
Chapter 4

Semi-infinite Moving Crack under

Antiplane Shear Loading

4.1 Introduction

Cracks in materials are always a primary concern for engineers and scientists in de-

signing a mechanical structure. The development of cracks in materials is widespread,

mainly when the material consists of various layers or strips, to increase the durability

of the material , which goes through numerous disturbances by the outer environ-

ment that can cause the cracks to propagate. The cracks on the surface and at the

interface are prevalent when those tend to propagate with a higher propagation rate,

which can lead to one of the causes of structural failures by creating a fracture in

the material. Stress intensity factor(SIF) and Crack opening displacement(COD) are

physical quatities which are determined to study the behaviour of crack propagation

in the mechnical structures.

Composite materials are high in demand due to their durability, light weight,

resistence for high pressure and wide range of applications. These materials are

well known for their unique mechanical properties in three orthogonal directions. A

bunch of different types of cracks can occure in composite materials in which moving

semi-infinite interfacial cracks under anti-plane shear stress are one of a kind. In-

terfacial anti-plane shear cracks are very likely to occure in fiber inforced composite

materials as the interface usually develop the nucleus of crack propagation and frac-

ture initiation.

Anti-plane shear stress occurs at the crack tips when the body is deformed in

such a way that only a non-vanishing factor is found in the Anti-plane direction.
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The cracks under anti-plane shear loading have been studied by many researchers

till date, because of the nature of sudden crack occurrence under the shear loading.

The concept of anti-plane shear stress has been described enormously by Sih and

Chen [104]. The moving interfacial Griffith crack in dissimilar orthotropic has been

studied by Das and Patra [51]. Nanoscale mode-III interfacial crack in bimaterial has

been studied by Yang et at. [105] and the effect of thickness on the crack propagation

for antiplane crack mode has been examined and studied by Bidadi et al. [106]. The

concept of moving crack has been first given by Yoffee [36]. Semi-infinite crack sit-

uated in orthotropic strip with clamped boundaries has been studied by Georgiadis

and Papadopoulos [107]. Interaction between anti-plane semi-infinite crack and a

screw dislocation [108] and semi-infinite mode-III crack penetration [109] have been

studies by Wang and Schiavona.

The disturbance created by SH waves on the crack surfaces has always been fas-

cinating for researchers, due to its various effects on the crack propagation. A large

number of studies have been conducted on the nature of waves in course of fracture

mechanics. The scattering effect of plane SH waves has been investigated by Tri-

funac [110] and the steady-state SH waves effect in a bi-material half space has been

studied by Yang and Qi [111]. An interfacial linear crack interacting by a circular

cavity has been been solved by Diankui [112].

In dynamic fracture mechanics, several crack propagation problems in a strip in

complex transform plane can be reduced to Wiener-Hopf equation. The method of

Wiener-Hopf Technique used in the present chapter is initially given by B. Noble

in his book [113], which was further studied by many researchers and engineers.

In this technique, factorization of the kernel is most difficult step. The method to

find asymptotic expression of SIF without the visible factorization of the kernel in

the Wiener-Hopf technique has been given by Nilsson [114] [115]. Elastodynamic

stress intensity factor for semi-infinite crack has been studied by Achenbach and

Gautesen [39]. Some problems consist of different types of cracks in dymnamic

elasticity using Wierner-Hopf technique have been investigated by Abrahams [116].

The model consists of two semi- infinite cracks on square lattice has been solved

by Maurya and Sharma [117]. Therefore, it is found from the literature survey

that most of the works related to the semi-infinite cracks are embedded type. The

investigation of SIF and COD for a moving interfacial semi-infinite crack with SH-

waves disturbance and antiplane shear loading for dissimilar orthotropic strips in

this chapter, is first of its kind.
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In this chapter, a moving semi-infinite mode-III crack under antiplane shear load-

ing is considered at the interface of two semi-infinite orthotropic strips of the same

depth h. Both the strips are of different composite materials. The semi-infinite crack

is moving with constant crack velocity (V ) at the interface of the orthotropic strips.

The problem has been solved by using the Wiener-Hopf technique along with the

Fourier transform. The expressions of the SIF and COD have been derived analyt-

ically. The numerical simulation results of the said physical quantities have been

depicted graphically for the combinations of different material values of the strips,

depths of the strips and crack velocities.

