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A. Appendix A

A.1 Proof of the Lemma 1.3

Proof.

Proof of (i). Let A = [a,a] and B = [b, b]. Then,
1A @ Bllrw = llla,a) @ [b,8]|l1w) = llla+b,a+ bl 1w = max{|a+bl, [a+ b}
We now have the following two possible cases.

e Case 1. |A @ B||yr) = |a+D|
Since |a-+b| < |a|+[b] < max{|al, [al }+max{[b], D]} = [ Alli) + Bl -

we get [|[A @ BHI(R) < HAHI(R) + ||B||I(R)‘

e Case 2. |[A®B|;r =|a+b|
Since [a+b| < [a]+[B] < max{|al, [al}-+max{[b], [b|} = |A s+ Bz,

therefore, ||A ) BHI(R) S ”AHI(R) + ||B||[(R)

Hence, ||A ) BHI(R) S ||AHI(R) + HB”I(R) for all 1&7 B e I(R)

Proof of (ii). Let A = [a,a], B =[b,b], C =c,¢] and D = [d, d].

We note that

VAN
I
©
=
a
Q|
VAN
ol
>
=

A<C = [g,a|<X[c¢ = a
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Also,

B=<D = [bb <[dd = b<dandb<d. (A.2)
From (A.1) and (A.2), we have

a+b<c+danda+b<c+d
= [a+ba+b Z[c+dc+d
Thus, A B < Co D.
H

A.2 Proof of the Lemma 1.4

Proof.

Proof of (i). Let A =[a,a], B = [b,b] and € > 0.

Ao,y B =[a—ba—b]or[a—ba— Db Let us now consider the following four

possible cases.

e Casel. A @gH B = [Q—[_),a— ] and |IA @gH BHI(R) = |Q—[_)|
So, we have

a—b<a-—band|a—bl <|a—b

Let ||A ©yn B||1®) < €. Then,

la— b <e.

(A.3)
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e Case 2.

e Case 3.

By equation (A.4), we have —e < a — b < €, and hence b — € < a.

By equations (A.3) and (A.4), we have [@—b| < e. This implies b—¢ < @.
Therefore, B ©,p [¢,€] = [b— €,b — ¢] < [a,a] = A.

Note that by equation (A.4), a < b+ €. Also, by equations (A.3) and
(A.4), we have |@—b| < e. This implies @ < b+e¢. Therefore, A = [a,a] <

b4 e,b+¢ =B e €.

AS,uB=la—ba—b and |A Sy Bl = a1

So, we have

Consider

||A @gH B”[(R) < €

— |a—bl<e (A.6)

By equation (A.6), we have

b—e<a.

By equations (A.5) and A.6), we have |a — b| < e. This implies b — € < a.
Therefore, B ©,p [e, €] = [b—€,b — €] < [a,a].

Note that by equation (A.6), @ < b+ e. Also, by equations (A.5) and
(A.6), we have |a —b| < e. This implies a < b+ e. Therefore, A = [a,a] <

[b+e,b+el=Bd[ee.

ASyyB=[a—ba—10 and |A Sy Blrr) = |a— bl

This case can be proved by following the steps similar to Case 1.
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e Case 4. A5,y B=[a—b,a—1b and |A Sy Bll;r) = |a—b|.
This case can be proved by following the steps similar to Case 2.
Conversely, let B S,y [e,¢] < A < B & [e, €.
Note that
Boyule,ed <A = [b—¢€b—¢ <]a,a
— b—e<gandb—e<a. (A.7)
Also,
A<Ba@le,e = [a,a <b+eb+e
— a<bteanda<b+te (A.8)

From equations (A.7) and (A.8), we have

b—e<a<bt+eandb—e<a<b+e
— Ja—bl<eand|a—b| <e
— max{la—b|,|a—b|} <e

ie., ||A OgH BHI(R) < €.

This completes the proof of (i).

Proof of (ii). Let A = [a,a], B = [b,b] and € > 0.

