
Chapter 4

Interval Variational Inequalities

4.1 Introduction

Variational inequalities (VIs) play a major role in the current research in the opti-

mization theory. In the finite dimensional setting a VI can be viewed as the general-

ization of the necessary optimality condition for minimizing a differentiable function

over a convex set. During the last three decades, VIs are used as a tool to solve

optimization problems, see, for instance [3, 8, 41, 54, 69, 101], and the references

therein. In Chapters 4 and 5, we study variational inequalities for IVFs. Inter-

val variational inequalities are introduced and some brief study is made on them in

Chapter 4 which has appeared in the proceeding of SocPros [70]. Further in Chapter

5, we study thoroughly this topic in the context of interval optimization. The results

obtained in Chapter 5 are new and different from the results obtained in Chapter 4.
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4.1.1 Motivation

It is well-known that the conventional variational inequalities (VIs) are important

tool to solve conventional optimization problems. Motivated by this, in this chapter,

we propose a study of Stampacchia and Minty VIs for IVFs.

4.1.2 Contribution

In this chapter, we

• introduce the concept of interval variational inequalities,

• discuss the solution sets of these variational inequalities with the help of suit-

able examples, and

• derive a necessary and sufficient condition to find the efficient solution of an

IOP.

4.2 Stampacchia and Minty Interval Variational

Inequalities

This section presents IVIs and deduces the relationship among their solution sets.

Let X be a topological vector space and Y = RI be a set of all closed and bounded

intervals. Let K be a non-empty convex subset of X. Let T : K → L (X, Y ) be a

mapping, where L (X, Y ) denotes the space of gH-continuous linear maps from X

to Y . For every l ∈ L (X, Y ), the value of l at x is denoted by ⟨l, x⟩.

We define interval variational inequality problems (IVIPs) as follows:
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• Stampacchia interval variational inequality problem (SIVIP) is to find x̄ ∈ K

satisfying

⟨T (x̄), y − x̄⟩ ⊀ 0, ∀y ∈ K. (4.1)

• Minty interval variational inequality problem (MIVIP) is to find x̄ ∈ K satisfying

⟨T (y), y − x̄⟩ ⊀ 0, ∀y ∈ K. (4.2)

We call equation (4.1) as Stampacchia interval variational inequality (SIVI) and

equation (4.2) as Minty interval variational inequality (MIVI).

Note 11. If we take Y = R in (4.1) and (4.2) then these inequalities reduces to the

conventional Stampacchia and Minty VIs respectively.

We denote solution set of (4.1) by Sol(SIVIP) and solution set of (4.2) by Sol(MIVIP).

Let us now look at some IVIPs and their solution sets.

Example 4.1. Let X = R and K = [0, 10]. Let f(x), f(x) : R → R be defined

as f(x) = −x and f(x) = x2. Let T : K → L (X, Y ) be defined by T (x) =

[f(x), f(x)], ∀x ∈ K.

Sol(SIVIP) = {x̄ ∈ K|⟨T (x̄), y − x̄⟩ ⊀ 0, ∀y ∈ K}

= {x̄ ∈ K|⟨[−x̄, x̄2], y − x̄⟩ ⊀ 0, ∀y ∈ K}

= {x̄ ∈ K|[−x̄(y − x̄), x̄2(y − x̄)] ⊀ 0, ∀y ∈ K}

= {x̄ ∈ K|[−x̄(y − x̄), x̄2(y − x̄)] ≺ 0 is not true for any y ∈ K}.

At x̄ = 0:

Case 1. 0(y − 0) = 0 < 0 and 0 ≤ 0, which is not true for any y ∈ K.

Case 2. 0 ≤ 0 and 0 < 0, which is also not true for any y ∈ K.
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Case 3. 0 < 0 and 0 < 0, which is again not true for any y ∈ K.

Therefore, [0(y − 0), 0(y − 0)] ≺ 0 is not true for any y ∈ K

=⇒ [0(y − 0), 0(y − 0)] ⊀ 0, ∀y ∈ K

=⇒ 0 is a solution of SIVIP.

At x̄ = 10:

Case 1. −10(y − 10) < 0 and 100(y − 10) ≤ 0, which is not true for any y ∈ K.

Case 2. −10(y− 10) ≤ 0 and 100(y− 10) < 0, which is also not true for any y ∈ K.

Case 3. −10(y − 10) < 0 and 100(y − 10) < 0, which is again not true for any

y ∈ K.

Therefore, [−10(y − 10), 100(y − 10)] ≺ 0 is not true for any y ∈ K

=⇒ [−10(y − 10), 100(y − 10)] ⊀ 0, ∀y ∈ K

=⇒ 10 is a solution of SIVIP.

At x̄ = α ∈ (0, 10):

Case 1. −α(y − α) < 0 and α2(y − α) ≤ 0, which is not true for any y ∈ K.

Case 2. −α(y − α) ≤ 0 and α2(y − α) < 0, which is also not true for any y ∈ K.

Case 3. −α(y − α) < 0 and α2(y − α) < 0, which is again not true for any y ∈ K.

Therefore, [−α(y − α), α2(y − α)] ≺ 0 is not true for any y ∈ K

=⇒ [−α(y − α), α2(y − α)] ⊀ 0, ∀y ∈ K.

=⇒ α is a solution of SIVIP.

Thus, Sol(SIVIP)= [0, 10].

Let us now calculate Sol(MIVIP).

Sol(MIVIP) = {x̄ ∈ K|⟨T (y), y − x̄⟩ ⊀ 0, ∀y ∈ K}

= {x̄ ∈ K|⟨[−y, y2], y − x̄⟩ ⊀ 0, ∀y ∈ K}

= {x̄ ∈ K|[−y(y − x̄), y2(y − x̄)] ⊀ 0, ∀y ∈ K}

= {x̄ ∈ K|[−y(y − x̄), y2(y − x̄)] ≺ 0 is not true for any y ∈ K}.
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At x̄ = 0:

Case 1. −y2 < 0 and y3 ≤ 0, which is not true for any y ∈ K.

Case 2. −y2 ≤ 0 and y3 < 0, which is also not true for any y ∈ K.

Case 3. −y2 < 0 and y3 < 0, which is again not true for any y ∈ K.

Therefore, [−y(y − 0), y2(y − 0)] ≺ 0 is not true for any y ∈ K

=⇒ [−y(y − 0), y2(y − 0)] ⊀ 0, ∀y ∈ K

=⇒ 0 is a solution of MIVIP.

