
Bibliography

[1] Ahmad, I., Singh, D., and Dar, B. A. (2017), Optimality and duality in

non-differentiable interval-valued multiobjective programming, International

Journal of Mathematics in Operational Research, 11, 332–356.

[2] Alefeld, G. and Mayer, G. (2000). Interval analysis: theory and applications,

Journal of Computational and Applied Mathematics, 121, 421–464.

[3] Allen, G. (1977). Variational inequalities, complementarity problems, and

duality theorems. Journal of Mathematical Analysis and Applications, 58(1),

1-10.

[4] Antczak T. (2017), Optimality conditions and duality results for nonsmooth

vector optimization problems with the multiple intervalvalued objective func-

tion, Acta Mathematica Scientia, 37B(4), 1133–1150.

[5] Antczak, T. (2018), Exactness property of the exact absolute value penalty

function method for solving convex nondifferentiable interval-valued opti-

mization problems, Journal of Optimization Theory and Applications, 176(1),

205–224.
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A. Appendix A

A.1 Proof of the Lemma 1.3

Proof.

Proof of (i). Let A = [a, a] and B = [b, b]. Then,

∥A⊕B∥I(R) = ∥[a, a]⊕ [b, b]∥I(R) = ∥[a+ b, a+ b]∥I(R) = max{|a+ b|, |a+ b|}.

We now have the following two possible cases.

• Case 1. ∥A⊕B∥I(R) = |a+ b|.

Since |a+b| ≤ |a|+|b| ≤ max{|a|, |a|}+max{|b|, |b|} = ∥A∥I(R)+∥B∥I(R),

we get ∥A⊕B∥I(R) ≤ ∥A∥I(R) + ∥B∥I(R).

• Case 2. ∥A⊕B∥I(R) = |a+ b|.

Since |a+b| ≤ |a|+|b| ≤ max{|a|, |a|}+max{|b|, |b|} = ∥A∥I(R)+∥B∥I(R),

therefore, ∥A⊕B∥I(R) ≤ ∥A∥I(R) + ∥B∥I(R).

Hence, ∥A⊕B∥I(R) ≤ ∥A∥I(R) + ∥B∥I(R) for all A, B ∈ I(R).

Proof of (ii). Let A = [a, a], B = [b, b], C = [c, c] and D = [d, d].

We note that

A ⪯ C =⇒ [a, a] ⪯ [c, c] =⇒ a ≤ c and a ≤ c. (A.1)
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Also,

B ⪯ D =⇒ [b, b] ⪯ [d, d] =⇒ b ≤ d and b ≤ d. (A.2)

From (A.1) and (A.2), we have

a+ b ≤ c+ d and a+ b ≤ c+ d

=⇒ [a+ b, a+ b] ⪯ [c+ d, c+ d].

Thus, A⊕B ⪯ C⊕D.

A.2 Proof of the Lemma 1.4

Proof.

Proof of (i). Let A = [a, a], B = [b, b] and ϵ > 0.

A ⊖gH B = [a − b, a − b] or [a − b, a − b]. Let us now consider the following four

possible cases.

• Case 1. A⊖gH B = [a− b, a− b] and ∥A⊖gH B∥I(R) = |a− b|.

So, we have

a− b ≤ a− b and |a− b| ≤ |a− b|. (A.3)

Let ∥A⊖gH B∥I(R) < ϵ. Then,

|a− b| < ϵ. (A.4)
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By equation (A.4), we have −ϵ < a− b < ϵ, and hence b− ϵ < a.

By equations (A.3) and (A.4), we have |a−b| < ϵ. This implies b−ϵ < a.

Therefore, B⊖gH [ϵ, ϵ] = [b− ϵ, b− ϵ] ≺ [a, a] = A.

Note that by equation (A.4), a < b + ϵ. Also, by equations (A.3) and

(A.4), we have |a−b| < ϵ. This implies a < b+ ϵ. Therefore, A = [a, a] ≺

[b+ ϵ, b+ ϵ] = B⊕ [ϵ, ϵ].

