
Chapter 5

Two semi-infinite moving cracks

situated at two different interfaces

of four semi-infinite orthotropic

strips in a composite medium

5.1 Introduction

In fracture mechanics, many crack propagation problems can be converted to the

W-H equation in a complex transformed plane. The W-H Technique approach im-

plemented in this chapter, was initially described by B. Noble in his book [113],

and since then, it has been extensively studied by other scholars and engineers. The

hardest part of this method is factorizing the kernel. Nilsson [114,115] has provided a

method for determining the asymptotic expression of SIF by using the W-H method-

ology without the kernel’s visible factorization, which was revolutionary and used in

several research articles. Meanwhile, the applications of the W-H technique are fur-

ther studied by Abrahams [116]. The use of W-H technique for a semi-infinte crack

for square lattice has been studied by Sharma [118]. SIF for a moving semi-infinite

crack has been studied by Basak and Mandal [119]. Furthermore, the scattering

effect on two semi-infinite cracks has been studied by Maurya and Sharma [117].

Ustinov et al. [120] studied the effect of arbitrary loading on a central occurred semi-

infinite crack using the W-H Technique.

In this chapter, the problem of two moving interfacial semi-infinite cracks at dif-

ferent interfaces under different normal loadings have been converted into a standard

W-H equation by applying defined Fourier transformation. The asymptotic analyti-
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cal expressions of SIFs and CODs have been determined using the W-H technique.

The graphical representation of SIFs and CODs justifies the physical nature of the

problem for various values of depths of strips and crack velocities. The model of two

interfacial semi-infinite cracks moving from opposite directions at different interfaces

has been solved for the very first time in this chapter. Thus, the problem is the

first of its kind where the W-H technique has been used to find SIF and COD for a

four-layered orthotropic strip system weakened by two moving semi-infinite cracks.

5.2 Mathematical problem formulation

Let us consider two semi infinite cracks (h < X < ∞, Y = h and − ∞ < X <

−h, Y = −h) situated at the interfaces of two different semi infinite strips of different

orthotropic materials. Consider the first crack is propogating with a constant velocity

c, along the positiveX-axis and the second crack is propogating in the direction along

negative X-axis with same constant velocity c. At any time t, the position of the first

crack is ct < X < ∞, Y = h, the position for second crack is −∞ < X < ct, Y = −h

as depicted through Fig.5.1.
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Figure 5.1: Geometry of the original problem

The equation of motion for the displacement components U (j)(X, Y, t) and V (j)(X, Y, t),

along X and Y directions, respectively is as follows
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where C
(j)
11 , C

(j)
12 , C

(j)
22 and µ

(j)
12 are material constants and ρ(j) are material densities

and j = 1, 2, 3 and 4, correspond to the medium-1, 2, 3 and 4, respectively, are related

by the relation C
(j)
12 = ν

(j)
21 C

(j)
11 , where ν

(j)
21 are Poisson’s ratios.

The following transformation has been used to make the system free from t, such

as X = x− ct, Y = y and t = t, we get

(C
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where u(j)(x, y) = U (j)(X, Y, t) and v(j)(x, y) = V (j)(X, Y, t) are displacement

components. The expressions for stresses related to displacement components are as

follows:

σ(j)
yy = C

(j)
12

∂u(j)

∂x
+ C

(j)
22

∂v(j)

∂y
, (5.2.3)

σ(j)
xy = µ

(j)
12

(
∂u(j)

∂y
+

∂v(j)

∂x

)
, j = 1, 2, 3, 4. (5.2.4)
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The boundary and continuity conditions for the problem are follows as

σ(1)
yy (x, h+) = σ(2)

yy (x, h−) = 0, x > 0,

σ(1)
xy (x, h+) = σ(2)

xy (x, h−) = 0, x > 0,

σ(2)
yy (x, 0) = σ(3)

yy (x, 0), −∞ < x < ∞,

σ(2)
xy (x, 0) = σ(3)

xy (x, 0), −∞ < x < ∞,

σ(3)
yy (x,−h+) = σ(4)

yy (x,−h−) = 0, x < 0,

σ(3)
xy (x,−h+) = σ(4)

xy (x,−h−) = 0, x < 0,

u(1)(x, h) = u(2)(x, h), −∞ < x < 0,

v(1)(x, h) = v(2)(x, h), −∞ < x < 0,

u(2)(x, 0) = u(3)(x, 0), −∞ < x < ∞,

v(2)(x, 0) = v(3)(x, 0), −∞ < x < ∞,

u(3)(x,−h) = u(4)(x,−h), 0 < x < ∞,

v(3)(x,−h) = v(4)(x,−h), 0 < x < ∞,

u(1)(x, 2h) = 0, −∞ < x < ∞,

v(1)(x, 2h) = v
(1)
0 , −∞ < x < ∞,

u(4)(x,−2h) = 0, −∞ < x < ∞,

v(4)(x,−2h) = −v
(4)
0 , −∞ < x < ∞, (5.2.5)

where v
(1)
0 and v

(4)
0 are the displacement constants. The boundary and continuity

conditions need to be slightly modified to use the W-H Technique by superimposing

normal constant loadings σ
(1)
0 and σ

(3)
0 on first and second crack surfaces, respectively.