At x̄ = 10:

Case 1. −y(y − 10) < 0 and y2(y − 10) ≤ 0, which is not true for any y ∈ K.

Case 2. −y(y − 10) ≤ 0 and y2(y − 10) < 0, which is also not true for any y ∈ K.

Case 3. −y(y− 10) < 0 and y2(y− 10) < 0, which is again not true for any y ∈ K.

Therefore, [−y(y − 10), y2(y − 10)] ≺ 0 is not true for any y ∈ K

=⇒ [−y(y − 10), y2(y − 10)] ⊀ 0, ∀y ∈ K

=⇒ 10 is a solution of MIVIP.

At x̄ = α ∈ (0, 10):

Case 1. −y(y − α) < 0 and y2(y − α) ≤ 0, which is not true for any y ∈ K.

Case 2. −y(y − α) ≤ 0 and y2(y − α) < 0, which is also not true for any y ∈ K.

Case 3. −y(y − α) < 0 and y2(y − α) < 0, which is again not true for any y ∈ K.

Therefore, [−y(y − α), y2(y − α)] ≺ 0 is not true for any y ∈ K

=⇒ [−y(y − α), y2(y − α)] ⊀ 0, ∀y ∈ K

=⇒ α is a solution of MIVIP.

Thus, Sol(MIVIP)= [0, 10].

In this example Sol(SIVIP)=Sol(MIVIP) but this is not true in general, to see this

consider the example below.

Example 4.2. Let X = R and K = [−1, 1]. Let T : K → L (X, Y ) be defined as
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T (x) =


[x2,−x],−1 ≤ x < 0

[−x, x2], 0 ≤ x ≤ 1

Sol(SIVIP)= {x̄ ∈ K|⟨T (x̄), y − x̄⟩ ⊀ 0, ∀y ∈ K}.

Case 1. −1 ≤ x̄ < 0.

Sol(SIVIP) = {x̄ ∈ K|⟨[x̄2,−x̄], y − x̄⟩ ⊀ 0, ∀y ∈ K}

= {x̄ ∈ K|[x̄2(y − x̄),−x̄(y − x̄)] ⊀ 0, ∀y ∈ K}.

At x̄ = −1:

Subcase 1. y + 1 < 0 and −(y + 1) ≤ 0, which is not true for any y ∈ K.

Subcase 2. y + 1 ≤ 0 and −(y + 1) < 0, which is also not true for any y ∈ K.

Subcase 3. y + 1 < 0 and −(y + 1) < 0, which is again not true for any y ∈ K.

Therefore, [y + 1,−(y + 1)] ≺ 0 is not true for any y ∈ K.

=⇒ [y + 1,−(y + 1)] ⊀ 0, ∀y ∈ K.

=⇒ −1 is a solution of SIVIP.

At x̄ = α ∈ (−1, 0):

Subcase 1. α2(y− α) < 0 and −α(y− α) ≤ 0, which is true atleast for one value of

y.

Therefore, [α2(y − α),−α(y − α)] ≺ 0 is true for some y ∈ K

=⇒ [α2(y − α),−α(y − α)] ⊀ 0, ∀y ∈ K is not true

=⇒ α is not a solution of SIVIP.

Case 2. 0 ≤ x̄ ≤ 1.

Sol(SIVIP) = {x̄ ∈ K|⟨[−x̄, x̄2], y − x̄⟩ ⊀ 0, ∀y ∈ K}

= {x̄ ∈ K|[−x̄(y − x̄), x̄2(y − x̄)] ⊀ 0, ∀y ∈ K}
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By following the similar procedure as in the above example it can be seen that

[0, 1] ∈ Sol(SIVIP). Thus, Sol(SIVIP)= {−1} ∪ [0, 1].

Let us now calculate Sol(MIVIP).

Sol(MIVIP)= {x̄ ∈ K|⟨T (y), y − x̄⟩ ⊀ 0, ∀y ∈ K}.

Case 1. −1 ≤ x̄ < 0.

Sol(MIVIP) = {x̄ ∈ K|⟨[y2,−y], y − x̄⟩ ⊀ 0, ∀y ∈ K}

= {x̄ ∈ K|[y2(y − x̄),−y(y − x̄)] ⊀ 0, ∀y ∈ K}

At x̄ = −1:

Subcase 1. y2(y + 1) < 0 and −y(y + 1) ≤ 0, which is not true for any y ∈ K.

Because y + 1 ≥ 0, ∀y ∈ K so y2(y + 1) ≮ 0 for any y ∈ K.

Subcase 2. y2(y + 1) ≤ 0 and −y(y + 1) < 0, which is also not true for any y ∈ K.

Subcase 3. y2(y+1) < 0 and −y(y+1) < 0, which is again not true for any y ∈ K.

Therefore, [y2(y + 1),−y(y + 1)] ≺ 0 is not true for any y ∈ K

=⇒ [y2(y + 1),−y(y + 1)] ⊀ 0, ∀y ∈ K

=⇒ −1 is a solution of MIVIP.

It can be checked that no other x̄ ∈ K is a solution of MIVIP. Thus, Sol(MIVIP)=

{−1}.

For this example, Sol(MIVIP)⊆Sol(SIVIP) however, the next example shows that

this is not always true.

Example 4.3. Let X = R and K = [−1, 0]. Let T : K → L (X, Y ) be defined as

T (x) = [2x, 1].

Sol(MIVIP) = {x̄ ∈ K|⟨T (y), y − x̄⟩ ⊀ 0, ∀y ∈ K}

= {x̄ ∈ K|⟨[2y, 1], y − x̄⟩ ⊀ 0, ∀y ∈ K}

= {x̄ ∈ K|[2y(y − x̄), y − x̄] ⊀ 0, ∀y ∈ K}.
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At x̄ = 0:

Case 1. 2y2 < 0 and y ≤ 0, which is not true for any y ∈ K.

Case 2. 2y2 ≤ 0 and y < 0, which is also not true for any y ∈ K.

Case 3. 2y2 < 0 and y < 0, which is again not true for any y ∈ K.

Therefore, 0 is a solution of MIVIP.

