
Chapter 2

Study of collinear cracks in a

composite medium subjected to

time-harmonic wave disturbance

2.1 Introduction

During the last few decades the composite materials which are made from two or

more constituent materials having different physical properties and possesses differ-

ent characteristics from individual components have been used by the engineers in

air crafts, bridges, automobiles, bullet trains, spacecrafts etc., for its high strength

and light weight. Most of the composite materials are made by one material with

the reinforcement of fragments of stronger materials. There is flexibility of various

choices in the manufacturing process to determine what should be the properties

of the resulting composite. The primary demand of composite materials has been

created by the modern aviation. There are a lot of reasons for growing up the ap-

plications of composites, but the primary one is the products made by composite

are stronger and lighter. Metal loses its strength when the temperature is evalu-

ated. High polymeric material can resist lower temperature. Ceramic can replace

metal and polymer as it can resist at high temperature due to its thermal expansion

property and strength. But due to the brittleness it is often treated unacceptable as

structural material. Thus there is a need of composites.

The researchers working in the area of composite materials are concerned with

the damage mechanics of the composites with the help of different mechanism.The

damage caused due to thermo-mechanical loadings and their effects on the failure

and fatigue behaviours of the composite structure are also considered. Due to the

increasing use of composites in the aircraft structures, the researchers are focused to
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understand the performance of composite materials and its structures under different

flight loads. The failure and fracture analyses of these materials are very much needed

to avoid aircraft accident. The orthotropic materials are useful to deal with the

fracture problems in composite materials.Due to the high module, high strength and

low weight, the orthotropic composites are frequently used in high speed aircrafts,

missiles, rocket engines, satellites etc. The most growing example of utilization of

orthotropic composite in spacecraft applications is due to its weight savings and

dimensional stability.

Thus the presence of cracks may cause premature failure of structures. Sev-

eral problems related to crack propagation of constant speed have been studied in

fracture mechanics for orthotropic materials.It is found from the literature survey

that many researchers have contributed the problem of crack/cracks in orthotropic

media [55–65]. Itou [66] has studied the problem of two co-planer Griffith cracks

situated in an orthotropic elastic layer sandwiched between two isotropic half-planes

while Das et. al. [67] have studied the sandwiched problem of two co-planer Grif-

fith cracks which has further been solved by converting the problem into integral

equations.Das and Patra [68] have studied the problem of three co-planer Griffith

cracks located symmetrically in the mid-plane of an orthotropic elastic layer of finite

length. In 2003, Das and Debnath [69] have investigated the interactions between

Griffith cracks in sandwiched orthotropic layer using Fourier transform technique

and showed that the effects are either shielding or amplification depending on the

location of cracks, shaping of crack-tips and thickness of the layers.Recently Liu et.

al. [70]have determined stress intensity factors for two unequal collinear cracks using

weight function method. A simple and accurate method has been presented for com-

puting SIF of collinear interacting cracks by Millwater [71]. Ohyoshi [72] considered

the diffraction of P and SV-waves by a finite crack situated in orthotropic medium

and studied the orthotropic effect on singular stress components while Kassir and

Bandyopadhyay [33] determined the elastodynamic response of an orthotropic solid

containing a crack under the action of normal impact loading. In both the stud-

ies peak values of dynamic SIFs have been obtained. The problem of two collinear

cracks in an orthotropic plate has been studied by Sarkar et al. [73]. Lira-Vergara

and Rubio Gonzalez [64] calculated the SIFs of a crack situated on an interface of

dissimilar orthotropic half-planes. Later, Itou [66, 74] studied the problem of two

collinear cracks in the presence of time-harmonic waves and reported the peak val-

ues of SIFs. Recently, Singh et al. [75] have calculated the analytical expressions

of SIFs of an interfacial crack in an orthotropic strip under the normal and shear

impact loadings and provided the peak values of dynamic SIFs. In 2016, Itou [76]
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has determined the dynamic SIFs of three collinear cracks in an orthotropic medium

subjected to time-harmonic disturbance.