Hence the modified boundary and continuity conditions are as follows:

σ(1)
yy (x, h+) = σ(2)

yy (x, h−) = σ
(1)
0 , x > 0, (5.2.6)

σ(1)
xy (x, h+) = σ(2)

xy (x, h−) = 0, x > 0, (5.2.7)

σ(2)
yy (x, 0) = σ(3)

yy (x, 0), −∞ < x < ∞, (5.2.8)

σ(2)
xy (x, 0) = σ(3)

xy (x, 0), −∞ < x < ∞, (5.2.9)

σ(3)
yy (x,−h+) = σ(4)

yy (x,−h−) = −σ
(3)
0 , x < 0, (5.2.10)

σ(3)
xy (x,−h+) = σ(4)

xy (x,−h−) = 0, x < 0, (5.2.11)

u(1)(x, h) = u(2)(x, h), −∞ < x < 0, (5.2.12)

v(1)(x, h) = v(2)(x, h), −∞ < x < 0, (5.2.13)
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u(2)(x, 0) = u(3)(x, 0), −∞ < x < ∞, (5.2.14)

v(2)(x, 0) = v(3)(x, 0), −∞ < x < ∞, (5.2.15)

u(3)(x,−h) = u(4)(x,−h), 0 < x < ∞, (5.2.16)

v(3)(x,−h) = v(4)(x,−h), 0 < x < ∞, (5.2.17)

u(1)(x, 2h) = 0, −∞ < x < ∞, (5.2.18)

v(1)(x, 2h) = 0, −∞ < x < ∞, (5.2.19)

u(4)(x,−2h) = 0, −∞ < x < ∞, (5.2.20)

v(4)(x,−2h) = 0, −∞ < x < ∞. (5.2.21)

The values of v
(1)
0 , v

(4)
0 , σ

(1)
0 and σ

(3)
0 are should be picked in a manner that the

normal loadings on the crack surfaces are uniform, as follows

(C
(1)
22 + ν

(1)
21 C

(1)
12 )v

(1)
0 = (C

(2)
22 + ν

(2)
21 C

(2)
12 )v

(2)
0 , (5.2.22)

Addionally, the specific values of σ
(1)
0 and σ

(3)
0 , as given by Georgiadis and Pa-

padopoulos [107], the two sets of boundary conditions previously defined refer to the

same cracked problem are as follows:

σ
(1)
0 = −(C

(1)
22 + ν

(1)
21 C

(1)
12 )v

(1)
0

h
= −(C

(2)
22 + ν

(2)
21 C

(2)
12 )v

(2)
0

h
, (5.2.23)

σ
(3)
0 = −(C

(3)
22 + ν

(3)
21 C

(3)
12 )v

(3)
0

h
= −(C

(4)
22 + ν

(4)
21 C

(4)
12 )v

(4)
0

h
. (5.2.24)

Now the boundary conditions (5.2.6) and (5.2.10) can be modified as

σ(1)
yy (x, h) = σ

(1)
0 eϵ1x, x > 0, (5.2.25)

σ(3)
yy (x,−h) = −σ

(3)
0 eϵ3x, x < 0, (5.2.26)

where ϵ1and ϵ3 are very small positive quantites, which are tending to zero.
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Figure 5.2: Geometry of the transformed problem

The solutions of Eq.(5.2.2) after applying the Fourier transformation by Eq.(1.4.1)

are given by

u(j)(ξ, y) = A(j)(ξ)eγ
(j)
1 ξy +B(j)(ξ)e−γ

(j)
1 ξy + C(j)(ξ)eγ

(j)
2 ξy +D(j)(ξ)e−γ

(j)
2 ξy, (5.2.27)

v(j)(ξ, y) = i α
(j)
1 (A(j)(ξ)eγ

(j)
1 ξy −B(j)(ξ)e−γ

(j)
1 ξy)

+ i α
(j)
2 (C(j)(ξ)eγ

(j)
2 ξy −D(ξ)e−γ

(j)
2 ξy), (5.2.28)

where A(j)(ξ), B(j)(ξ), C(j)(ξ) and D(j)(ξ) are the unknown functions and α
(j)
k =

C
(j)
11 −µ

(j)
12 γ

(j)2
k −ρ(j)c2

(C
(j)
12 +µ

(j)
12 )γ

(j)
k

, k = 1, 2 and (γ
(j)
1 )2, (γ

(j)
2 )2 are the positive roots of the following

equation

µ
(j)
12 C

(j)
22 γ

(j)4 +
{
C

(j)2
12 + 2C

(j)
12 µ

(j)
12 − C

(j)
11 C

(j)
12 +

(
µ
(j)
12 + C

(j)
22

)
ρ(j)c2

}
γ(j)2

+ (C
(j)
11 − ρ(j)c2)(µ

(j)
12 − ρ(j)c2) = 0. (5.2.29)

The expressions for the stresses after taking Fourier transform are given as

σ(j)
yy (ξ, y) = iξ(C

(j)
22 α

(j)
1 γ

(j)
1 − C

(j)
12 ) (A

(j)(ξ)eγ
(j)
1 ξy +B(j)(ξ)e−γ

(j)
1 ξy)

+ iξ(C
(j)
22 α

(j)
2 γ

(j)
2 − C

(j)
12 ) (C

(j)(ξ)eγ
(j)
2 ξy +D(j)(ξ)e−γ

(j)
2 ξy), (5.2.30)

σ(j)
xy (ξ, y) = ξµ

(j)
12 (α

(j)
1 + γ

(j)
1 )(A(j)(ξ)eγ

(j)
1 ξy −B(j)(ξ)e−γ

(j)
1 ξy)

+ ξµ
(j)
12 (α

(j)
2 + γ

(j)
2 )(C(j)(ξ)eγ

(j)
2 ξy −D(j)(ξ)e−γ

(j)
2 ξy). (5.2.31)
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5.3 Solution of the mathematical problem

Using the boundary and continuity conditions from (5.2.12)-(5.2.21) to reduce the

unknowns into A(j)(ξ)′s and B(j)(ξ)′s,we get

C(1)(ξ) = a1A
(1)(ξ) + b1B

(1)(ξ), (5.3.1)