• Case 2. A⊖gH B = [a− b, a− b] and ∥A⊖gH B∥I(R) = |a− b|.

So, we have

a− b ≤ a− b and |a− b| ≤ |a− b|. (A.5)

Consider

∥A⊖gH B∥I(R) < ϵ

=⇒ |a− b| < ϵ (A.6)

By equation (A.6), we have

b− ϵ < a.

By equations (A.5) and A.6), we have |a− b| < ϵ. This implies b− ϵ < a.

Therefore, B⊖gH [ϵ, ϵ] = [b− ϵ, b− ϵ] ≺ [a, a].

Note that by equation (A.6), a < b + ϵ. Also, by equations (A.5) and

(A.6), we have |a−b| < ϵ. This implies a < b+ ϵ. Therefore, A = [a, a] ≺

[b+ ϵ, b+ ϵ] = B⊕ [ϵ, ϵ].

• Case 3. A⊖gH B = [a− b, a− b] and ∥A⊖gH B∥I(R) = |a− b|.

This case can be proved by following the steps similar to Case 1.
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• Case 4. A⊖gH B = [a− b, a− b] and ∥A⊖gH B∥I(R) = |a− b|.

This case can be proved by following the steps similar to Case 2.

Conversely, let B⊖gH [ϵ, ϵ] ≺ A ≺ B⊕ [ϵ, ϵ].

Note that

B⊖gH [ϵ, ϵ] ≺ A =⇒ [b− ϵ, b− ϵ] ≺ [a, a]

=⇒ b− ϵ < a and b− ϵ < a. (A.7)

Also,

A ≺ B⊕ [ϵ, ϵ] =⇒ [a, a] ≺ [b+ ϵ, b+ ϵ]

=⇒ a < b+ ϵ and a < b+ ϵ. (A.8)

From equations (A.7) and (A.8), we have

b− ϵ < a < b+ ϵ and b− ϵ < a < b+ ϵ

=⇒ |a− b| < ϵ and |a− b| < ϵ

=⇒ max{|a− b|, |a− b|} < ϵ

i.e., ∥A⊖gH B∥I(R) < ϵ.

This completes the proof of (i).

Proof of (ii). Let A = [a, a], B = [b, b] and ϵ > 0.

Consider A⊖gH [ϵ, ϵ] ⊀ B. This implies [a−ϵ, a−ϵ] ⊀ [b, b]. Thus, ‘b ≤ a−ϵ and b ≤

a − ϵ’ or ‘b < a − ϵ and b > a − ϵ’ or ‘b > a − ϵ and b < a − ϵ’. Let us consider all

these three possibilities in the following three cases.
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• Case 1. b ≤ a− ϵ and b ≤ a− ϵ.

So, we have

a > b and a > b, because ϵ > 0

=⇒ B ≺ A =⇒ A ⪯̸ B.

• Case 2. b < a− ϵ and b > a− ϵ.

Since b < a− ϵ, so a > b, and thus A ⪯̸ B.

• Case 3. b > a− ϵ and b < a− ϵ.

Since b < a− ϵ, so a > b, and thus A ⪯̸ B.

Hence, proof of (ii) is complete.

A.3 Proof of the Lemma 1.8

Proof.

Proof of (i). Let A = [a, a] and B = [b, b].

Then, A ⊖gH B = [a − b, a − b] or [a − b, a − b]. Let us now consider the following

two possible cases.

• Case 1. A⊖gH B = [a− b, a− b].

We see that

0 ⪯ A⊖gH B ⇐⇒ 0 ⪯ [a− b, a− b] ⇐⇒ 0 ≤ a− b and 0 ≤ a− b

⇐⇒ b ≤ a and b ≤ a ⇐⇒ B ⪯ A.
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• Case 2. A⊖gH B = [a− b, a− b].

Note that

0 ⪯ A⊖gH B ⇐⇒ 0 ⪯ [a− b, a− b] ⇐⇒ 0 ≤ a− b and 0 ≤ a− b

⇐⇒ b ≤ a and b ≤ a ⇐⇒ B ⪯ A.