Plane wave is an example of a time harmonic field where the time variation

is considered as sinusoidal. The waves are described as disturbances during travel

through media, which are transporting energy from one location to another without

transporting matter. The simple disturbance as a wave function is considered as sine

function which is conveyed in medium to generate harmonic waves. It is assumed that

for the rigid wall the normal stress to the wall is zero, but for the interface it becomes

complicated and defined by a complex quantity for the linear independence.The

quantity is defined by the ratio of stresses imposed to the normal velocity to the

surface where both the terms include a harmonic time dependence e−iωt.Thus there

is a primary importance in harmonic wave behaviour in analytical sense since any

form of time dependence is continued and analysed into a set of functions.

This chapter is oriented towards the investigations of SIFs at the tips of three

collinear cracks in a sandwiched orthotropic strip and also the shielding and am-

plification of central crack due to the presence of outer cracks through stress mag-

nification factor. To find the solution, the whole problem has been transformed

into Fourier transformed plane. The Schmidt method [77] has been used to find

the unknowns.Approximate analytical expressions of SIFs at cracks’ tips have been

derived.The variations of normalised SIFs and SMF against different wave numbers,

due to various lengths of the cracks and depths of the strip are displayed graphically.

2.2 Mathematical formulation

Let us consider an orthotropic composite material made with a semi-infinite or-

thotropic strip as medium 1 (−∞ < x < ∞,−h ≤ y ≤ h) which is bounded between

two identical orthotropic half-planes as medium 2 (−∞ < x < ∞, h ≤ y < ∞;−∞ <

x < ∞,−∞ < y ≤ −h).The strip is weakened by three cracks situated symmetri-

cally at the mid-plane of the strip, in which the length of the central crack is 2a and

each of the outer crack is (c-b) as shown through the Fig.2.1.It is considered that

the cracks (|x| < a, b < |x| < c) are subjected to the time-harmonic waves and fulfil

the symmetric requirements.
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Figure 2.1: Geometry of the problem

The equations of motion for the considered model are given by
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where U (j)(x, y, t) and V (j)(x, y, t) are displacement components along x and y di-

rections respectively, C
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ik ’s are elastic constants, C
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ratios and j = 1, 2 refer to the strip 1 and half-plane 2 respectively.
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Let the incident elastic wave is impinging on the surface of the cracks from the

normal direction.Therefore the displacement components are considered as

U (1) = 0 ,

V (1) = A exp (iωy/(C
(1)
T

√
C

(1)

22 ) + iωt) , (2.2.3)
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where A and ω are amplitude and circular frequency of the time-harmonic wave.

From Eqs (2.2.2) and (2.2.3), we get
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Substituting U (j)(x, y, t) = u(j)(x, y) eiωt and V (j)(x, y, t) = v(j)(x, y) eiωt in Eq.(2.2.1)

, we get
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The corresponding stresses are given by
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where σ
(j)
yy = τ

(j)
yy e−iωt and σ

(j)
xy = τ

(j)
xy e−iωt.

The boundary and continuity conditions for the considered mathematical model are

given as follows:

On y = 0,

σ(1)
yy (x, 0) = −p, |x| ≤ a, b ≤ |x| ≤ c, (2.2.7)

σ(1)
xy (x, 0) = 0, |x| < ∞, (2.2.8)

v(1) (x, 0) = 0, a < |x| < b, |x| > c. (2.2.9)

On y = h,

σ(1)
yy (x, h) = σ(2)

yy (x, h) , |x| < ∞, (2.2.10)
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σ(1)
xy (x, h) = σ(2)

xy (x, h) , |x| < ∞, (2.2.11)

u(1) (x, h) = u(2) (x, h) , |x| < ∞, (2.2.12)

v(1) (x, h) = v(2) (x, h) , |x| < ∞. (2.2.13)

The components of the stresses vanish from the remote distance of the cracks.

2.3 Solution of the problem

Applying the Fourier transformation from Eq.(1.4.1), the Eqs (2.2.5) are reduced in
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The expressions of the solutions of the Eq.(2.3.1) are assumed as
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The expressions of stresses in the medium 1 and medium 2 are obtained as
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Using boundary conditions (2.2.10) - (2.2.13), we get
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The boundary conditions(2.2.7) - (2.2.9) and the stress expressions give rise to
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Let us suppose v(1)(x, 0) be represented by the following series as
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Here the condition (2.3.15) is satisfied.Applying Fourier transformation on the Eqs
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(2.3.17), we get
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The above expression can be reduced to the following forms
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To find the coefficients a
(1)
n and b

