
Chapter 3

The mathematical study of an

Edge crack in two different

specified models under

time-harmonic wave disturbance

3.1 Introduction

Composite materials have a massive significance in building mechanical structures.

The materials are lighter and more sustainable as these are formed by combining

two or more materials with the same or different physical properties. Due to which

it generates flexibility, durability, ability to sustain heavy loads and makes it cost-

efficient for production. Composites are highly involved in automobiles, aircraft,

bullet trains, laminates, bridges, and many other mechanical structures. The failure

in composites is a major concern for researchers and scientists. There are many

causes for material failure, but in this chapter, we address failure due to fractures

caused by internal and external cracks, specifically edge cracks. The problem of

edge cracks in the composite medium is very challenging and is actively pursued by

many researchers around the globe. Most of the aerospace industry is seeking out

fiber-reinforced composite as an alternative for constructing aircraft because these

are lighter, sustain heavy loads, and offer greater flexibility. Composites have a wide

range of applications, from home appliances to building space crafts.

Edge cracks are the more catastrophic type of cracks because these are more

vulnerable than interior cracks. Dealing with edge cracks can be challenging as these

are found more often in our day-to-day life, and fracture tendency is higher, and the

possibility of crack arrest is lower. Scientists, engineers, and researchers are dealing
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with edge cracks for the last few decades, and still, these types of cracks are as

challenging as new. To deal with edge cracks, SIF plays a very crucial role. It is

evident from the literature survey many scientists and researchers have contributed

to the edge crack problems in the composite and orthotropic media as Sneddon and

Das [78] have studied the SIF for an edge crack situated in an elastic half-plane,

further studied by Achenbach et al. [79] in an elastodynamic medium while Gupta

and Erdogan [80] have investigated some edge crack problems in an infinite strip.

Hasebe and Inohara [81] did the stress analysis of a semi-infinite plate with an oblique

edge crack. Afterward, edge crack for thermal loading in a nonhomogeneous half-

plane has been studied by Jin and Noda [82], furthermore transient loading stress

for an edge crack analyzed by JIN and Paulio [83] and Guo et al. [84] studied the

dynamical response in a functionally graded orthotropic strip of an edge crack. Das

et al. [85] [86] [87] [88] have derived the SIF for an edge crack that is bonded in

orthotropic material. Chiu et al. [89]have derived the scattering effect of the edge-

guided wave by an edge crack. Lee and Beom [90] contributed a study about an

interfacial edge crack between dissimilar orthotropic materials.

A broad number of studies have been conducted and still going on for composite

materials and their benefits for the betterment of humankind and to save human

resources. Whitworth [91] provided modeling stiffness reduction of graphite/epoxy

composite laminate [92] [93] [94], which helped aerospace industries. Naik et al. [95]

derived high strain rate tensile behavior of e-glass epoxy composites. Jia [96] studied

for enhancement of ablative and interfacial bonding properties of EPDM composites,

while Linganiso and Anandjiwala [97] studies fiber-reinforced laminates in aerospace

engineering to reduce the weight of the overall model. Recently, Miao and Tippur [98]

have studied the effect of loading rate on fracture behavior of carbon fiber reinforced

polymer composites. Afterward, Yuhazri et al. [99] explores its strengthening for a

concrete structure. Xu et al. [100] studied weight function method for orthotropic

single edge notched specimen, and Petrova and Schmauder [101] have studied a

theoretical model with a system of edge crack and internal cracks. Whereas Itou [102]

studied the time-harmonic wave disturbance on three collinear cracks.

When we work in the actual world, the surfaces of the system are open to all

types of waves and pressure present in our environment, disturbing the system body

and its related components. Wave disturbances are the main disturbance caused by

the environment; for example, the pressure on aircraft while flying causes light and

compression waves. The time-harmonic wave disturbances are caused by impinging

the time-harmonic waves on the surface, which creates pressure on the crack surface.

Due to this, the crack surface got affected, which leads to affect the speed of crack



3.2. Mathematical formulation 45

propagation and the stress field around the crack.

The present study proposes two mathematical edge cracked models, in which

problem-1 consists of an edge crack in a semi-infinite orthotropic strip of finite depth

h bonded by orthotropic half-plane.While the problem-2 consists of the edge crack

is situated in a vertical semi-infinite orthotropic strip of depth h. The problems

are solved by applying Fourier transformation technique to get the pair of integral

equations, and the unknowns were obtained by using the Schmidt method [103].

Approximate analytical expression of stress intensity factor under time-harmonic

wave disturbance at the tip of the edge crack has been derived. The graphical

representations of SIF for variations of wave numbers and crack lengths with respect

to various depths of the strip have been shown for both the problems. A comparison

of the study of SIFs of edge crack for the problems is the salient feature of this

chapter.