D(1)(ξ) = a2A
(1)(ξ) + b2B

(1)(ξ), (5.3.2)

C(2)(ξ) = a7A
(1)(ξ) + b7B

(1)(ξ) + a8A
(2)(ξ) + b8B

(2)(ξ), (5.3.3)

D(2)(ξ) = a9A
(1)(ξ) + b9B

(1)(ξ) + a10A
(2)(ξ) + b10B

(2)(ξ), (5.3.4)

C(3)(ξ) = a15A
(1)(ξ) + b15B

(1)(ξ) + a16A
(2)(ξ) + b16B

(2)(ξ)

+ a17A
(3)(ξ) + b17B

(3)(ξ), (5.3.5)

D(3)(ξ) = a18A
(1)(ξ) + b18B

(1)(ξ) + a19A
(2)(ξ) + b19B

(2)(ξ)

+ a20A
(3)(ξ) + b20B

(3)(ξ), (5.3.6)

C(4)(ξ) = a3A
(4)(ξ) + b3B

(4)(ξ), (5.3.7)

D(4)(ξ) = a4A
(4)(ξ) + b4B

(4)(ξ). (5.3.8)

Now Using the conditions from (5.2.7)-(5.2.11) to reduce the rest of the unknowns

in terms of A(1)(ξ) are obtained as

A(2)(ξ) =
(a29b32 − a31b30)A

(1)(ξ) + (b29b32 − b31b30)B
(1)(ξ)

(a32b30 − a30b32)
, (5.3.9)

B(2)(ξ) =
(a29a32 − a31a30)A

(1)(ξ) + (b29a32 − b31a30)B
(1)(ξ)

(b32a30 − b30a32)
, (5.3.10)

A(3)(ξ) =
(a35b38 − a37b36)A

(1)(ξ) + (b35b38 − b37b36)B
(1)(ξ)

(a38b36 − a36b38)
, (5.3.11)
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B(3)(ξ) =
(a35a38 − a37a36)A

(1)(ξ) + (b35a38 − b37a36)B
(1)(ξ)

(b38a36 − b36a38)
, (5.3.12)

A(4)(ξ) =
(a41b44 − a43b42)A

(1)(ξ) + (b41b44 − b43b42)B
(1)(ξ)

(a44b42 − a42b44)
, (5.3.13)

B(4)(ξ) =
(a41a44 − a43a42)A

(1)(ξ) + (b41a44 − b43a42)B
(1)(ξ)

(b44a42 − b42a44)
, (5.3.14)

B(1)(ξ) =
−(a21 + a22a33 + b22a34 + a23a39 + b23a40 + a24a45 + b24a46)A

(1)(ξ)

(b21 + a22b33 + b22b34 + a23b39 + b23b40 + a24b45 + b24b46)
,

(5.3.15)

The values of all the unknown coefficients involved here can be found in Appendix

A. Let us define σ
(1)
yy (x, h), σ

(3)
yy (x,−h) and displacements in y − axis as

σ(1)
yy (x, h) = m(1)(x), x < 0, (5.3.16)

v(1)(x, h)− v(2)(x, h) = n(1)(x), x > 0, (5.3.17)

σ(3)
yy (x,−h) = m(3)(x), x > 0, (5.3.18)

v(3)(x,−h)− v(4)(x,−h) = n(3)(x), x < 0, (5.3.19)

with the Fourier transforms as

m
(1)
− (ξ) =

1√
2π

0∫
−∞

m(1)(x)eiξxdx, (5.3.20)

n
(1)
+ (ξ) =

1√
2π

∞∫
0

n(1)(x)eiξxdx, (5.3.21)

m
(3)
+ (ξ) =

1√
2π

∞∫
0

m(3)(x)eiξxdx, (5.3.22)

n
(3)
− (ξ) =

1√
2π

0∫
−∞

n(3)(x)eiξxdx. (5.3.23)
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The stresses and displacements are known to be bounded at infinity according to the

physical nature of the problem. Hence we have

|m(1)(x)| < M1|x|−lm1 , as x → −∞, (5.3.24)

|n(1)(x)| < N1|x|−ln1 , as x → −∞, (5.3.25)

|m(3)(x)| < M3x
−lm3 , as x → ∞, (5.3.26)

|n(3)(x)| < N3x
−ln3 , as x → ∞, (5.3.27)

for some lm1, lm3, ln1, ln3 > 0 withM1,M3, N1and N3 are finite positive numbers.

These conditions ensure that Eqs.(5.3.20)-(5.3.23) exist. It is also seen that
−(1)
m− (ξ),

−(3)
m+ (ξ),

−(1)
n+ (ξ) and

−(3)
n− (ξ) are analytic for τ ≤ 0, τ ≥ 0, τ ≥ 0 and τ ≤ 0.

5.3.1 Wiener-Hopf technique

The expressions of stresses and displacements with the help of Eq.(5.2.25)-(5.2.26)

and (5.3.16)-(5.3.19), we get

σ(1)
yy (ξ, h) = m

(1)
− (ξ) +

σ
(1)
0√

2π(ϵ1 + iξ)
, (5.3.28)

v(1)(ξ, h)− v(3)(ξ, h) = n
(1)
+ (ξ), (5.3.29)

σ(3)
yy (ξ,−h) = m

(3)
+ (ξ)− σ

(3)
0√

2π(ϵ3 + iξ)
, (5.3.30)

v(3)(ξ,−h)− v(4)(ξ,−h) = n
(3)
− (ξ). (5.3.31)

We get the following Wiener-Hopf Equations for both the cracks after some mathe-

matical computations by using Eqs.(5.3.1)-(5.3.15) and relations from Eqs.(5.3.28)-