(1)
n , we use Schmidt method [77].First consider both

the equations are in 0 < x < c. Then Eqs (2.3.20) and (2.3.21) can be written in the
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Let Sn(x) be an orthogonal set of functions satisfying the given conditions of orthog-
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Let us rewrite the Eq.(2.3.24) in terms of the orthogonal series of Sn(x) with coeffi-

cients cn as
∞∑
n=1

a(1)n G(1)
n (x) + p =

∞∑
n=1

cnSn(x) = −
∞∑
n=1

b(1)n H(1)
n (x) . (2.3.28)

Taking the second equality and using the condition for orthogonality of Sn(x), we

get

cn =
∞∑
n=1

αnib
(1)
i , (2.3.29)

where αni = − 1
Nn

∫ c

0
Sn(x)H

(1)
i (x)dx .

Taking the first equality, we get

a(1)n =
∞∑
n=1

γnib
(1)
i , (2.3.30)

where γni = −
∑n

j=1
1
Nj

Mjn

Mjj

∫ c

0
Sj(x)H

(1)
i (x)dx.

Putting the value of a
(1)
n in the Eq.(2.3.23), we get



2.3. Solution of the problem 33

∞∑
n=1

(
∞∑
i=1

γnib
(1)
i )E(1)

n (x) +
∞∑
n=1

b(1)n F (1)
n (x) =− p (2.3.31)

or,
∞∑
n=1

b(1)n (
∞∑
i=1

γni)E
(1)
n (x) +

∞∑
n=1

b(1)n F (1)
n (x) =− p (2.3.32)

or,
∞∑
n=1

b(1)n Y (1)
n (x) =− p, (2.3.33)

where Y
(1)
n (x) =

∑∞
i=1γniE

(1)
n (x) + F

(1)
n (x).

Following the similar procedure towards the orthogonalization of the series given

in Eq.(2.3.33) with the help of another orthogonal set of functions Tn(x) given by

Tn(x) =
n∑

i=1

Lin

Lnn

Y
(1)
i (x),

satisfying the orthogonality relation∫ c

0

Tn(x)Tm(x)dx = Wnδnm ,

with Wn =
∫ c

0
[Tn(x)]

2dx, we get

b(1)n =
∞∑
j=n

ηj
Ljn

Ljj

, (2.3.34)

where ηj = − 1
Wj

∫ c

0
pTj(x)dx and L′

jns are the cofactors of the elements lin of

Ln ,which is given by

Ln =

∣∣∣∣∣∣∣∣∣∣
l11 l12 ... l1n

l21 l22 ... l2n

: : :

ln1 ln2 ... lnn

∣∣∣∣∣∣∣∣∣∣
, lin =

∫ c

0

Y
(1)
i (x)Y (1)

n (x)dx.

Now substituting b
(1)
n in Eq.(2.3.30) , we will get a

(1)
n .These a

(1)
n and b

(1)
n are used

in Eq.(32) to find the expression of σ
(1)
yy (x, 0).

For large value of ζ, the valueRL can be evaluated by using the expression, R(ζ)/ζ →
RL i.e.,
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RL = R(ζl)/ζl, (2.3.35)

where ζl is considered to be very large value of ζ.

Eq.(2.3.35) and the following relations:

∫ ∞

0

Jn(xz){cos(yz), sin(yz)}dz = [cos{n sin−1(y/x)}, sin{n sin−1(y/x)}]

/(x2 − y2)1/2, forx > y, (2.3.36)∫ ∞

0

Jn(xz){cos(yz), sin(yz)}dz = {−xn sin(nπ/2), xn cos(nπ/2)}

/[(y2 − x2)1/2{y + (y2 − x2)1/2}n] , for y > x,

(2.3.37)

yield the expressions of E
(1)
n (x), F

(1)
n (x), G

(1)
n (x) and H

(1)
n (x) as

E(1)
n (x) =

(2n− 1)

π
[

∫ ∞

0

(
R(ζ)/ζ −RL

)
J2n−1(aζ) cos(ζx)dζ

+RL cos{(2n− 1) sin−1(x/a)}/(a2 − x2)1/2],

(2.3.38)