3.2 Mathematical formulation

Consider an edge crack of finite length (0 < x < a) in two different problems. For

problem-1, the edge crack is situated in the orthotropic strip of finite thickness h

bonded by an orthotropic half-plane (Fig.3.1). For problem-2, the edge crack is

situated in the orthotropic strip of the same thickness (Fig.3.2).

Figure 3.1: The crack geometry of Problem-1
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The displacement equations for both the problems are given by
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Figure 3.2: The crack geometry of Problem-2

where C
(j)
ik ’s are the elastic constants, and the superscripts j = 1, 2 refer to

medium 1 and medium 2, respectively. The corresponding stresses are given by
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Consider incident elastic waves that move along the y-axis in the negative direc-

tion. the corresponding displacements are found as

u(j) = 0
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v(j) = ευexp[iωy/C
(j)
T

√
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(j)
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The common boundary conditions for both the problems are as follows:

On y = 0,

σ(1)
yy (x, 0) = −p, 0 ≤ x ≤ a, (3.2.6)

σ(1)
xy (x, 0) = 0, 0 ≤ x ≤ h, (3.2.7)

v(1) (x, 0) = 0, a < x < h, . (3.2.8)

On the boundary x = 0,

σ(1)
xx (0, y) = 0, |y| < ∞, (3.2.9)

σ(1)
xy (0, y) = 0, |y| < ∞, (3.2.10)

Continuity conditions on the interface position x = h, for problem-1 are as follows

u(1) (h, y) = u(2) (h, y) , |y| < ∞, (3.2.11)

v(1) (h, y) = v(2) (h, y) , |y| < ∞, (3.2.12)

σ(1)
yy (h, y) = σ(2)

yy (h, y), |y| < ∞, (3.2.13)

σ(1)
xy (h, y) = σ(2)

xy (h, y) , |y| < ∞, (3.2.14)

boundary conditions on the position x = h, for problem-2 are as follows

σ(1)
xx (h, y) = 0, |y| < ∞, (3.2.15)

σ(1)
xy (h, y) = 0, |y| < ∞, (3.2.16)

The stress components vanish from the remote distance of the crack.
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3.3 Solution of the problems

Applying the Fourier transformation Eq.(1.4.1) on Eq.(3.2.1) , we get
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Expressions of the solution can be assumed as
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k = 1, 2; j = 1, 2.

The expressions for stresses are obtained as
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For problem-1, using the boundary condition (3.2.7), and (3.2.9)-(3.2.10) with the

continuity conditions (3.2.11) - (3.2.14) , we get
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For problem-2, using boundary condition (3.2.7) and the continuity conditions

(3.2.15) - (3.2.16), we get

B(1) = (f1 + f2f4)A
(1),

C(1) = f4A
(1),

D(1) = f3A
(1),

A(2) = 0,

B(2) = 0, (3.3.12)
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The boundary conditions (3.2.6) and (3.2.8) with the aid of expressionss (3.3.11)

and (3.3.12), we get
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where for problem-1
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for problem-2
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Representing v(1)(x, 0) by the series
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πC
(1)
66 v

(1)(x, 0) =
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n=1

c(1)n cos{(2n− 1) sin−1(x/a)}, 0 < x < a, (3.3.17)

= 0, elsewhere.

we see that the condition (3.3.14) is satisfied. The Fourier transformation of the

Eq.(3.3.17) is obtained as

C
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(2n− 1)

2ξ
J2n−1 (ξa) (3.3.18)

where c
(1)
n

′s are the unknown coefficients to be determined and J2n−1 (ξa) is the

Bessel function of first kind.

The expression of the normal stress is obtained as
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In order to find the coefficients c
(1)
n

′s, the Schmidt method [103] is used, for

which the expression (3.3.13) with the aid of expression (3.3.19) can be reduced to

the following form

∞∑
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Let us construct a set of orthogonal functions Wn(x) from the set of functions

Q
(1)
n (x) , which satisfying the given condition of orthogonality as follows:

∫ a

0
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∞∑
n=1
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Q
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where Nn =
∫ a
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[Wn(x)]

2dx and W1(x) = Q
(1)
1 (x) and S ′

ins are the cofactors of the

elements sin of Sn as follows:
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Sn =
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s11 s12 ... s1n
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The Eq.(3.3.20) can be written in the form of orthogonal set of functions Q
(1)
n (x)
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c(1)n Q(1)
n (x) =
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qnWn(x) = −p. (3.3.24)

using the last two equalities to get the value of qn and using that value and first

two equality to get the values of c
(1)
n as follows:

c(1)n =
∞∑
j=n

dj
Snj

Sjj
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where dj =
−1
Nj
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0
pWj(x)dx. For large value of ξ, the value of R
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as R(ξ)/ξ → RL , i.e.,