(5.3.31) as

m
(1)
− (ξ) = K(1)(ξ)n

(1)
+ (ξ)− σ

(1)
0√

2π(ϵ1 + iξ)
, (5.3.32)

m
(3)
+ (ξ) = K(3)(ξ)n

(3)
− (ξ) +

σ
(3)
0√

2π(ϵ3 + iξ)
, (5.3.33)

where K(1)(ξ) = ξk
(1)
1 (ξ)/k

(1)
2 (ξ) and K(3)(ξ) = ξk

(3)
1 (ξ)/k

(3)
2 (ξ) and
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k
(1)
1 (ξ) = (C

(1)
22 α

(1)
1 γ

(1)
1 − C

(1)
12 )(e

γ
(1)
1 ξh + a47e

−γ
(1)
1 ξh) + (C

(1)
22 α

(1)
2 γ

(1)
2

− C
(1)
12 )((a1 + b1a47)e

γ
(1)
2 ξh + (a2 + b2a47)e

−γ
(1)
2 ξh), (5.3.34)

k
(1)
2 (ξ) = α

(1)
1 (eγ

(1)
1 ξh + a47e

−γ
(1)
1 ξh) + α

(1)
2 ((a1 + a47b1)e

γ
(1)
2 ξh − (a2 + b2a47)e

−γ
(1)
2 ξh)

− α
(2)
1 ((a33 + b33a47)e

γ
(2)
1 ξh − (a34 + b34a47)e

−γ
(2)
1 ξh)− α

(2)
2 ((a7 + b7a47

+ a8(a33 + b33a47) + b8(a34 + b34a47))e
γ
(2)
2 ξh − (a9 + b9a47 + a10(a33 + b33a47)

+ b10(a34 + b34a47))e
γ
(2)
2 ξh, (5.3.35)

k
(3)
1 (ξ) = iω(C

(3)
22 α

(3)
1 γ

(3)
1 − C

(3)
12 )(e

−γ
(3)
1 ξh(a39 + b39a47) + eγ

(3)
1 ξh(a40 + b40a47))

+ iω(C
(3)
22 α

(3)
2 γ

(3)
2 − C

(3)
12 )(e

−γ
(3)
2 ξh(a15 + b15a47 + a16(a33 + b33a47) + b16(a34

+ b34a47) + a17(a39 + b39a47) + b17(a40 + b40a47)) + eγ
(3)
2 ξh(a18 + b18a47

+ a19(a33 + b33a47) + b19(a34 + b34a47) + a20(a39 + b39a47) + b20(a40 + b40a47))),

(5.3.36)

k
(3)
2 (ξ) = iα

(3)
1 ((a39 + b39a47)e

−γ
(3)
1 ξh − (a40 + b40a47)e

γ
(3)
1 ξh) + iα

(3)
2 (e−γ

(3)
2 ξh(a15

+ b15a47 + a16(a33 + b33a47) + b16(a34 + b34a47) + a17(a39 + b39a47) + b17(a40

+ b40a47))− eγ
(3)
2 ξh(a18 + b18a47 + a19(a33 + b33a47) + b19(a34 + b34a47)

+ a20(a39 + b39a47) + b20(a40 + b40a47)))− iα
(4)
1 ((a45 + b45a47)e

−γ
(4)
1 ξh

− (a46 + b46a47)e
γ
(4)
1 ξh)− iα

(4)
2 (a3(a45 + b45a47) + b3(a46 + b46a47))e

−γ
(4)
2 ξh

− (a4(a45 + b45a47) + b4(a46 + b46a47))e
γ
(4)
2 ξh). (5.3.37)

The Eqs.(5.3.32)-(5.3.33) represent the standard form of Wiener-Hopf Equa-

tion.In order to solve these equations the factorization of both the kernals K(1)(ξ)

and K(3)(ξ) are given as

K(1)(ξ) = k
(1)
+ (ξ)k

(1)
− (ξ), (5.3.38)

K(3)(ξ) = k
(3)
+ (ξ)k

(3)
− (ξ), (5.3.39)

where k
(1)
+ (ξ) , k

(3)
+ (ξ) are non zero analytic in upper half plane for any τ ≥ 0 and

k
(1)
− (ξ) , k

(3)
− (ξ) are non zero analytic in lower half plane for any τ ≤ 0.

The Eqs.(5.3.32)-(5.3.33) can be rewritten by using the factors from Eqs.(5.3.38)-
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(5.3.39), as

m
(1)
− (ξ)

k
(1)
− (ξ)

= k
(1)
+ (ξ)n

(1)
+ (ξ)− σ

(1)
0√

2π(ϵ1 + iξ)k
(1)
− (ξ)

, (5.3.40)

m
(3)
+ (ξ)

k
(3)
+ (ξ)

= k
(3)
− (ξ)n

(3)
− (ξ) +

σ
(3)
0√

2π(ϵ3 + iξ)k
(3)
+ (ξ)

. (5.3.41)

Now, we decompose the last term in the RHS of the Eqs.(5.3.40) and (5.3.41) as

σ
(1)
0√

2π(ϵ1 + iξ)k
(1)
− (ξ)

= H(1)(ξ) = H
(1)
+ (ξ) +H

(1)
− (ξ), (5.3.42)

σ
(3)
0√

2π(ϵ3 + iξ)k
(3)
+ (ξ)

= H(3)(ξ) = H
(3)
+ (ξ) +H

(3)
− (ξ), (5.3.43)

where

H
(1)
− (ξ) =

σ
(1)
0√

2π(ϵ1 + iξ)

(
1

k
(1)
− (ξ)

− 1

k
(1)
− (iϵ1)

)
, (5.3.44)

H
(1)
+ (ξ) =

σ
(1)
0√

2π(ϵ1 + iξ)k
(1)
− (iϵ1)

, (5.3.45)

H
(3)
+ (ξ) =

σ
(3)
0√

2π(ϵ3 + iξ)

(
1

k
(3)
+ (ξ)

− 1

k
(3)
+ (iϵ3)

)
, (5.3.46)

H
(3)
− (ξ) =

σ
(3)
0√

2π(ϵ3 + iξ)k
(3)
+ (iϵ3)

, (5.3.47)

where H
(1)
+ (ξ) and H

(3)
+ (ξ) are non zero analytic for any τ > τ0(τ0 ≥ 0), and

H
(1)
− (ξ) and H

(3)
− (ξ) are non zero analytic for any τ < τ0(τ0 ≤ 0).