F (1)
n (x) =

1

2π
[

∫ ∞

0

(
R(ζ)/ζ −RL

)
Jn(λ1ζ)[cos(nπ/2){sin(λ2ζ) + sin(λ3ζ)}

− sin(nπ/2){cos(λ2ζ) + sin(λ3ζ)}]dζ +RLλn
1 [1/[(λ

2
2 − λ2

1)
1/2{λ2

+ (λ2
2 − λ2

1)
1/2}n] + 1/[(λ2

3 − λ2
1)

1/2{λ3 + (λ2
3 − λ2

1)
1/2}n]],

(2.3.39)

G(1)
n (x) =

(2n− 1)

π
[

∫ ∞

0

(
R(ζ)/ζ −RL

)
J2n−1(aζ) cos(ζx)dζ

+RL(−1)(2n−1)a2n−1 sin{(2n− 1)π/2)}/[(a2 − x2)1/2{x

+ (x2 − a2)1/2}2n−1]],

(2.3.40)

H(1)
n (x) =

1

2π
[

∫ ∞

0

(
R(ζ)/ζ −RL

)
Jn(λ1ζ)[cos(nπ/2){sin(λ2ζ) + sin(λ3ζ)}

− sin(nπ/2){cos(λ2ζ) + sin(λ3ζ)}]dζ +RL[λn
1/[(λ

2
2 − λ2

1)
1/2{λ2

+ (λ2
2 − λ2

1)
1/2}n] + sin{n sin−1(λ3/λ1)− nπ/2}/[(λ2

1 − λ2
3)

1/2]], (2.3.41)

where λ1 = (c− b)/2, λ2 = (c+ b+ 2x)/2, λ3 = (c+ b− 2x)/2.
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2.4 Stress intensity factor

The dynamic Mode I stress intensity factors at the tips of the cracks are obtained as

KIa = lim
x→a+

√
2π(x− a)σ(1)

yy (x, 0) =
∞∑
n=1

a(1)n (2n− 1)(−1)nRL/2(πa)1/2, (2.4.1)

KIb = lim
x→b−

√
2π(b− x)σ(1)

yy (x, 0) =
∞∑
n=1

b(1)n RL/(2π(c− b))1/2, (2.4.2)

KIc = lim
x→c+

√
2π(x− c)σ(1)

yy (x, 0) =
∞∑
n=1

b(1)n (−1)n−1RL/(2π(c− b))1/2. (2.4.3)

The stress magnification factor (SMF) at the crack tip x = a can be determined by

MIa=
KIa

K∗
Ia

, (2.4.4)

where K∗
Ia is stress intensity factor at x = a due to presence of central crack only.

2.5 Numerical results and discussion

During numerical calculation, the composite materials Graphite epoxy and E-glass

epoxy have been used as medium 1 and medium 2, whose material properties are

given in Table 2.1.

Composite Materials C11 C22 C12 C66 ρ

Graphite epoxy (Medium-I) 155.36 16.31 3.67 7.48 1.60

E-glass epoxy (Medium-II) 46.09 12.60 2.86 5.50 2.10

Table 2.1: Engineering material constants

The dimensionless SIFs have been calculated using the expression from Eqs

(2.4.1)-(2.4.3) for different depths (h = 2, 4 and 6) of the orthotropic strip.The SIF at

tip of the central crack is calculated keeping a = 0.5, c = 1 and b = 0.6, 0.7, 0.8. The

SIFs at the outer crack tip are found keeping b = 0.6, c = 1 and a = 0.2, 0.3, 0.4. The

variations of normalised SIFs KIa/p
√
πa, KIb/p

√
π(c− b)/2, KIc/p

√
π(c− b)/2 at

x = a, x = b, x = c against the wave numbers are shown through Figs. 2.2 - 2.4,

Figs. 2.5 - 2.7 , Figs. 2.8 - 2.10, respectively for different crack lengths and depths

of the medium 1.

