. (2011) developed a size-dependent non-classical Mindlin plate model using

MCST. Jomehzadeh et al. (2011) used the variational approach to study a vibration

analysis of micro-plate via MCST. Later, Ke et al. (2012a) captured the free vibration

of the Mindlin micro plate by MCST taking into account. Moreover, the bending and

buckling characterization of functionally graded annular microplates are studied by Ke

et al. (2012b). Thai and Choi (2013) presented the size-dependent vibration of Kirch-

ho� and Mindlin by using MCST. Shaat et al. (2014) studied the bending analysis of

the Kirchho� plate resonator in the presence of a surface e�ect with MCST. Zhong et al.

(2014) estimated the dynamic properties and TED in microplate resonators via MCST.

The study of static bending and free vibration for piezoelectric microplate involving

MCST was developed by Li and Pan (2015). Taati (2016) derived an analytical solu-

tion of the functionally graded microplate in the context of buckling and post-buckling.

Guo et al. (2016) obtained three-dimensional analytical solutions of layer-based com-

posite plates considering MCST. Alinaghizadeh et al. (2017) investigated the bending

response of the annular sector of functionally graded microplate based on MCST. Devi

and Kumar (2018) studied the damping and frequency shift of the Kirchho�-Love plate

resonator via MCST. Borjalilou and Asghari (2018) investigated the TED of microplate
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for DPL thermoelasticity under MCST. Kumar and Mukhopadhyay (2020) considered

the Silicon microplate resonator to study size-dependent TED in the frame of TPL and

modi�ed couple stress theories. Ma et al. (2020) used the �nite element formulation

to study the free vibration of composite laminated Reddy plate based on the MCST.

A laminated microplate shear deformation theory based on the MCST was proposed

by He et al. (2021). Kaur and Singh (2021) studied the TED, time-harmonic dis-

placement, and temperature in isotropic circular Kirchho� plate considering GN III

theory. Wang et al. (2022) derived the analytical solution of viscoelastic nanoplate to

capture bending analysis based on the MCST. Fu et al. (2023) explained the bending

and buckling of the partially covered laminated micro components. As a generalization

of the classical nonlocal elasticity theory, the nonlocal strain gradient theory (NSGT)

introduces a strain tensor with a nonlocality e�ect into the stored energy function. Li

and Hu (2015) derived the buckling analysis of linear beam analytically in the context

of NSGT. The investigation on TED under NSGT as reported by Lu et al. (2017;

2019), Ebrahimi and Barati (2017a; 2017b), Li et al. (2017), Ge et al. (2021) and Yue

et al. (2021) are also worth to be mentioned here. One can further refer to the analysis

of buckling responses of nano beams with nonlocal e�ects by NSGT as reported by

Jena et al. (2021; 2022) who implemented numerical methods for their study. Picard

(2016) and Picard and Watson (2018) studied the some problem on boundary damping

analysis for inhomogeneous Timoshenko. beam. Abouelregal et al. (2023) introduced

the new thermal vibrational model using DPL thermoelastic model under nonlocal elas-

ticity theory. Marin et al. (2020) studied the some mixed problems in SGT with the

Lagrange identity. Chakraverty and Pradhan (2014) investigated the free vibration for

rectangular plate within the frame work of thermal environment. In this respect, we

also refer the work by Gupta et al. (2023a; 2023b) and Steigmann (2007; 2008).
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1.6 Objective of the Thesis

The objective of the present thesis is aimed at broadening the theoretical analysis

of the thermoelasticity theory based on the Moore-Gibson-Thompson heat conduc-

tion model proposed by Quintanilla (2019). The thesis primarily begins by analyzing

the Galerkin-type representation of the �eld equations in terms of elementary func-

tion (metaharmonic). It is well known that the Galerkin-type representation plays a

dominant role in probing various challenges of contemporary mathematical analysis of

di�erent boundary value problems. These Galerkin-type representations are the founda-

tions to obtain the fundamental solution in the studies of elasticity and thermoelasticity

theories. Using these Galerkin-type solutions, the thesis deals with the formulation of

the fundamental solution for Moore-Gibson-Thompson thermoelasticity theory for the

distributions of displacement components and temperature for two cases: concentrated

body force and concentrated heat source. Also, the present thesis attempts to esti-

mate the thermoelastic damping (TED) in micro- and nano-mechanical resonators by

utilizing non-conventional theory to take into account of the size e�ects in the context

of the recently proposed Moore-Gibson-Thompson (MGT) generalized thermoelasticity

theory. This thesis examines the prediction of bending and vibration characteristics of

the Timoshenko beam and Euler-Bernoulli beam using Moore-Gibson-Thompson ther-

moelasticity theory in conjunction with MSCT and NSGT. The impact of material

length-scale parameters on TED for the micro-beam resonator under the modi�ed cou-

ple stress theory (MCST) and MGT theory is investigated. Finally, the in�uences of var-

ious parameters including size e�ects on vibration and TED in micro/nano resonators

in the present context are investigated by carrying out the numerical computation of

the present analytical results.
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