The Eqs.(5.3.40) and (5.3.41) with the help of Eqs.(5.3.42)-(5.3.47) becomes
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m
(1)
− (ξ)

k
(1)
− (ξ)

+H
(1)
− (ξ) = k

(1)
+ (ξ)n

(1)
+ (ξ)−H

(1)
+ (ξ), (5.3.48)

m
(3)
+ (ξ)

k
(3)
+ (ξ)

−H
(3)
+ (ξ) = k

(3)
− (ξ)n

(3)
− (ξ) +H

(3)
− (ξ). (5.3.49)

Here the LHS of Eq.(5.3.48) and RHS of Eq.(5.3.49) i.e., m
(1)
− (ξ), k

(1)
− (ξ), H

(1)
− (ξ),

n
(3)
− (ξ), k

(3)
− (ξ) and H

(3)
− (ξ) are analytic in the lower half plane for τ < τ0(τ0 ≤ 0).

Again, the RHS of Eq.(5.3.48) and LHS of Eq.(5.3.49) i.e., k
(1)
+ (ξ), n

(1)
+ (ξ), H

(1)
+ (ξ),

m
(3)
+ (ξ), k

(3)
+ (ξ) and H

(3)
+ (ξ) are analytic in the lower upper plane for τ > τ0(τ0 ≥ 0).

Hence, the common region of analyticity for all the functions is the line τ = 0. Thus

by using the analytic continuation it can be said that both the Eqs.(5.3.48) and

(5.3.49) are single valued analytic in the entire complex plane and will be assumed to

be equal to entire functions P (1)(ξ) and P (3)(ξ),respectively. The functions m
(1)
− (ξ),

n
(1)
+ (ξ), m

(3)
+ (ξ) and n

(3)
− (ξ) are bounded for large value of ξ and k

(1)
+ (ξ) , k

(1)
− (ξ),

k
(3)
+ (ξ) and k

(3)
− (ξ) will tend to ξ1/2. Hence, LHS and RHS of Eqs.(5.3.48) and

Eq.(5.3.49) tend to ξ−1/2, and RHS and LHS of Eq.(5.3.48) and Eq.(5.3.49) tend to

ξ1/2. Thus, the zero function is the only analytic function, as determined by the

extended Liouville theorem theorem, to satisfy both sides of Eq.(5.3.48) as well as

of Eq.(5.3.49). Hence, we get

P (1)(ξ) = 0, (5.3.50)

P (3)(ξ) = 0. (5.3.51)

Now by using Eqs.(5.3.48)-(5.3.49) with the help of Eqs.(5.3.50)-(5.3.51) and Eqs.(5.3.42)-

(5.3.47), we get the following relations as

m
(1)
− (ξ) =

σ
(1)
0√

2π(ϵ1 + iξ)

(
k
(1)
− (ξ)

k
(1)
− (iϵ1)

− 1

)
, (5.3.52)

n
(1)
+ (ξ) =

σ
(1)
0√

2π(ϵ1 + iξ)k
(1)
− (iϵ1)k

(1)
+ (ξ)

, (5.3.53)

m
(3)
+ (ξ) =

−σ
(3)
0√

2π(ϵ3 + iξ)

(
k
(3)
+ (ξ)

k
(3)
+ (iϵ3)

− 1

)
, (5.3.54)

n
(3)
− (ξ) =

−σ
(3)
0√

2π(ϵ3 + iξ)k
(3)
+ (iϵ3)k

(3)
− (ξ)

. (5.3.55)



5.3. Solution of the mathematical problem 97

As per constant loading conditions, ϵ1 and ϵ3 will be tending to 0. Hence the

above relations become

m
(1)
− (ξ) =

σ
(1)
0√

2π(iξ)

(
k
(1)
− (ξ)

k
(1)
− (0)

− 1

)
, (5.3.56)

n
(1)
+ (ξ) =

σ
(1)
0√

2π(iξ)k
(1)
− (0)k

(1)
+ (ξ)

, (5.3.57)

m
(3)
+ (ξ) =

−σ
(3)
0√

2π(iξ)

(
k
(3)
+ (ξ)

k
(3)
+ (0)

− 1

)
, (5.3.58)

n
(3)
− (ξ) =

−σ
(3)
0√

2π(iξ)k
(3)
+ (0)k

(3)
− (ξ)

. (5.3.59)

To find the values of SIFs without factorizing the kernals K(1)(ξ) and K(3)(ξ), we

are using the method given by Nilsson [114, 115]. In this method by only knowing

the values of kernals at small and large values of ξ, the expression for SIF can be

found. Therefore, the asymptotic values for both the kernals are

lim
ξ→0

K(1)(ξ) =
C

(1)
22 (2C

(2)
12 − C

(2)
22 (α

(2)
1 γ

(2)
1 + α

(2)
2 γ

(2)
2 ))

h(2C
(2)
12 + C

(1)
22 (α

(2)
1 γ

(2)
1 − α

(2)
2 γ

(2)
2 )− C

(2)
22 (α

(2)
1 γ

(2)
1 + α

(2)
2 γ

(2)
2 ))