It is seen from the figures that KIa decreases with the increase in the depth of
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the orthotropic strip and also when the outer crack is moving away from the central

crack. Again SIFs KIb and KIc both decrease with the increase in the depth of

the strip and both increase when the distance between the central and outer cracks

decrease.Here the values of KIc are less than the values of KIb.

b=0.6

b=0.7

b=0.8

Figure 2.2: Variations of the normalised KIa vs. aω/C
(1)
T for a = 0.5, b =

0.6, 0.7, 0.8 and c = 1 when h = 2.

b=0.6

b=0.7

b=0.8

Figure 2.3: Variations of the normalised KIa vs. aω/C
(1)
T for a = 0.5, b =

0.6, 0.7, 0.8 and c = 1 when h = 4.
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b=0.6

b=0.7

b=0.8

Figure 2.4: Variations of the normalised KIa vs. aω/C
(1)
T for a = 0.5, b =

0.6, 0.7, 0.8 and c = 1 when h = 6.

a=0.2

a=0.3

a=0.4

Figure 2.5: Variations of the normalised KIb vs. (c − b)ω/2C
(1)
T for a =

0.2, 0.3, 0.4, b = 0.6, c = 1 when h = 2.
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a=0.2

a=0.3

a=0.4

Figure 2.6: Variations of the normalised KIb vs. (c − b)ω/2C
(1)
T for a =

0.2, 0.3, 0.4, b = 0.6, c = 1 when h = 4.

a=0.2

a=0.3

a=0.4

Figure 2.7: Variations of the normalised KIb vs. (c − b)ω/2C
(1)
T for a =

0.2, 0.3, 0.4, b = 0.6, c = 1 when h = 6.
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a=0.2

a=0.3

a=0.4

Figure 2.8: Variations of the normalised KIc vs. (c − b)ω/2C
(1)
T for a =

0.2, 0.3, 0.4, b = 0.6, c = 1 when h = 2.

a=0.2

a=0.3

a=0.4

Figure 2.9: Variations of the normalised KIc vs. (c − b)ω/2C
(1)
T for a =

0.2, 0.3, 0.4, b = 0.6, c = 1 when h = 4.
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a=0.2

a=0.3

a=0.4

Figure 2.10: Variations of the normalised KIc vs. (c − b)ω/2C
(1)
T for a =

0.2, 0.3, 0.4, b = 0.6, c = 1 when h = 6.

Again it is seen that for each case the SIF increases with increase in wave number

and then decreases.In each case overshoot is found.The peaks are higher for h = 2

while it decrease as the values of h increase.

w=1.5

w=2.5

w=0.5

Figure 2.11: Variations of the MIa vs. b/a for different values of wave number (w)
at h = 2.
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w=1.5

w=2.5

w=0.5

Figure 2.12: Variations of the MIa vs. b/a for different values of wave number (w)
at h = 4.

w=1.5

w=2.5

w=0.5

Figure 2.13: Variations of the MIa vs. b/a for different values of wave number (w)
at h = 6.

The numerical values of the SMF given in the Eq. (2.4.4) are calculated for

various wave numbers and different depths of the strip. The variations of the SMF

against b/a keeping c = 1 are depicted through Fig. 2.11, Fig.2.12, Fig. 2.13 for

h = 2, h = 4 and h = 6 respectively.The beauty of the physical quantity SMF (MIa)

is that if MIa < 1, then shielding occurs i.e., there will be a possibility of crack arrest

while MIa > 1 implies the occurrence of the amplification and as a result crack tip

will propagate.

It is seen from the Figs.2.11-2.13 that if the central crack tip is fixed at a = 0.5



42 Chapter 2. Study of collinear cracks...

and the outer crack length is decreased i.e., the cracks’ separation distance increases

then there is a possibility of arrest of the central crack. If the depth of the strip

(medium 1) increases, the possibility increases. It is also seen that the values of

MIa will be higher for the wave number w= aω/C
(1)
T = 1.5. Thus for our considered

model if the depth of the strip is small and cracks’ separation distance is less then

the tendency of propagating the tip of the central crack will be maximum for w=1.5.

2.6 Conclusion

This chapter succeeds in achieving three major goals:

� Initially, under time-harmonic waves impinging normal to the crack surfaces,

determining the approximate analytical expressions of the SIFs at the tips of

collinear cracks and stress magnification factor for central crack.

� The graphical depiction of the variations in normalized SIFs with respect to di-

mensionless wave numbers for various central and outer crack lengths as well

as various depths of the strip.

� As the Stress magnification factor shows the shielding effect, which gives the pos-

sibilities for the central crack arrest because of the existence of the outer cracks.


	Study of collinear cracks in a composite medium subjected to time-harmonic wave disturbance
	Introduction
	Mathematical formulation
	Solution of the problem
	Stress intensity factor
	Numerical results and discussion
	Conclusion