Sol(SIVIP) = {x̄ ∈ K|⟨T (x̄), y − x̄⟩ ⊀ 0, ∀y ∈ K}

= {x̄ ∈ K|⟨[2x̄, 1], y − x̄⟩ ⊀ 0, ∀y ∈ K}

= {x̄ ∈ K|[2x̄(y − x̄), y − x̄] ⊀ 0, ∀y ∈ K}.

At x̄ = 0:

Case 1. 0 < 0 and y ≤ 0, which is not true for any y ∈ K.

Case 2. 0 ≤ 0 and y < 0,which is true atleast for one value of y, for instance, take

y = −1
2
. Therefore, 0 is not a solution of SIVIP. Thus, Sol(MIVIP)⊈Sol(SIVIP).

Note from examples (4.1), (4.2), and (4.3) that solution sets of Stampacchia and

Minty IVIs are not related to each other in general.

Proposition 4.1 provides the relation between the solution sets of these VIs.

Proposition 4.1. Let K be a non-empty convex subset of a topological vector space

X and T : K → L (X, Y ) be a mapping. If T is pseudomonotone, then Sol(SIVIP)

⊆ Sol(MIVIP).

Proof. Let x̄ be a solution of SIVIP.

Then, ⟨T (x̄), y − x̄⟩ ⊀ 0, ∀y ∈ K

=⇒ ⟨T (y), y − x̄⟩ ⊀ 0, ∀y ∈ K [By pseudomonotonicity of T ]

=⇒ x̄ is a solution of MIVIP.
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4.3 Relationship Between Interval Variational In-

equalities and Interval Optimization

Next, we give a necessary and sufficient condition of optimality for an IOP with the

help of Stampacchia interval variational inequality.

Let K be a non-empty convex subset of Rn and F : K → RI be an IVF. Consider

the IOP:

min
x∈K

F(x). (4.3)

Proposition 4.2. Let K be a non-empty convex subset of Rn and F : K → RI be

a gH-Gâteaux differentiable IVF on an open set containing K. If x̄ is a solution of

the optimization problem (4.3), then x̄ is a solution of SIVIP with T (x̄) = FG (x̄).

Proof. Since every gH-Gâteaux differentiable IVF is gH-directional differentiable,

therefore, by Theorem 1.35, FG (x̄)(y − x̄) ⊀ 0, ∀y ∈ K.

, i.e. , ⟨FG (x̄), (y − x̄)⟩ ⊀ 0, ∀y ∈ K

=⇒ x̄ is a solution of SIVIP with T (x̄) = FG (x̄).

Example 4.4. Let X = R and K = [1, 10]. Let f, f : R → R be defined as f(x) = x

and f(x) = 10x. Let F(x) = [f(x), f(x)], ∀x ∈ K.

In Fig. 4.1, the objective function F is depicted by the shaded region. From the Fig.

4.1, it is clear that x̄ = 1 is an efficient point of (4.3). Let us now check whether x̄

is a solution of SIVIP with T (1) = FG (1) or not.

FG (1)(h) = lim
λ→0+

1

λ
⊙ (F(1 + λh)⊖gH F(1))

= lim
λ→0+

1

λ
⊙ ([1 + λh, 10 + 10λh]⊖gH [1, 10])

= lim
λ→0+

1

λ
⊙ [λh, 10λh]
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Figure 4.1: The objective function F of Example 4.4

= [h, 10h]

= [1, 10]⊙ h

Clearly, FG (1) is linear and gH-continuous on R. Therefore, F is a gH-Gâteaux

differentiable function at 0.

Consider SIVIP with T (1) = FG (1), we have

{x̄ ∈ K|⟨FG (1), y − x̄⟩ ⊀ 0, ∀y ∈ K}

={x̄ ∈ K|[y − x̄, 10(y − x̄)] ⊀ 0, ∀y ∈ K}.

At x̄ = 1:

Case 1. y − 1 < 0 and 10(y − 1) ≤ 0, which is not true for any y ∈ K.

Case 2. y − 1 ≤ 0 and 10(y − 1) < 0, which is also not true for any y ∈ K.

Case 3. y − 1 < 0 and 10(y − 1) < 0, which is again not true for any y ∈ K.

Therefore, [y − 1, 10(y − 1)] ≺ 0 is not true for any y ∈ K

=⇒ [y − 1, 10(y − 1)] ⊀ 0, ∀y ∈ K

=⇒ 1 is a solution of SIVIP with T (1) = FG (1).

Proposition 4.3. Let K be a non-empty convex subset of Rn and F : K → RI be a
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pseudoconvex gH-Gâteaux differentiable IVF on an open set containing K. If x̄ is a

solution of SIVIP with T (x̄) = FG (x̄), then it is an efficient point of the optimization

problem (4.3).

Proof. Suppose that x̄ is a solution of SIVIP with T (x̄) = FG (x̄), but not an efficient

point of (4.3). Then, there exists a vector y ∈ K such that F(y) ≺ F(x̄).

By pseudoconvexity of F, we have ⟨FG (x̄), y − x̄⟩ ≺ 0, which is a contradiction to

the fact that x̄ is a solution of SIVIP. Thus, x̄ is also an efficient point of (4.3).

Example 4.5. Let X = R and K = [0, 1]. Let F : K → RI be defined as F(x) =

[x2, x], ∀x ∈ K.

Clearly F(x) ⊀ F(0), ∀x ∈ K, therefore, x̄ = 0 is the efficient point of (4.3).

Consider

FG (0)(h) = lim
λ→0+

1

λ
⊙ (F(0 + λh)⊖gH F(0))

= lim
λ→0+

1

λ
⊙ (F(λh)⊖gH F(0))

= lim
λ→0+

1

λ
⊙ [λ2h2, λh]

= lim
λ→0+

1

λ
⊙ [λh2, h]

= [0.h]

= [0, 1]⊙ h.

Clearly FG (0) is linear and gH-continuous on R.

Therefore, F is a gH-Gâteaux differentiable function at 0.

Also note that F is convex and hence, pseudoconvex. Thus, F satisfies hypothesis of

above theorem. Let us now check that it satisfies its conclusion as well.
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Consider SIVIP with T (0) = FG (0), i.e.,

{x̄ ∈ K|⟨FG (0), y − x̄⟩ ⊀ 0, ∀y ∈ K.} (4.4)

Then, solution set of (4.4) is:

{x̄ ∈ K|⟨FG (0), y − x̄⟩ ⊀ 0, ∀y ∈ K}

={x̄ ∈ K|⟨[0, 1], y − x̄⟩ ⊀ 0, ∀y ∈ K}

={x̄ ∈ K|[0, y − x̄] ⊀ 0, ∀y ∈ K}.