4.2 Mathematical formulation of the problem

Let us consider a semi-infinite moving crack situated at the interface of two semi-

infinite orthotropic strips. Also, consider that (X < Y < Z) is the fixed cartesian

coordinate that coincides with the origin of the moving crack system so that the crack

position is (−∞ < X < 0, Y = 0) as shown in. Let the crack is propagating with a

constant velocity V in the positive direction of X-axis. At any time t, the position

of the crack is −∞ < X < V t, Y = 0. The crack is under antiplane shear loading.

Therefore, the displacement component is found only out of the plane direction, i.e.,

in Z-direction only, given as W (j) = W (j)(X, Y, t).
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Figure 4.1: Geometry of the main problem
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Figure 4.2: Geometry of the transformed problem

The relation between shear stress and displacement component for the model is

given by

σ
(j)
XZ = C

(j)
55

∂W (j)

∂X
,

σ
(j)
Y Z = C

(j)
44

∂W (j)

∂Y
, (4.2.1)

where C
(j)
44 ’s and C

(j)
55 ’s are the principal shear moduli in X and Y directions,

respectively for different orthotropic materials. Here, j = 1 for semi-infinite strip-1

as medium-I and j = 2 for semi-infinite strip-2 as medium-II. The antiplane equation

of motion is given by

C
(j)
55

∂2W (j)

∂X2
+ C

(j)
44

∂2W (j)

∂Y 2
= ρ(j)

∂2W (j)

∂t2
, (4.2.2)

where ρ(j)’s are the material densities.

Let us rewrite the Eq.(4.2.2) as

∂2W (j)

∂X2
+ β(j)∂

2W (j)

∂Y 2
=

1

C
(j)
s

∂2W (j)

∂t2
, (4.2.3)

where β(j) =
C

(j)
44

C
(j)
55

and C
(j)
s ’s are the SH-wave velocity of the orthotropic materials

given as C
(j)
s =

√
C

(j)
55

ρ(j)
.

Now, applying the Galilean transformation as x = X − V t, y = Y and t = t on

the Eq.(4.2.3) to make the model free from time t, given as
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G(j)2∂
2w(j)

∂x2
+

∂2w(j)

∂y2
= 0, (4.2.4)

where G(j)2 = 1
β(j)2 (1− V 2

C
(j)2
s

) and w(j)(x, y) = W (j)(X, Y, t) are the displacement

components in antiplane direction.

The boundary and continuity conditions for the given problem as shown in

Fig.4.1, are considered as

σ(1)
yz (x, 0+) = σ(2)

yz (x, 0−) = 0, x < 0, (4.2.5)

w(1)(x, 0) = w(2)(x, 0), x > 0, (4.2.6)

σ(1)
yz (x, 0) = σ(2)

yz (x, 0), x > 0, (4.2.7)

w(j)(x,±h) = w
(j)
0 , −∞ < x < ∞, (4.2.8)

σ(j)
yz (x,±h) = 0, −∞ < x < ∞, (4.2.9)

where w
(j)
0 ’s (j = 1, 2) are the displacement constants. In order to apply the

Wiener-Hopf Technique, the above set of conditions should be changed slightly by

superimposing a constant load σ0 on the crack surface. Now the boundary conditions

as shown in Fig. 4.2, become

σ(1)
yz (x, 0+) = σ(2)

yz (x, 0−) = σ0, x < 0, (4.2.10)

w(1)(x, 0) = w(2)(x, 0), x > 0, (4.2.11)

σ(1)
yz (x, 0) = σ(2)

yz (x, 0), x > 0, (4.2.12)

w(1)(x, h) = 0, −∞ < x < ∞, (4.2.13)

w(2)(x,−h) = 0, −∞ < x < ∞, (4.2.14)

σ(1)
yz (x, h) = 0, −∞ < x < ∞, (4.2.15)

σ(2)
yz (x,−h) = 0, −∞ < x < ∞. (4.2.16)

The values of w
(j)
0 ’s are to be choosen in such a way that the shear loading on

the crack surface is equal and given by the following relation

C
(1)
44 w

(1)
0 = C

(2)
44 w

(2)
0 . (4.2.17)

Also the above defined two sets of boundary conditions refere to the same problem

for a particular value of σ0 as per Georgiadis [107], given by
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σ0 =
−C

(1)
44 w

(1)
0

h
=

−C
(2)
44 w

(2)
0

h
. (4.2.18)

Now the boundary condition (4.2.10) can be modified as

σ(1)
yz (x, 0+) = σ0e

ϵx, x < 0, (4.2.19)

where ϵ is a very small positive quatity, which is tending to zero.