= l
(1)
1 ,

(5.3.60)

lim
ξ→∞

K(1)(ξ)

ξ
= (2(C

(1)
12 − C

(1)
22 α

(1)
1 γ

(1)
1 )(α

(2)
2 γ

(2)
1 − α

(2)
1 γ

(2)
2 )(−2C

(2)
12 + C

(2)
22 α

(2)
1 γ

(2)
1

+ C
(2)
22 α

(2)
2 γ

(2)
2 )µ

(2)
12 )/(α

(2)
2 ((C

(1)
12 − C

(1)
22 α

(1)
1 γ

(1)
1 )(α

(2)
2 γ

(2)
1

− α
(2)
1 γ

(2)
2 )µ

(2)
12 + C

(2)
12 (2α

(2)
1 γ

(1)
1 µ

(2)
12 + 2α

(1)
1 α

(2)
1 (µ

(1)
12 − µ

(2)
12 )

− 2α
(1)
1 γ

(2)
1 µ

(2)
12 − 3α

(2)
2 γ

(2)
1 µ

(2)
12 + 3α

(2)
1 γ

(2)
2 µ

(2)
12 ) + C

(2)
22 (2α

(2)2
2 γ

(2)
1 γ

(2)
2 µ

(2)
12

− α
(1)
1 (α

(2)
1 γ

(2)
1 + α

(2)
2 γ

(2)
2 )(α

(2)
1 (µ

(1)
12 − µ

(2)
12 )− γ

(2)
1 µ

(2)
12 )

− α
(2)2
1 γ

(2)
1 (γ

(1)
1 µ

(1)
12 + γ

(2)
2 µ

(2)
12 ) + α

(1)
1 α

(2)
1 (−γ

(1)
1 γ

(2)
2 µ

(2)
12

+ γ
(2)2
1 µ

(2)
12 − 2γ

(2)2
2 µ

(2)
12 )))) = l

(1)
2 , (5.3.61)



98 Chapter 5. Two semi-infinite moving cracks...

lim
ξ→0

K(3)(ξ) = −(4(γ
(3)
1 (C

(3)
12 − C

(3)
22 α

(3)
1 γ

(3)
1 )− 2C

(3)
12 α

(3)
1 γ

(3)
2

+ C
(3)
22 α

(3)
1 α

(3)
2 γ

(3)2
2 )(α

(4)
2 γ

(4)
1 − α

(4)
1 γ

(4)
2 )µ

(4)
12 )/(hα

(4)
1 α

(4)
2 (α

(3)
1

− 2α
(3)
1 α

(3)
2 + γ

(3)
1 − 2α

(3)
1 γ

(3)
2 )γ

(4)3
2 µ

(3)
12 ) = l

(3)
1 , (5.3.62)

lim
ξ→∞

K(1)(ξ)

ξ
= −(((α

(4)
1 − α

(4)
2 )(C

(4)
12 (α

(4)
1 − α

(4)
2 + γ

(4)
1 − γ

(4)
2 )− C

(4)
22 α

(4)
2 γ

(4)
1 γ

(4)
2

+ C
(4)
22 α

(4)
1 (α

(4)
2 (γ

(4)
1 − γ

(4)
2 ) + γ

(4)
1 γ

(4)
2 ))(C

(3)2
12 ((−1 + 2α

(3)
2 )γ

(2)
1 µ

(2)
12

+ 4α
(3)2
2 (α

(3)
1 − 2α

(3)
1 α

(3)
2 + γ

(3)
1 − 2α

(3)
1 γ

(3)
2 )µ

(3)
12 + α

(2)
1 (−1 + 2α

(3)
2 )(µ

(2)
12

− 2(α
(3)
2 − γ

(3)
1 + γ

(3)
2 + α

(3)
1 (−1 + 2α

(3)
2 + 2γ

(3)
2 ))µ

(3)
12 ))− C

(3)
22 (α

(3)
1 (C

(2)
12

− C
(2)
22 α

(2)
1 γ

(2)
1 )γ

(3)
1 (−γ

(3)
1 + α

(3)
1 (−1 + 2α

(3)
2 + 2γ

(3)
2 ))µ

(3)
12 ) + C

(3)
22 (α

(3)2
1

× γ
(2)
1 γ

(3)
1 µ

(2)
12 − 4α

(3)4
2 γ

(3)
1 γ

(3)2
2 µ

(3)
12 + 2α

(3)
1 α

(3)2
2 γ

(3)
2 (−γ

(2)
1 γ

(3)
1 µ

(2)
12 + 2α

(3)2
2 γ

(3)
2

× (−1 + 2α
(3)
2 + 2γ

(3)
2 )µ

(3)
12 ) + α

(2)
1 (α

(3)
1 γ

(3)
1 − 2α

(3)2
2 γ

(3)
2 )(2α

(3)
2 γ

(3)
1 γ

(3)
2 µ

(3)
12

− 2α
(3)
1 α

(3)
2 γ

(3)
2 (−1 + 2α

(3)
2 + 2γ

(3)
2 )µ

(3)
12 + α

(3)
1 γ

(3)
1 (µ

(2)
12 − 2α

(3)
2 − 2γ

(3)
2 )µ

(3)
12 ))))

+ C
(3)
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(2)
12 − C

(2)
22 α

(2)
1 γ

(2)
1 )(α

(3)
1 − 2α

(3)
1 α

(3)
2 + γ

(3)
2 − 2α

(3)
1 γ

(3)
1 )µ

(3)
12

− 2C
(3)
22 (α

(3)
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(3)
2 )γ

(2)
1 γ

(3)
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(2)
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(3)
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(3)
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(2)
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(2)
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(3)
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(2)
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2 . (5.3.63)
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Let us rewrite Eqs.(5.3.56)-(5.3.59) for a large value of ξ as

lim
ξ→∞

m
(1)
− (ξ) = lim

ξ→∞

σ
(1)
0√

2π(iξ)