At x̄ = 0:

Case 1. 0 < 0 and y ≤ 0, which is not true for any y ∈ K.

Case 2. 0 ≤ 0 and y < 0, which is also not true for any y ∈ K.

Case 3. 0 < 0 and y < 0, which is again not true for any y ∈ K.

Therefore, [0, y − 0] ⊀ 0, ∀y ∈ K

=⇒ 0 is a solution of SIVIP with T (0) = FG (0).

4.4 Concluding Remarks

In this chapter, interval variational inequalities have been introduced, and a relation

between their solution sets has been analyzed. In the sequel, interval-valued pseu-

doconvex and pseudomonotone functions have also been introduced. For an IOP a

necessary and sufficient condition of optimality has been given in terms of SIVI. The

whole investigation is backed up by relevant illustrative examples.

***********



Chapter 5

Stampacchia and Minty

Variational Inequalities for

Interval-valued Functions and

Their Relationship with Interval

Optimization

5.1 Introduction

The systematic study of finite-dimensional variational inequalities began in the mid-

1960s, and the subject has evolved into a fruitful discipline in mathematical pro-

gramming over the last four decades. A rich mathematical theory, a slew of effective

solution algorithms, a slew of intriguing connections to various disciplines, and a

wide range of important applications in engineering and economics are among the

95
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developments [3, 8, 41, 54, 69, 101]. In this chapter, we study finite dimensional

variational inequalities for interval-valued functions.

5.1.1 Motivation

The finite-dimensional conventional variational inequality (VI) provides a broad uni-

fying framework for the study of optimization and equilibrium problems. Inspired

by this, in this chapter, we study variational inequalities for IVFs.

5.1.2 Contribution

The major contributions of this chapter are the following:

• Existence and uniqueness results for the proposed IVIs

• Derivation of a necessary and sufficient optimality condition for a constrained

IOP in terms of SIVI

• To find a sufficient optimality condition for a constrained IOP in terms of

MIVI

• Suitable examples in support of all the given results.

5.2 Interval variational inequalities

In this section, we first introduce VIs for IVFs. Then, we derive relationships be-

tween their solution sets (Theorems 5.3 and 5.4). We also provide existence and

uniqueness results for these VIs.
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Definition 5.1. Let X be a nonempty subset of Rn and T : X → Rn
I be an interval

vector-valued function.

(i) Stampacchia interval variational inequality problem (SIVIP) is a problem to

find a vector x̄ ∈ X satisfying

0 ⪯ (y − x̄)⊤ ⊙T(x̄) for all y ∈ X. (5.1)

We call the inequality (5.1) as Stampacchia interval variational inequality

(SIVI).

(ii) Minty interval variational inequality problem (MIVIP) is a problem to find a

vector x̄ ∈ X satisfying

0 ⪯ (y − x̄)⊤ ⊙T(y) for all y ∈ X. (5.2)

We call the inequality (5.2) as Minty interval variational inequality (MIVI).

Note that if instead of interval vector-valued function, we take T as a real vector-

valued function, then the inequalities (5.1) and (5.2) reduce to the conventional

Stampacchia and Minty variational inequalities [6, 41] respectively.

Example 5.1. For the better understanding of Stampacchia and Minty IVIs, we

solve these inequalities for T : X → RI
2 given by T(x1, x2) = ([−2, 1] ⊙ x2

1, [3, 4] ⊙

(x2
1 + x2

2)), where X = [−1, 0]× [−1, 0].

We first solve SIVIP. In this direction, we consider the following possible cases.
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Case 1. x̄ = (−1,−1).

In this case, for all y ∈ X, we have

(y − x̄)⊤ ⊙T(x̄) = ((y1 + 1), (y2 + 1))⊤ ⊙ ([−2, 1], [3, 4]⊙ 2)

= [−2, 1]⊙ (y1 + 1)⊕ [6, 8]⊙ (y2 + 1).

This implies

(y − x̄)⊤ ⊙T(x̄) = [−2(y1 + 1) + 6(y2 + 1), (y1 + 1) + 8(y2 + 1)]. (5.3)

To see that (−1,−1) is not a solution of SIVIP, take y1 = 0 and y2 = −1

in (5.3), we get

(y − x̄)⊤ ⊙T(x̄) = [−2, 1].

Thus, for this choice of y1 and y2, we have

0 ⪯̸ (y − x̄)⊤ ⊙T(x̄).

Hence, (−1,−1) is not a solution of SIVIP.

Case 2. x̄ = (0, 0).

We then have (y− x̄)⊤ ⊙T(x̄) = 0 for all y ∈ X. Thus, (0, 0) is a solution

SIVIP.

Case 3. x̄ = (−1, 0).

For all y ∈ X, we have

(y − x̄)⊤ ⊙T(x̄) = ((y1 + 1), y2)
⊤ ⊙ ([−2, 1], [3, 4])

= [−2, 1]⊙ (y1 + 1)⊕ [3, 4]⊙ y2.
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By choosing y1 and y2 both equal to −1, we get

(y − x̄)⊤ ⊙T(x̄) = [−4,−3] ≺ 0.

Therefore, (−1, 0) is not a solution of SIVIP.

Case 4. x̄ = (0,−1).

In this case, we have 0 ⪯ (y − x̄)⊤ ⊙ T(x̄) = [3, 4] ⊙ (y2 + 1) for all

y2 ∈ [−1, 0]. Thus, (0,−1) is a solution of SIVIP.

Case 5. x̄ = (−1, x2) such that x2 ∈ (−1, 0).

In this case, we have

(y − x̄)⊤ ⊙T(x̄) = [−2, 1]⊙ (y1 + 1)⊕ [3, 4](1 + x2
2)(y2 − x2).

By choosing y1 = −1 and y2 < x2, we get (y − x̄)⊤ ⊙T(x̄) ≺ 0. Thus, x̄ is

not a solution of SIVIP.

Case 6. x̄ = (x1,−1) such that x1 ∈ (−1, 0).

For all y ∈ X, we have

(y − x̄)⊤ ⊙T(x̄) = [−2, 1]⊙ x2
1(y1 − x1)⊕ [3, 4]⊙ (x2

1 + 1)(y2 + 1).