Consider A© e, ] # B. This implies [a—e¢,a—¢] 4 [b,b]. Thus, ‘b < a—¢ and b <

G—¢c¢or‘b<a—candb>a—¢ or‘b>a—candb<a—e. Let us consider all

these three possibilities in the following three cases.
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eCasel. b<a—candb<a—e

So, we have

a>band a> b, because € > 0

— B<A — A£B.

eCase2 b<a—ecandb>a—e.

Since b < a — €, so a > b, and thus A £ B.
eCase3. b>a—candb<a—e.

Since b < @ — €, so @ > b, and thus A £ B.

Hence, proof of (ii) is complete. O

A.3 Proof of the Lemma 1.8

Proof.
Proof of (i). Let A = [a,@] and B = [b, b].
Then, A 6,y B =[a—b,a — b or [@ — b, a — b]. Let us now consider the following

two possible cases.

e Case 1. A@gHB: [Q—Q,E—B].

We see that

0<Ac,yB < 0=<[a—ba—1
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e Case2. Ao,yB=[a—ba—1.

Note that

A A
< b<gandb<a < B=<A.
Hence, 0 X Ac,s B < B < A.

Proof of (ii). Let A = [a,a] and B = [b, b].

Then, A ©,5s B = [a — b,@— b] or [@ — b,a — b]. Let us now consider the following

two possible cases.

eCasel. Ao,y B=[a—ba—1

In this case, we have ¢ — b < @ — b. This implies
b—a>b—a. (A.9)
Also, in this case, we have (—1) ® (A ©,4 B) = [b—@,b — a]. Notice that

Bo,y A = [min{b—a,b—a}, max{b—a,b—a}]

e Case 2. A@gHB: [a_gaﬁ_b]~

In this case, we have @ — b < a — b. Therefore,

=l
|
f
(V3
=
|
IS

(A.10)
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Also, in this case, we have (—1) ® (A ©,4 B) = [b — a,b — @]. Note that

Bo,y A = [min{b—a,b—a}, max{b—a,b— a}]

Hence, from Case 1 and 2, we get

(~1)® (A 841 B) = B Oy A.






B. Appendix B

B.1 Proof of the Lemma 1.31

Proof. @ Case 1. a < <b.
Since VF(Z) exists, either VF(Z) < 0 or 0 < VF(z) or 0 C VF(z).
If possible, let VF(Z) < 0. Then,

o F(@) S0 F(@)

T—T T — T

< 0.

Therefore, by Definition 3.1 of gH-limit, there exists a d; > 0 such that

F(r) Sgn F(7)

r—x

<0

for all z’s satisfying ‘0 < |z — Z| < 6; and z € [a,b]’.

Let T < x < 4 6;. Then, x — z > 0, and therefore F(z) o,y F(z) < 0
for all z € (z,z + 1) N [a, b).

Thus, by Lemma 1.6, we get F(x) < F(Z) for all x € (Z,Z + 1) N [a, b].
This contradicts that  is a weak efficient solution of (1.4).

Let us now assume that 0 < VF(z). Then,

0 < lim F&) S F(T)

T—T r—2x

Therefore, by Definition 3.1 of gH-limit, there exists a d2 > 0 such that

F(x) OgH F(i’)

T —T

0=

145
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e Case 2.

e Case 3.

for all 2’s satisfying ‘0 < |z — Z| < 62 and z € [a,b].

Let £ — 03 < © < &. Then, z —z < 0, and therefore F(z) 6,4 F(z) < 0
for all x € (z — 09, %) N [a, b].

Thus, by Lemma 1.6, we get F(z) < F(z) for all x € (T — 2, %) N [a, b].
This contradicts that = is a weak efficient solution of (1.4).

Hence, 0 € VF(Z).

T =a.

Suppose on contrary that 0 A VF(z). Then,

0 4 tim F) S @)

r—zt r—2x

Thus, similarly as in Case 1, we get F(z) £ F(z) for all x € (Z,z + d3) N
[a,b], for some d3 > 0. This is a contradiction as T is a weak efficient

solution of (1.4). Hence, 0 < VF(Z).

z =0

Proof contains similar steps as in Case 2.
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