Fourier transformation on the boundary conditions, we get

σ(1)
yz (x, 0) = σ(2)

yz (x, 0), (4.2.20)

w(1)(x, 0) = w(2)(x, 0), (4.2.21)

w(1)(x, h) = 0, (4.2.22)

w(2)(x,−h) = 0. (4.2.23)

The solution of the Eq.(4.2.4) can be assumed as

w(j)(ξ, y) = P (j)(ξ)e−G(j)ξy +Q(j)(ξ)eG
(j)ξy, (4.2.24)

where P (j)’s and Q(j)’s are the unknown coefficients to be determined. The antiplane

shear stress components are given by

σ(1)
yz (ξ, y) = −C

(j)
44 G

(j)ξ
(
P (j)(ξ)e−G(j)ξy −Q(j)(ξ)eG

(j)ξy
)
. (4.2.25)

4.3 Solution of the problem

Let us consider two unknown funcions given as

σ(1)
yz (x, 0) = m(x), x > 0, (4.3.1)

w(1)(x, 0)− w(2)(x, 0) = n(x), x < 0, (4.3.2)

with the transformations as
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m+(ξ) =
1√
2π

∞∫
0

m(x)eiξxdx, (4.3.3)

n−(ξ) =
1√
2π

0∫
−∞

n(x)eiξxdx, (4.3.4)

where subscript (+) and (-) denote the analyticity of the functions for some λ ≥ 0

in upper half and λ ≤ 0 in lower half plane, respectively. The functions m+(ξ) and

n−(ξ) are bounded at infinity according to the physical behaviour of the problem.

Hence, the bounds of the above functions are assumed as

| m+(ξ) | < Mx−lm , as x → ∞

| n−(ξ) | < N | x |−ln , as x → −∞

for some lm > 0, ln > 0 with M and N are being positive finite numbers. In order

to find the unknown coefficients Q(1)(ξ), P (2)(ξ) and Q(2)(ξ) in terms of P (1)(ξ), we

use the boundary condtions (4.2.20)-(4.2.23) as

Q(1)(ξ) = −e−2G(1)ξh

P (1)(ξ), (4.3.5)

P (2)(ξ) =
C

(1)
44 G

(1)(1 + e−2G(1)ξh
)

C
(2)
44 G

(2)(1 + e2G(2)ξh)
P (1)(ξ) = pP (1)(ξ), (4.3.6)

Q(2)(ξ) =
−C

(1)
44 G

(1)(1 + e−2G(1)ξh
)

C
(2)
44 G

(2)(1 + e−2G(2)ξh)
P (1)(ξ) = −pe2G

(2)ξh

P (1)(ξ), (4.3.7)

p =
C

(1)
44 G

(1)(1 + e−2G(1)ξh
)

C
(2)
44 G

(2)(1 + e2G(2)ξh)
. (4.3.8)

4.3.1 Wiener-Hopf technique

Using the boundary conditions (4.2.19) and (4.2.11) with the help of Eqs.(4.3.1)-

(4.3.4), we get the following pair of equations as
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σ(1)
yz (ξ, 0) = m+(ξ) +

σ0√
2π(ϵ+ iξ)

, (4.3.9)

w(1)(ξ, 0)− w(2)(ξ, 0) = n−(ξ). (4.3.10)

After some mathematical computations using above Eqs.(4.3.9)-(4.3.10) with the

aid of Eqs.(4.3.5)-(4.3.7), we get the following Weiner-Hopf equation in terms of

unknown functions m+(ξ) and n−(ξ) as

m+(ξ) = K(ξ)n−(ξ)−
σ0√

2π(ϵ+ iξ)
, (4.3.11)

where K(ξ) is given by

K(ξ) =
−C

(1)
44 G

(1)(1 + e−2G(1)ξh
)

(1− e−2G(1)ξh − p(1− e2G(2)ξh))
. (4.3.12)