By choosing y2 = −1 and y1 < x1, we get

0 ⪯̸ (y − x̄)⊤ ⊙T(x̄).

Hence, x̄ is not a solution of SIVIP.

Case 7. x̄ = (0, x2) such that x2 ∈ (−1, 0).

In this case, we have

(y−x̄)⊤⊙T(x̄) = [3, 4]⊙x2
2(y2−x2). Note here that for any x2 ∈ (−1, 0), we
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can choose y2 ∈ [−1, 0] such that y2−x2 < 0, and hence [3, 4]⊙x2
2(y2−x2) ≺

0 for some y2 ∈ [−1, 0]. Hence, x̄ is not a solution of SIVIP.

Case 8. x̄ = (x1, 0) such that x1 ∈ (−1, 0).

By a similar argument as in Case 7, x̄ is not a solution of SIVIP.

Case 9. x̄ = (x1, x2) such that x1, x2 ∈ (−1, 0).

In this case, we have

(y − x̄)⊤ ⊙T(x̄) = [−2, 1]⊙ x2
1(y1 − x1)⊕ [3, 4](x2

1 + x2
2)(y2 − x2). (5.4)

For any x1, x2 ∈ (−1, 0), we can choose y1 = x1 and y2 < x2 in (5.4) such

that (y − x̄)⊤ ⊙T(x̄) ≺ 0. Thus, x̄ is not a solution of SIVIP.

Hence, from all the possible cases, the solution set of SIVIP is equal to

{(0, 0), (0,−1)}.

We now solve MIVIP. To solve this inequality we again consider the following pos-

sible cases.

Case 1. x̄ = (−1,−1).

In this case, we have

(y − x̄)⊤ ⊙T(y) = ((y1 + 1), (y2 + 1))⊤ ⊙ ([−2, 1]y21, [3, 4]⊙ (y21 + y22))

= [−2, 1]⊙ y21(y1 + 1)⊕ [3, 4]⊙ (y21 + y22)(y2 + 1).(5.5)
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If we take y2 = −1 and y1 = −1
2
in (5.5), then we get

0 ⪯̸ (y − x̄)⊤ ⊙T(y) = [−2, 1]⊙ 1
8
.

Thus, (−1,−1) is not a solution of MIVIP.

Case 2. x̄ = (0, 0).

For all y ∈ X, we have

(y − x̄)⊤ ⊙T(y) = [−2, 1]⊙ y31 ⊕ [3, 4](y21 + y22)y2. (5.6)

By choosing y1 = 0 and y2 = −1 in (5.6), we get

(y − x̄)⊤ ⊙T(y) = [−4,−3] ≺ 0.

Thus, (0, 0) is not a solution of MIVIP.

Case 3. x̄ = (−1, 0).

For all y ∈ X, we have

(y − x̄)⊤ ⊙T(y) = [−2, 1]⊙ y21(y1 + 1)⊕ [3, 4]⊙ (y21 + y22)y2.

By choosing y1 and y2 both equal to −1,we get

(y − x̄)⊤ ⊙T(y) = [−8,−6] ≺ 0.

Thus, (−1, 0) is not a solution of MIVIP.
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Case 4. x̄ = (0,−1).

In this case, we have

(y − x̄)⊤ ⊙T(y) = [−2, 1]⊙ y31 ⊕ [3, 4]⊙ (y21 + y22)(y2 + 1).

By choosing y1 and y2 both equal to −1, we get 0 ⪯̸ (y−x̄)⊤⊙T(y) = [−1, 2].

Thus, (0,−1) is not a solution of MIVIP.

Case 5. x̄ = (−1, x2) such that x2 ∈ (−1, 0).

In this case, we have

(y − x̄)⊤ ⊙T(y) = [1, 2]⊙ y21(y1 + 1)⊕ [3, 4](y21 + y22)(y2 − x2).

By choosing y1 = −1 and y2 < x2, we get (y − x̄)⊤ ⊙T(y) ≺ 0. Thus, x̄ is

not a solution of MIVIP.

Case 6. x̄ = (x1,−1) such that x1 ∈ (−1, 0).

By a similar argument as in Case 5, x̄ is not a solution of MIVIP.

Case 7. x̄ = (0, x2) such that x2 ∈ (−1, 0).

In this case, we have

(y − x̄)⊤ ⊙T(y) = [−2, 1]⊙ y31 ⊕ [3, 4]⊙ (y21 + y22)(y2 − x2).

By choosing y1 = 0 and y2 < x2, we get

(y − x̄)⊤ ⊙T(y) ≺ 0.

Thus, x̄ is not a solution of MIVIP.
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Case 8. x̄ = (x1, 0) such that x1 ∈ (−1, 0).

For all y ∈ X, we have

(y − x̄)⊤ ⊙T(y) = [−2, 1]⊙ y21(y1 − x1)⊕ [3, 4]⊙ (y21 + y22)y2.

By choosing y1 = 0 and y2 = −1, we get

(y − x̄)⊤ ⊙T(y) ≺ 0.

Thus, x̄ is not a solution of MIVIP.

Case 9. x̄ = (x1, x2) such that x1, x2 ∈ (−1, 0).

By a similar argument as in Case 8, x̄ is not a solution of MIVIP.

Hence, MIVIP has no solution.

Remark 5.2. From Example 5.1, it can be observed that, in general, SIVIP and

MIVIP need not have the same solution set. However, in the next (Theorem 5.3),

we show that if the mapping T is gH-hemicontionuous and pseudomonotone, then

the solution sets of these VIs are identical.

Theorem 5.3. Let X be a nonempty convex subset of Rn and T : X → Rn
I be gH-

hemicontinuous and pseudomonotone. Then, the solution set of SIVIP is identical

to the solution set of MIVIP.

Proof. Suppose x̄ is a solution of MIVIP. Then, for any y ∈ X and λ ∈ (0, 1), zλ =

x̄ + λ(y − x̄) ∈ X, and hence 0 ⪯ (zλ − x̄)⊤ ⊙T(zλ) for all λ ∈ (0, 1). This implies

0 ⪯ (y− x̄)⊤ ⊙T(x̄+λ(y− x̄)) for all λ ∈ (0, 1). Thus, by gH-hemicontinuity of T,

we have

0 ⪯ (y − x̄)⊤ ⊙T(x̄) for all y ∈ X.
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Therefore, x̄ is a solution of SIVIP.