(
k
(1)
− (ξ)

k
(1)
− (0)

)
, (5.3.64)

lim
ξ→∞

n
(1)
+ (ξ) = lim

ξ→∞

σ
(1)
0√

2π(iξ)k
(1)
− (0)k

(1)
+ (ξ)

, (5.3.65)

lim
ξ→∞

m
(3)
+ (ξ) = lim

ξ→∞

−σ
(3)
0√

2π(iξ)

(
k
(3)
+ (ξ)

k
(3)
+ (0)

)
, (5.3.66)

lim
ξ→∞

n
(3)
− (ξ) = lim

ξ→∞

−σ
(3)
0√

2π(iξ)k
(3)
+ (0)k

(3)
− (ξ)

. (5.3.67)

The asymptotic expressions of above equations with the help of the Eqs.(5.3.60)-

(5.3.63) can be determined as

m
(1)
− (ξ) =

σ
(1)
0 e5πi/4√

2π

√√√√ l
(1)
2

l
(1)
1

ξ−1/2, as ξ → ∞ (5.3.68)

n
(1)
+ (ξ) =

σ
(1)
0 e5πi/4√
2πl

(1)
1 l

(1)
2

ξ−3/2, as ξ → ∞ (5.3.69)

m
(3)
+ (ξ) =

−σ
(3)
0 eπi/4√
2π

√√√√ l
(3)
2

l
(3)
1

ξ−1/2, as ξ → ∞ (5.3.70)

n
(3)
− (ξ) =

−σ
(3)
0 eπi/4√

2πl
(3)
1 l

(3)
2

ξ−3/2, as ξ → ∞. (5.3.71)

Using the inverse Fourier transformation on the expessions of Eqs.(5.3.68)-(5.3.71),

we get
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lim
x→0

m(1)(x) =
−σ

(1)
0

2

√√√√ l
(1)
2

πl
(1)
1

x−1/2, (5.3.72)

lim
x→0

n(1)(x) =
−σ

(1)
0√

πl
(1)
1 l

(1)
2

x1/2, (5.3.73)

lim
x→0

m(3)(x) =
σ
(3)
0

2

√√√√ l
(3)
2

πl
(3)
1

x−1/2, (5.3.74)

lim
x→0

n(3)(x) =
σ
(3)
0√

πl
(3)
1 l

(3)
2

(−x)1/2. (5.3.75)

The Eq.(5.3.72) and Eq.(5.3.74) represent the stress components of the first and

second crack, respectively. Thus the square root singularities which are present in

both equations are very much expected at the crack tip as the physical nature of the

problem. The Eq.(5.3.73) and Eq.(5.3.75) represent the displacement components

for the cracks, which are required to find the crack opening displacements of the

cracks.

5.4 Expressions of Stress intensity factor(SIF) and

Crack opening displacement(COD)

The expression for SIF for the first crack is determined as

KI = lim
x→0

√
2πx σ(1)

yy (x, 0) = −σ
(1)
0

√√√√ l
(1)
2

2l
(1)
1

. (5.4.1)

The value of normalized SIF(with respect to ν
(1)
0 ) of the original problem by

putting back the value of σ
(1)
0 from Eq.(5.2.23) into Eq.(5.4.1) is obtained as
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SIF =
(C

(1)
22 + ν

(1)
21 C

(1)
12 )

h

√√√√ l
(1)
2

2l
(1)
1

. (5.4.2)

The expression for SIF for the second crack is determined as

KI = lim
x→0

√
2πxσ(3)

yy (x, 0) = σ
(3)
0

√√√√ l
(3)
2

2l
(3)
1

. (5.4.3)

The value of normalized SIF(with respect to ν
(3)
0 ) for the second crack of the

original problem by putting back the value of σ
(1)
0 from Eq.(5.2.24) into Eq.(5.4.3)

is obtained as

SIF = −(C
(3)
22 + ν

(3)
21 C

(3)
12 )

h

√√√√ l
(3)
2

2l
(3)
1

. (5.4.4)

The expression for the COD of first crack is given as

COD =
−2σ

(1)
0√

πl
(1)
1 l

(1)
2

x1/2 (5.4.5)

and the value of normalized COD(with respect to ν
(1)
0 ) of the original problem is

obtained by substituting the value of σ
(1)
0 from Eq.(5.2.23) into Eq.(5.4.5) as

COD =
2(C

(1)
22 + ν

(1)
21 C

(1)
12 )

h

√√√√ l
(1)
2

2l
(1)
1

x1/2. (5.4.6)

The expression for the COD of the second crack is

COD =
2σ

(3)
0√

πl
(3)
1 l

(3)
2

(−x)1/2 (5.4.7)
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and the value of normalized COD(with respect to ν
(1)
0 ) for the original problem

is obtained by substituting the value of σ
(1)
0 from Eq.(5.2.23) into Eq.(5.4.7) as

COD = −2(C
(3)
22 + ν

(3)
21 C

(3)
12 )

h

√√√√ l
(3)
2

2l
(3)
1

(−x)1/2. (5.4.8)

5.5 Numerical results and discussions

For the numerical computation of SIFs and CODs, E-glass epoxy is used for the

first and fourth semi-infinite strips viz., Medium-1 and 4, Graphite epoxy is used

for the second semi-infinite strip representing Medium-2, and Boron epoxy is used

for the third semi-infinite strip representing Medium-3. The material properties(in

GPA unit) of all the orthotropic materials used for the model are listed in the table

given below.