To find the solution of Eq.(4.3.11), we need to factorize the kernel K(ξ) into the

following form as per given by Noble [113]

K(ξ) = K+(ξ)K−(ξ), (4.3.13)

where the functions K+(ξ) and K−(ξ) are non-zero analytic for λ > λ1(λ1 < 0)

and λ < λ2(λ2 > 0), respectively. Hence, Eq.(4.3.11) with the help of Eq.(4.3.13)

becomes

m+(ξ)

K+(ξ)
= K−(ξ)n−(ξ)−

σ0√
2π(ϵ+ iξ)K+(ξ)

. (4.3.14)

Now, the last term of the Eq.(4.3.14) can be decomposed in the following manner

σ0√
2π(ϵ+ iξ)K+(ξ)

= L+(ξ) + L−(ξ), (4.3.15)

where

L+(ξ) =
σ0√

2π(ϵ+ iξ)

[
1

K+(ξ)
− 1

K+(iϵ)

]
, (4.3.16)

L−(ξ) =
σ0√

2π(ϵ+ iξ)K+(iϵ)
. (4.3.17)
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The functions L+(ξ) and L−(ξ) are non-zero analytic in λ > λ1 and λ < δ (δ > 0),

respectively. Rewritting the Eq.(4.3.14) with the help of Eq.(4.3.15), we get

m+(ξ)

K+(ξ)
+ L+(ξ) = K−(ξ)n−(ξ)− L−(ξ). (4.3.18)

In the above Eq.(4.3.18) the functions m+(ξ), K+(ξ), L+(ξ), n−(ξ), K−(ξ) and

L−(ξ) are analytic in the region for λ ≥ 0, λ > λ1(λ1 < 0), λ > λ1(λ1 < 0), λ ≤
0, λ < λ2(λ2 > 0) and λ < δ(δ > 0), respectively. Hence, on the left-hand side of

the Eq.(4.3.18) is analytic in the upper half-plane (λ ≥ 0), and the right-hand side

is analytic in the lower half-plane (λ ≤ 0). Thus, the common area of analyticity is

the line λ = 0. By using the analytic continuation, it is observed that Eq. (4.3.18)

is a single-valued analytic function in the whole complex ξ-plane. For the large

value of ξ, the functions K+(ξ) and K−(ξ) tend to ξ1/2 and the functions m+(ξ) and

n−(ξ) will be bounded. Let us consider that the both sides of Eq.(4.3.18) equal to

an analytic function A(ξ). The LHS of the Eq.(4.3.18) tends to ξ−1/2 in the upper

half-plane(λ ≥ 0) while the RHS tends to ξ1/2, for the large value of ξ. Now, by

using the extended Liouville theorem, the only analytic function which satisfies both

the conditions above is none other than an identically zero function. Therefore, we

get

A(ξ) = 0. (4.3.19)

Using Eqs.(4.3.16)-(4.3.18), with the help of Eq.(4.3.19), we get

m+(ξ) =
σ0√

2π(ϵ+ iξ)

(
K+(ξ)

K+(iϵ)
− 1

)
, (4.3.20)

n−(ξ) =
σ0√

2π(ϵ+ iξ)K+(iϵ)K−(ξ)
. (4.3.21)

For constant loading we may take ϵ → 0. Thus the above relations become

m+(ξ) =
σ0√
2π(iξ)

(
K+(ξ)

K+(0)
− 1

)
, (4.3.22)

n−(ξ) =
σ0√

2π(iξ)K+(0)K−(ξ)
. (4.3.23)

In order to determine the analytical expression of SIF without factorizing the

kernel K(ξ), the method given by Nilsson [114, 115] is used. Here, the asymptotic

expression of SIF can be found by knowing the values of the kernel for large and

small values of ξ. Hence the asymptotic values for kernel K(ξ) are given as
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lim
ξ→∞

K(ξ)

ξ
=

−C
(1)
44 G

(1)C
(2)
44 G

(2)

(C
(1)
44 G

(1) + C
(2)
44 G

(2))
= l1, (4.3.24)

lim
ξ→0

K(ξ) =
−C

(1)
44 C

(2)
44

h(C
(1)
44 + C

(2)
44 )

= l2. (4.3.25)

For a large value of ξ, the Eqs.(4.3.22) and (4.3.23) can be rewritten as

lim
ξ→∞

m+(ξ) = lim
ξ→∞

σ0√
2π(iξ)