Suppose now z̄ is a solution of SIVIP. Then,

0 ⪯ (y − x̄)⊤ ⊙T(x̄) for all y ∈ X

=⇒ 0 ⪯ (y − x̄)⊤ ⊙T(y) for all y ∈ X because T is pseudomonotone.

Thus, z̄ is a solution of MIVIP.

Theorem 5.4. Let X be a nonempty convex subset of Rn and T : X → Rn
I be gH-

hemicontinuous and pseudomonotone. Then, the solution sets of both SIVIP and

MIVIP are closed and convex.

Proof. In view of Theorem 5.3, the solution sets of SIVIP and MIVIP are same.

Thus, it is sufficient to prove that the solution set of MIVIP is closed and convex.

Suppose x̄ and x̂ are two solutions of MIVIP. Then, for any y ∈ X,

0 ⪯ (y − x̄)⊤ ⊙ F(y) (5.7)

and

0 ⪯ (y − x̂)⊤ ⊙ F(y). (5.8)

Multiplying (5.7) by λ ∈ [0, 1] and (5.8) by 1−λ, and then by adding the resultants,

we get

0 ⪯ λ(y − x̄)⊤ ⊙ F(y)⊕ (1− λ)(y − x̂)⊤ ⊙ F(y)

=⇒ 0 ⪯ (λ(y − x̄)⊤ + (1− λ)(y − x̂)⊤)⊙ F(y) by Lemma 1.37

or, 0 ⪯ (y − (λx̄+ (1− λ)x̂))⊤ ⊙ F(y).
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Hence, λx̄+ (1− λ)x̂ is a solution of MIVIP.

Next, to show that the solution set of MIVIP is closed, let {xm} be a sequence of

solutions of MIVIP such that {xm} → x̄ as m → ∞. Therefore, for all y ∈ X,

0 ⪯ (y − {xm})⊤ ⊙ F(y) for all m.

Since (y−{xm})⊤⊙F(y) → (y−x̄)⊤⊙F(y) as m → ∞, we have 0 ⪯ (y−x̄)⊤⊙F(y),

and thus x̄ is a solution of MIVIP. Hence, the solution of MIVIP is closed, and the

proof is complete.

Next, we derive existence results for the solutions of Stampacchia and Minty IVIs.

To prove these results, we need the following definition and theorem related to

KKM-maps.

Definition 5.5. (KKM-map [42]). Let X be a nonempty convex subset of Rn. A

set-valued map P : X → 2X is said to be a KKM-map if for every finite subset

{x1, x2, . . . , xm} of X,

conv{x1, x2, . . . , xm} ⊆
m⋃
i=1

P (xi).

Theorem 5.6. (Fan-KKM theorem [42]). Let X be a nonempty convex subset of

Rn and P : X → 2X be a KKM-map such that P (x) is closed for all x ∈ X, and

P (x) is compact for at least one x ∈ X. Then,

⋂
x∈X

P (x) ̸= ∅.

Theorem 5.7. Let X be a nonempty compact convex subset of Rn and T : X → Rn
I

be gH-hemicontinuous and pseudomonotone. Then, SIVIP has a solution.
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Proof. Define two set-valued maps P,Q : X → 2X by

P (y) = {x ∈ X : 0 ⪯ (y − x)⊤ ⊙T(x)}, for all y ∈ X

and

Q(y) = {x ∈ X : 0 ⪯ (y − x)⊤ ⊙T(y)}, for all y ∈ X.

Then, P is a KKM-map. To see this, let {y1, y2, . . . , ym} be a finite subset of X and

x̃ ∈ conv({y1, y2, . . . , ym}). Then, x̃ =
∑m

i=1 λiyi for some λi ≥ 0, i = 1, 2, . . . ,m

with
∑m

i=1 λi = 1. If x̃ /∈
⋃m

i=1 P (yi), then

0 ⪯̸ (yi − x̃)⊤ ⊙T(x̃) for all i = 1, 2, . . . ,m,

and so,

0 ⪯̸
m∑
i=1

λi(yi − x̃)⊤ ⊙T(x̃). (5.9)

Note that

0 = (x̃− x̃)⊤ ⊙T(x̃)

=

(
m∑
i=1

λiyi −
m∑
i=1

λ1x̃

)⊤

⊙T(x̃)

=

(
m∑
i=1

λi(yi − x̃)

)⊤

⊙T(x̃)

=
m∑
i=1

λi(yi − x̃)⊤ ⊙T(x̃),

which is a contradiction, as by (5.9), we have 0 ⪯̸
∑m

i=1 λi(yi− x̃)⊤⊙T(x̃). Thus, we

must have conv({y1, y2, . . . , ym}) ⊆
⋃m

i=1 P (yi), and hence P is a KKM-map. Since

T is pseudomonotone, by Theorem 5.3, P (y) ⊆ Q(y) for all y ∈ X, and thus, Q is

also a KKM-map.
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Next, we show that for each y ∈ X,Q(y) is closed. For this, let {xm} be a sequence

in Q(y) for any fixed y ∈ X such that {xm} converges to x̂ ∈ X. Then,

0 ⪯ (y − {xm})⊤ ⊙T(y) for all m.

Since (y−{xm})⊤⊙T(y) → (y−x̂)⊤⊙T(y) asm → ∞, we have 0 ⪯ (y−x̂)⊤⊙T(y),

and thus x̂ ∈ Q(y). Therefore, Q(y) is a closed subset of the compact set X, and

so it is compact. By Theorem 5.6,
⋂

y∈X Q(y) ̸= ∅. Hence, there exists x̄ ∈ X such

that

0 ⪯ (y − x̄)⊤ ⊙T(y) for all y ∈ X.

Thus, by Theorem 5.3, x̄ is a solution of SIVIP.

Example 5.2. Let X = [1,∞] and T : X → RI be defined as T(x) = [x, x2] for

all x ∈ X. Since X is not compact, Theorem 5.7 cannot be applied. However, it is

easy to see that x̄ = 1 ∈ X is such that 0 ⪯ (y − x̄)⊤ ⊙T(x̄) = (y − 1)⊤ ⊙ [1, 1] =

y − 1 for all y ∈ X, that is, x̄ = 1 is a solution of SIVIP.

WhenX in Theorem 5.7 is not necessarily compact, we have the following two results

(Theorems 5.8 and 5.9).