RL = R(ξl)/ξl, (3.3.26)

where ξl is considered to be very large value of ξ. Now in order to evaluate the

integral in Eq.(3.3.19) , we use the following relation

∫ ∞

0

Jn(xz) cos(yz)dz =
−xn sin(nπ/2)√

y2 − x2{y +
√
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With the help of Eqs.(3.3.21),(3.3.26) and (3.3.27),Q
(1)
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π
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√
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√
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(3.3.28)

The dynamic Mode- I stress intensity factor (KIa) for both the problems at the

tip x = a of the edge crack is determined as

KIa = {2π(x− a)}1/2 lim
x→a+

σ(1)
yy (x, 0) =

∞∑
n=1

c(1)n (2n− 1)(−1)nRL/(πa)1/2. (3.3.29)



54 Chapter 3. The mathematical study of...

3.4 Results and discussion

For the numerical computation of the given mathematical models, the composite

material Graphite-epoxy and E-glass epoxy are taken as vertical orthotropic strip

and half-plane, respectively for Problem-1. For Problem-2, the Graphite-epoxy as

the material for the orthotropic strip. The engineering material constants are given

in Table-2.1 of the previous chapter.

The dimensionless dynamic mode- I SIF (KIa) for both the problems at the crack

tip x = a of the edge crack has been numerically calculated by using the expression

in Eq.(3.3.29). The variations of the dimensionless SIF have been shown graphically

for various width (h = 2, 4 and 6) of the vertical strip for various crack lengths and

wave numbers (aω/C
(1)
T ). It can be easily determined that the SIF was higher for

the smaller value of the h, i.e., when the depth of the strip is less, the SIF is higher,

which shows the effect of the decrease in SIF as an increase in the depth of the strip.
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Figure 3.3: Variation of normalized KIa vs. aω/C
(1)
T for problem-1 at a/h =

0.4, 0.5, 0.6, 0.7, for h = 2.
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Figure 3.4: Variation of normalized KIa vs. aω/C
(1)
T for problem-1 at a/h =

0.4, 0.5, 0.6, 0.7, for h = 4.
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Figure 3.5: Variation of normalized KIa vs. aω/C
(1)
T for problem-1 at a/h =

0.4, 0.5, 0.6, 0.7, for h = 6.
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Figure 3.6: Variation of normalized KIa vs. aω/C
(1)
T for problem-2 at a/h =

0.4, 0.5, 0.6, 0.7, for h = 2.
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Figure 3.7: Variation of normalized KIa vs. aω/C
(1)
T for problem-2 at a/h =

0.4, 0.5, 0.6, 0.7, for h = 4.
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Figure 3.8: Variation of normalized KIa vs. aω/C
(1)
T for problem-2 at a/h =

0.4, 0.5, 0.6, 0.7, for h = 6.
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Figure 3.9: Variation of normalized KIa vs. a/h for problem-1 at aω/C
(1)
T =

0.5, 1.5, 2.5, for h = 2.
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Figure 3.10: Variation of normalized KIa vs. a/h for problem-1 at aω/C
(1)
T =

0.5, 1.5, 2.5, for h = 4.
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Figure 3.11: Variation of normalized KIa vs. a/h for problem-1 at aω/C
(1)
T =

0.5, 1.5, 2.5, for h = 6.
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Figure 3.12: Variation of the normalized KIa vs. a/h for problem-2 at aω/C
(1)
T =

0.5, 1.5, 2.5, for h = 2.
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Figure 3.13: Variation of normalized KIa vs. a/h for problem-2 at aω/C
(1)
T =

0.5, 1.5, 2.5, for h = 4.
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Figure 3.14: Variation of normalized KIa vs. a/h for problem-2 at aω/C
(1)
T =

0.5, 1.5, 2.5, for h = 6.

The numerical results depicted above show the effect of increment in SIF as the

dimensionless quality a/h increases for Figs.[3.3]-[3.8]. The high peak can be seen for

a higher value of the wavenumber, i.e., as the frequency of the time-harmonic wave

increasing, SIF is increasing. This phenomenon can be seen for both the problems.

For Figs.[3.9]-[3.14], the normalized SIF curves are depicted for various wave num-

bers, and again as the wave number is increasing, the peaks of SIF are getting higher.

Both models show the same nature of increment and decrement in the curves of the

normalized SIF. The increment in SIF for problem-2 is higher for every different

particular cases concerning problem-1.

3.5 Conclusion

The contribution from this chapter achieves two significant goals:

� The first one is deriving the approximate analytical expression of the SIF for the

edge crack for both the problems under the time-harmonic wave distribution

on the crack surface.

� The second one is the graphical presentations of the normalized SIF at the

crack tip x = a for both the problems with respect to various wave numbers

(aω/C
(1)
T ) and also with respect to the various dimensionless quantity a/h.
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