(
K+(ξ)

K+(0)

)
, (4.3.26)

lim
ξ→∞

n−(ξ) = lim
ξ→∞

σ0√
2π(iξ)K+(0)K−(ξ)

. (4.3.27)

Asymptotic expressions of the above expressions using Eqs.(4.3.24) and (4.3.25)

obtained as

m+(ξ) =
σ0

√
l1√

2πl2i (−1)1/4
ξ−1/2, as ξ → ∞, (4.3.28)

n−(ξ) =
σ0√

2πl1l2i (−1)1/4
ξ−3/2, as ξ → ∞. (4.3.29)

The inverse fourier transform of the above functions can be determined as

lim
x→0+

m(x) =
−σ0

2

√
l1
πl2

x−1/2, (4.3.30)

lim
x→0−

n(x) = −σ0

√
1

πl1l2
(−x)1/2. (4.3.31)

Here the Eq.(4.3.30) represents shear component distribution on the outside of

the crack along x−axis. Also, this shows the square root singularity at the origin

i.e., the crack tip, which is very much expected through the nature of the problem.

The Eq.(4.3.31) represents the displacement component in the vicinity of the crack

tip, which is useful to obtain the crack opening displacement.

4.4 Stress intensity factor(SIF) and Crack open-

ing displacement(COD)

The stress intensity factor (KIII) for the model is obtained as

KIII = lim
x→0+

√
2πx σ(1)

yz (x, 0) = −σ0

√
l1
2l2

(4.4.1)
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After putting the value of σ0 in the Eq.(4.4.1), the value of SIF for the original

problem(normalized with respect to w
(1)
0 ) becomes

SIF =
C

(1)
44

h

√
l1
2l2

. (4.4.2)

The Crack Opening Displacement (COD) is obtained as

COD = −2σ0

√
1

πl1l2

√
−x (4.4.3)

After putting the value of σ0 in the Eq.(4.4.3), we get the expression of COD for

the original problem(normalized with respect to w
(1)
0 )given as

COD =
2C

(1)
44

h

√
1

πl1l2

√
−x. (4.4.4)

4.5 Numerical results and discussion

For numerical calculation, three different composite materials and their combinations

as Medium-I and Medium-II have been used, whose Engineering material elasticity

constants (in GPA unit) are given in Table 4.1.

Composite

Materials

C44 C55 ρ

Graphite epoxy 5.40 5.50 1.60

Carbon Fiber 6.15 6.15 1.5

Prepreg 7.8 7.8 1.595

Table 4.1: Engineering material elasticity constants
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Figure 4.3: Variations of the normalized SIF vs Crack Velocity (V ) for h = 2, 4
and 6 for Graphite epoxy as Medium-I and Carbon fiber as Medium-II.
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Figure 4.4: Variations of the normalized SIF vs Crack Velocity (V ) for h = 2, 4
and 6 for Graphite epoxy as Medium-I and Prepreg as Medium-II.
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Figure 4.5: Variations of the normalized SIF vs Crack Velocity (V ) for h = 2, 4
and 6 for Prepreg as Medium-I and Carbon fiber as Medium-II.
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Figure 4.6: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.1, 0.75 & 1.5 and h = 2 for Graphite epoxy as Medium-I and Carbon fiber
as Medium-II.
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Figure 4.7: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.1, 0.75 & 1.5 and h = 4 for Graphite epoxy as Medium-I and Carbon fiber
as Medium-II.
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Figure 4.8: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.1, 0.75 & 1.5 and h = 6 for Graphite epoxy as Medium-I and Carbon fiber
as Medium-II.
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Figure 4.9: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.1 and h = 2, 4 & 6 for Graphite epoxy as Medium-I and Carbon fiber as
Medium-II.
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Figure 4.10: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.75 and h = 2, 4 & 6 for Graphite epoxy as Medium-I and Carbon fiber as
Medium-II.
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Figure 4.11: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 1 and h = 2, 4 & 6 for Graphite epoxy as Medium-I and Carbon fiber as
Medium-II.
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Figure 4.12: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.1, 0.75 & 1.5 and h = 2 for Graphite epoxy as Medium-I and Prepreg as
Medium-II.
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Figure 4.13: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.1, 0.75 & 1.5 and h = 4 for Graphite epoxy as Medium-I and Prepreg as
Medium-II.
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Figure 4.14: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.1, 0.75 & 1.5 and h = 6 for Graphite epoxy as Medium-I and Prepreg as
Medium-II.
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Figure 4.15: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.1 and h = 2, 4 & 6 for Graphite epoxy as Medium-I and Prepreg as Medium-
II.
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Figure 4.16: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.75 and h = 2, 4 & 6 for Graphite epoxy as Medium-I and Prepreg as
Medium-II.
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Figure 4.17: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 1 and h = 2, 4 & 6 for Graphite epoxy as Medium-I and Prepreg as Medium-II.
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Figure 4.18: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.1, 0.75 & 1.5 and h = 2 for Prepreg as Medium-I and Carbon fiber as
Medium-II.
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Figure 4.19: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.1, 0.75 & 1.5 and h = 4 for Prepreg as Medium-I and Carbon fiber as
Medium-II.
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Figure 4.20: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.1, 0.75 & 1.5 and h = 6 for Prepreg as Medium-I and Carbon fiber as
Medium-II.
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Figure 4.21: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.1 and h = 2, 4 & 6 for Prepreg as Medium-I and Carbon fiber as Medium-II.
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Figure 4.22: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 0.75 and h = 2, 4 & 6 for Prepreg as Medium-I and Carbon fiber as Medium-II.
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Figure 4.23: Variations of the normalized COD with distance x for Crack Velocity
(V ) = 1 and h = 2, 4 & 6 for Prepreg as Medium-I and Carbon fiber as Medium-II.