Theorem 5.8. Let X be a nonempty convex subset of Rn and T : X → I(R)n be

gH-hemicontinuous and pseudomonotone. Also, let there exist a compact subset C

of Rn and ỹ ∈ X ∩ C such that

0 ⪯̸ (ỹ − x)⊤ ⊙T(x) for all x ∈ X \ C. (5.10)

Then, SIVIP has a solution.
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Proof. Let the set-valued maps P,Q : X → 2X be the same as in the proof of

Theorem 5.7. Let ỹ ∈ X ∩ C. We first show that P (ỹ) is compact. If P (ỹ) ⊈ C,

then there exists x ∈ P (ỹ) such that x ∈ X \ C. Then,

0 ⪯ (ỹ − x)⊤ ⊙T(x),

which contradicts (5.10). Thus, we have P (ỹ) ⊆ C. Then, the closure, cl(P (ỹ)) of

P (ỹ) is a closed subset of the compact set C, and hence compact. As we have seen

in Theorem 5.7, P is a KKM-map. Therefore, by Theorem 5.6,
⋂

y∈X cl(P (y)) ̸= ∅.

Since for each y ∈ X, Q(y) is closed and P (y) ⊆ Q(y), we have

cl(P (y)) ⊆ cl(Q(y)) = Q(y).

Therefore,

∅ ≠
⋂
y∈X

cl(P (y)) ⊆
⋂
y∈X

Q(y).

Thus, there exists x̄ ∈ X such that

0 ⪯ (y − x̄)⊤ ⊙T(y) for all y ∈ X.

Hence, by Theorem 5.3, x̄ is a solution of SIVIP.

Theorem 5.9. Let X be a closed convex subset of Rn and T : X → Rn
I be gH-

continuous and pseudomonotone. Assume that there exist a compact subset D of Rn

and ỹ ∈ X ∩D satisfying

0 ⪯̸ (ỹ − x)⊤ ⊙T(ỹ) for all x ∈ X \D. (5.11)

Then, SIVIP has a solution.
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Proof. Let the set-valued maps P,Q : X → 2X be the same as in the proof of

Theorem 5.7. Let ỹ ∈ X ∩ D. By the same argument as in the proof of Theorem

5.7, we derive that Q is a KKM-map and for each y ∈ X, Q(y) is closed.

Next, we show that Q(ỹ) ⊆ X ∩D. If Q(ỹ) ⊈ D, then there exists x ∈ Q(ỹ) such

that x ∈ X \D. Then,

0 ⪯ (ỹ − x)⊤ ⊙T(ỹ),

which contradicts (5.11). Hence, Q(ỹ) ⊆ D, and thus Q(ỹ) ⊆ X ∩ D. Since X is

closed and D is compact, X ∩ D is compact. Therefore, Q(ỹ) is a closed subset

of the compact set X ∩ D, and hence Q(ỹ) is compact. Then, by Theorem 5.6,⋂
y∈X Q(y) ̸= ∅. The rest of the proof is similar to the proof of Theorem 5.7.

To prove our next existence result (Theorem 5.11), we need the following Browder-

type fixed point theorem for set-valued functions.

Theorem 5.10. (Browder-type fixed point theorem [9]). Let X be a nonempty

convex subset of Rn and P,Q : X → 2X be two set-valued maps. Assume that the

following conditions hold:

(i) For each x ∈ X, conv(P (x)) ⊆ Q(x), P (x) is nonempty, and

(ii) for each y ∈ X, P−1(y) = {x ∈ K : y ∈ P (x)} is open in X.

Then, there exists x̄ ∈ X such that x̄ ∈ Q(x̄).

Theorem 5.11. Let X be a nonempty convex subset of Rn and T : X → Rn
I be gH-

hemicontinuous and pseudomonotone. Assume that there exist a nonempty compact

convex subset B of X and a nonempty compact subset D of X such that for each

x ∈ X \ D, there exists ỹ ∈ B such that 0 ⪯̸ (ỹ − x)⊤ ⊙ T(x). then, SIVIP has a

solution.
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Proof. For each x ∈ X, define set-valued maps P,Q : X → 2X by

P (x) = {y ∈ X : 0 ⪯̸ (y − x)⊤ ⊙T(y)}

and

Q(x) = {y ∈ X : 0 ⪯̸ (y − x)⊤ ⊙T(x)}.

It is clear that for each x ∈ X, Q(x) is convex. By pseudomonotonicity of T, we

have P (x) ⊆ Q(x), and hence conv(P (x)) ⊆ conv(Q(x)) = Q(x) for all x ∈ X. For

each y ∈ X, the complement of P−1(y) in X is

[P−1(y)]∁ = {x ∈ X : 0 ⪯ (y − x)⊤ ⊙T(y)} is closed in X,

and thus P−1(y) is open in X.

Assume that for all x ∈ X, P (x) is nonempty. Then, all the conditions of Theorem

5.10 are satisfied, and therefore there exist x̂ ∈ X such that x̂ ∈ Q(x̂). It follows

that

0 ⪯̸ (x̂− x̂)⊤ ⊙T(x̂) = 0, a contradiction.

Hence, there exists x̄ ∈ X such that P (x̄) = ∅. This implies that for all y ∈ X,

0 ⪯ (y − x̄)⊤ ⊙T(y).

That is, x̄ ∈ X is a solution of MIVIP. By Theorem 5.3, x̄ ∈ X is a solution of

SIVIP.

To derive existence result for the solutions of MIVIP, we use the following definition

of proper quasimonotonicity.
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Definition 5.12. Let X be a nonempty subset of Rn. A mapping T : X → Rn
I

is said to be properly quasimonotone if for every x1, x2, . . . , xm ∈ X and every

y ∈ conv({x1, x2, . . . , xm}), there exists i ∈ {1, 2, . . . ,m} such that

(y − xi)
⊤ ⊙T(xi) ⪯ 0.

Theorem 5.13. Let X be a nonempty compact convex subset of Rn and T : K → Rn
I

be properly quasimonotone. Then, MIVIP has a solution.

Proof. Define the set-valued mapping Q : X → 2X as

Q(y) = {x ∈ X : 0 ⪯ (y − x)⊤ ⊙T(y)}, for all y ∈ X.