Hence, 0 ⪯ A⊖gH B ⇐⇒ B ⪯ A.

Proof of (ii). Let A = [a, a] and B = [b, b].

Then, A ⊖gH B = [a − b, a − b] or [a − b, a − b]. Let us now consider the following

two possible cases.

• Case 1. A⊖gH B = [a− b, a− b].

In this case, we have a− b ≤ a− b. This implies

b− a ≥ b− a. (A.9)

Also, in this case, we have (−1)⊙ (A⊖gH B) = [b− a, b− a]. Notice that

B⊖gH A = [min{b− a, b− a},max{b− a, b− a}]

= [b− a, b− a], by (A.9)

= (−1)⊙ (A⊖gH B).

• Case 2. A⊖gH B = [a− b, a− b].

In this case, we have a− b ≤ a− b. Therefore,

b− a ≥ b− a. (A.10)
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Also, in this case, we have (−1)⊙ (A⊖gH B) = [b− a, b− a]. Note that

B⊖gH A = [min{b− a, b− a},max{b− a, b− a}]

= [b− a, b− a], by (A.10)

= (−1)⊙ (A⊖gH B).

Hence, from Case 1 and 2, we get

(−1)⊙ (A⊖gH B) = B⊖gH A.





B. Appendix B

B.1 Proof of the Lemma 1.31

Proof. • Case 1. a < x̄ < b.

Since ∇F(x̄) exists, either ∇F(x̄) ≺ 0 or 0 ≺ ∇F(x̄) or 0 ⊆ ∇F(x̄).

If possible, let ∇F(x̄) ≺ 0. Then,

lim
x→x̄

F(x)⊖gH F(x̄)

x− x̄
≺ 0.

Therefore, by Definition 3.1 of gH-limit, there exists a δ1 > 0 such that

F(x)⊖gH F(x̄)

x− x̄
≺ 0

for all x’s satisfying ‘0 < |x− x̄| < δ1 and x ∈ [a, b]’.

Let x̄ < x < x̄ + δ1. Then, x − x̄ > 0, and therefore F(x) ⊖gH F(x̄) ≺ 0

for all x ∈ (x̄, x̄+ δ1) ∩ [a, b].

Thus, by Lemma 1.6, we get F(x) ≺ F(x̄) for all x ∈ (x̄, x̄ + δ1) ∩ [a, b].

This contradicts that x̄ is a weak efficient solution of (1.4).

Let us now assume that 0 ≺ ∇F(x̄). Then,

0 ≺ lim
x→x̄

F(x)⊖gH F(x̄)

x− x̄
.

Therefore, by Definition 3.1 of gH-limit, there exists a δ2 > 0 such that

0 ≺ F(x)⊖gH F(x̄)

x− x̄

145
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for all x’s satisfying ‘0 < |x− x̄| < δ2 and x ∈ [a, b]’.

Let x̄ − δ2 < x < x̄. Then, x − x̄ < 0, and therefore F(x) ⊖gH F(x̄) ≺ 0

for all x ∈ (x̄− δ2, x̄) ∩ [a, b].

Thus, by Lemma 1.6, we get F(x) ≺ F(x̄) for all x ∈ (x̄− δ2, x̄) ∩ [a, b].

This contradicts that x̄ is a weak efficient solution of (1.4).

Hence, 0 ∈ ∇F(x̄).

• Case 2. x̄ = a.

Suppose on contrary that 0 ⪯̸ ∇F(x̄). Then,

0 ⪯̸ lim
x→x̄+

F(x)⊖gH F(x̄)

x− x̄
.

Thus, similarly as in Case 1, we get F(x̄) ⪯̸ F(x) for all x ∈ (x̄, x̄+ δ3) ∩

[a, b], for some δ3 > 0. This is a contradiction as x̄ is a weak efficient

solution of (1.4). Hence, 0 ⪯ ∇F(x̄).

• Case 3. x̄ = b.

Proof contains similar steps as in Case 2.
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