The analytical expressions of SIF and COD from the Eqs. (4.4.2) and (4.4.4)

are seen to be depending on material constants and crack velocity. SIF is dependent

on depth of the strip and the material properties. The effects of depth of the strip

vs. crack velocity have been shown in Figs. 4.3-4.5. It is observed that the upper

limit of crack velocity (V ) is the SH-wave velocity (Cs), therefore for the mode-III

crack propagation, crack velocity is always less than SH-wave velocity and SIF tends

to zero as V → Cs. The value of SIF is higher for the combination of materials,

Graphite-epoxy as medium-I and Preprag as medium-II. Also in each combination

of materials, it is observed that as the depth of the strip increases, the SIF decreases.

Hence, the SIF can be controlled by increasing the depths of the strips to prevent

material failure.

The variations of COD are found from Figs. 4.6-4.8 for Graphite epoxy as

medium-I and Carbon fiber as medium-II. It is seen that the values of COD in-

crease with the increase of crack velocity and it approaches to zero as the crack tip

approaches to the origin, which justifies the physical nature of the problem. From

Figs. 4.9-4.11, the effects of depth on the COD are seen as the depth increases the

values of COD decreases. Although the values of COD are quiet similar for all the

combinations of materials but the values of COD are slightly higher for the combi-

nation of materials: Graphite-epoxy as medium-I and Preprag as medium-II. Hence,

The COD can also been controlled by increasing the depth of the strip and it tends

to be zero as the crack tip reaches the origin. Similar behavior of SIF and COD have

been observed through Figs. 4.12-4.23 for other combinations of composite materials
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viz., Graphite epoxy as medium-I and Prepreg as medium-II, and also for Prepreg

as medium-I and Carbon fiber as medium-II.

4.6 Conclusion

This chapter has studied the semi-infinite moving crack situated at the interface of

dissimilar orthotropic strips. The chapter has achieved three important goals:

1. Converting the mixed boundary value problem to the Wiener-Hopf equation

using Fourier transformation to determine the asymptotic expression for SIF

at the crack tip.

2. Finding the asymptotic expression of COD analytically using the Wiener-Hopf

technique.

3. The graphical presentations of the physical quantities like SIF and COD for

various crack velocities and depths of the strips.

For various combinations of orthotropic materials, the characteristics of the model for

crack propagation and crack opening displacement have been graphically shown. By

altering the parametric values, which include the material constants and the depths of

the strips, SIF and COD may be controlled, and the structure may be maintained by

arresting the crack. The chapter might be helpful for the researchers and scientists

to use the model that has been developed to improve laminate construction and

forecast crack arrest when applying appropriate loadings and orthotropic materials.
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