Materials C11 C22 C12 µ12 ρ

E-glass epoxy 46.09 12.60 2.86 5.50 2.1

Graphite epoxy 155.36 16.31 3.67 7.48 1.6

Boron epoxy 209.09 19.97 5.06 6.4 1.99

Table 5.1: Engineering material elasticity constants
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Figure 5.3: Variations of the normalised SIF for first crack vs crack velocity (c) for
h = 2, 4 and 6 .
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Figure 5.4: Variations of the normalised SIF for second crack vs crack velocity (c)
for h = 2, 4 and 6.
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Figure 5.5: Variations of the normalised COD for first crack vs displacement at
cracked surface y = h for crack velocity (c) = 0.5, 1.0 & 1.5 and h = 2.

c=0.5

c=1.0

c=1.5

00.20.40.60.81.0
0.0

0.2

0.4

0.6

0.8

Cracked surface y = h

N
o
rm
a
liz
e
d
C
O
D

Figure 5.6: Variations of the normalised COD for first crack vs displacement at
cracked surface y = h for crack velocity (c) = 0.5, 1.0 & 1.5 and h = 4.
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Figure 5.7: Variations of the normalised COD for first crack vs displacement at
cracked surface y = h for crack velocity (c) = 0.5, 1.0 & 1.5 and h = 6.
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Figure 5.8: Variations of the normalised COD for first crack vs displacement at
cracked surface y = h for crack velocity (c) = 0.5 and h = 2, 4 & 6.
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Figure 5.9: Variations of the normalised COD for first crack vs displacement at
cracked surface y = h for crack velocity (c) = 1.0 and h = 2, 4 & 6.
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Figure 5.10: Variations of the normalised COD for first crack vs displacement at
cracked surface y = h for crack velocity (c) = 1.5 and h = 2, 4 & 6.
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Figure 5.11: Variations of the normalised COD for second crack vs displacement
at cracked surface y = −h for crack velocity (c) = 0.5, 0.75 & 1.0 and h = 2.
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Figure 5.12: Variations of the normalised COD for second crack vs displacement
at cracked surface y = −h for crack velocity (c) = 0.5, 0.75 & 1.0 and h = 4.
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Figure 5.13: Variations of the normalised COD for second crack vs displacement
at cracked surface y = −h for crack velocity (c) = 0.5, 0.75 & 1.0 and h = 6.
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Figure 5.14: Variations of the normalised COD for second crack vs displacement
at cracked surface y = −h for crack velocity (c) = 0.5 and h = 2, 4 & 6.
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Figure 5.15: Variations of the normalised COD for second crack vs displacement
at cracked surface y = −h for crack velocity (c) = 0.75 and h = 2, 4 & 6.
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Figure 5.16: Variations of the normalised COD for second crack vs displacement
at cracked surface y = −h for crack velocity (c) = 1 and h = 2, 4 & 6 .

The asymptotic analytical expressions for SIFs and CODs are clearly depending

on the material constants, crack velocity and the depth of the strips as seen from the
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Eqs.(5.4.2)-(5.4.8). The SIFs for the first and second crack have been depicted graph-

ically in Figs.5.3 and 5.4. It is observed from both the cracks that SIF is decreasing

as the crack velocity increasing and it approaches to zero as c → CR, because, for

the Mode-I crack propagation problems, the upper limit of crack velocity c is the

rayleigh wave velocity CR as they are the surface waves. Thus the crack velocity is

always lower than the rayleigh wave velocity, i.e., c < CR and when it approaches

to CR, SIF vanishes, which is entirely reasonable given the physical aspect of the

mathematical model. Also, SIF decreases as the depth of the strips increases, which

verifies that SIF is inversely proportional to the depths of the strips h as determined

by the expressions of SIFs. Also, it is noted that the value of the SIF for the second

crack is considerably higher than for the first crack. This implies that increasing the

strip depths can prevent the material from failing.

The graphical representation of CODs can be shown from the Figs.5.5-5.10 for

the first crack and through Figs.5.11-5.16 for the second crack, respectively. For both

cracks, the crack opening displacement becomes zero at the origin of the cracks. Also,

it can be seen that through Figs.5.5-5.7 and Figs.5.11-5.13, as the crack velocity in-

creases, COD decreases.

The effect of depth of the strips has been observed through Figs.5.8-5.10 and

Figs.5.14-5.16 , as the depth of the strip increases the value of the COD decreases

for both cracks. It is also observed, as per the SIF, the values of CODs are also

much higher for the second crack than the first crack. Also, SIF and COD will give

different values for different combinations of the orthotropic materials.

5.6 Conclusion

The problem of two moving interfacial semi-infinite cracks coming from the opposite

direction, situated at different interfaces of four semi-infinite orthotropic strips media

in the composite medium, is solved using the W-H technique with the help of Fourier

transformation for converting the mixed boundary value problem into standard W-

H equation for both the cracks. The approximate asymptotic analytical expressions

of the stress intensity factor and crack opening displacement have been obtained.

The variation of normalized SIFs and CODs have been shown graphically for various

crack velocities and depths of the strips. It is also observed that by taking the suit-

able orthotropic materials and depths of the strip, SIF and COD can be controlled.
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The problem studied here can be applied in real life to improve safety standards

in various industries. For example, in the automotive industry, it can help to identify

the stress levels in vehicle components, leading to improved designs and manufactur-

ing processes. It can also be used to identify potential fracture locations, allowing for

implementing preventive maintenance measures to reduce the potential for vehicle

failure. In the aerospace industry, the research in this chapter can be used to ensure

the safety of aircraft structures. In civil engineering, it can be used to ensure the

safety of bridges and other large structures. Overall, the research from this chapter

can be used to improve safety standards in various industries and thus lead to a

better quality of life.
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