For any y1, y2, . . . , ym ∈ X and ỹ ∈ conv({y1, y2, . . . , ym}), proper quasimonotonicity

of T implies that ỹ ∈
⋃m

i=1Q(yi). Also, by the proof of Theorem 5.4, it is clear that

for each y ∈ X, Q(y) is closed. That is, Q(y) is a closed subset of the compact set

X, and hence compact. Therefore, by Theorem 5.6, we have
⋂

y∈X Q(y) ̸= ∅. Hence,

any x̄ ∈
⋂

y∈X Q(y) is a solution of MIVIP.

5.3 Relationship of IVIs with IOPs

In the direction to solve IOPs, in this section, we provide optimality conditions for

the following constrained IOP.

min
x∈K

F(x), (5.12)

where K is a convex subset of Rn and F : Rn → RI is a gH-differentiable convex

IVF.
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The following lemma gives a characterization of convex IVFs, which is required to

prove Theorem 5.16.

Lemma 5.14. Let K be a nonempty open convex subset of Rn and F : K → RI be

gH-differentiable at any x ∈ K. If F is convex on K, then

(x2 − x1)
⊤ ⊙∇F(x1) ⪯ F(x2)⊖gH F(x1) for all x1, x2 ∈ K.

Proof. Suppose F is convex on K, and x1, x2 ∈ K. Then, for h = x2 − x1 and

0 < α < 1,

F(x1 + αh) = F ((1− α)x1 + α(x1 + h))

⪯ (1− α)⊙ F(x1)⊕ α⊙ F(x1 + h)

= F(x1)⊖gH α⊙ F(x1)⊕ α⊙ F(x1 + h) by Lemma 1.7.

Therefore, by Lemma 1.6,

F(x1 + αh)⊖gH F(x1) ⪯ α⊙ (F(x1 + h)⊖gH F(x1))

or,
1

α
⊙ (F(x1 + αh)⊖gH F(x1)) ⪯ F(x1 + h)⊖gH F(x1)

or,
1

α
⊙ (F(x1 + αh)⊖gH F(x1)) ⪯ F(x2)⊖gH F(x1).

Hence, as α → 0+, with the help of Definition 1.27, we get

(x2 − x1)
⊤ ⊙∇F(x1) ⪯ F(x2)⊖gH F(x1).

Remark 5.15. Lemma 5.14 gives a mathematically correct version of Theorem 2.2

in [47]. To see that Theorem 2.2 in [47] is not correct consider F : (1, 4) → RI as
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F(x) = [x, x2]. Clearly, F is convex. However,

(3− 2)⊙∇F(2) = [1, 4] ⪯̸ F(3)⊕ (−1)⊙ F(2) = [−3, 7].

Theorem 5.16. Let K be a nonempty convex subset of Rn and F : Rn → RI be a

convex and gH-differentiable IVF. Then, x̄ is a weak efficient solution of (5.12) if

and only if x̄ is a solution of SIVIP with T = ∇F.

Proof. Let x̄ be a weak efficient solution of (5.12).

For any y ∈ K, define a function ψ : [0, 1] → RI by

ψ(λ) = F(x̄+ λ(y − x̄)) for all λ ∈ [0, 1].

Since λ = 0 is an efficient solution of ψ, by Lemma 2.1, we have

0 ⪯ ∇ψ(0)

=⇒ 0 ⪯ (y − x̄)⊤ ⊙∇F(x̄) for all y ∈ K.

Thus, x̄ is a solution of SSIVIP with T = ∇F.

Conversely, let x̄ be a solution of SIVIP with T = ∇F. On contrary, suppose that

x̄ is not a weak efficient solution of (5.12). Then, there exists x ∈ K such that

F(x̄) ⪯̸ F(x). Therefore,

0 ⪯̸ F(x)⊖gH F(x̄). (5.13)

Also, since F is convex, by Lemma 5.14, we have

(x− x̄)⊤ ⊙∇F(x̄) ⪯ F(x)⊖gH F(x̄) (5.14)



Chapter 5. Interval Variational Inequalities and their relationship with IOPs 114

By (5.13) and (5.14), we get

0 ⪯̸ (x− x̄)⊤ ⊙∇F(x̄),

which is a contradiction as x̄ is assumed to be a solution of SIVIP with T = ∇F.

Example 5.3. In this example, we provide an instance to verify Theorem 5.16. Let

K ⊆ R2 be the set {(x1, x2) : 1 ≤ x1 ≤ 1.5, 1 ≤ x2 ≤ 1.5}. Consider the IOP

min
x∈K

F(x1, x2), (5.15)

where

F(x1, x2) = [f(x1, x2), f(x1, x2)] and

f(x1, x2) = −1 + x2
1 + 2x2

and f(x1, x2) = 4 + x2
1 + 2x2

2.

The graphs of functions f and f are shown in Figure 5.1. The red dots in the

surfaces of f(x1, x2) and f(x1, x2) are the locations of the minima of the functions f

and f , respectively. From the figure, it is evident that x̄ = (1, 1) is the only efficient

solution of (5.15).

Notice that f and f are convex on K, and therefore F is convex on K. We now see

that x̄ is also a solution of SIVIP with T = ∇F(x̄). At x̄, the partial derivatives of

F are

D1F(x̄) =

[
min

{
∂f

∂x1

(x̄),
∂f

∂x1

(x̄)

}
,max

{
∂f

∂x1

(x̄),
∂f

∂x1

(x̄)

}]
= [2, 2]

and D2F(x̄) =

[
min

{
∂f

∂x2

(x̄),
∂f

∂x2

(x̄)

}
,max

{
∂f

∂x2

(x̄),
∂f

∂x2

(x̄)

}]
= [2, 4].
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Therefore,

(y−x̄)⊤⊙∇F(x̄) = ((y1−1), (y2−1))⊤⊙([2, 2], [2, 4]) = (y1−1)⊙[2, 2]⊕(y2−1)[2, 4].

Clearly, 0 ⪯ (y1 − 1) ⊙ [2, 2] ⊕ (y2 − 1) ⊙ [2, 4] for all y1, y2 ∈ [1, 1.5]. That is,

0 ⪯ (y − x̄)⊤ ⊙∇F(x̄) for all y ∈ K. Thus, x̄ is a solution of SIVIP.

Further, by following a similar procedure as in Example 5.1, it can be seen that x̄ is

the only solution of SIVIP with T = ∇F(x̄).

In our next theorem (Theorem 5.17), we provide a sufficient optimality condition

for IOP (5.12) with the help of MIVI.

Theorem 5.17. Let K be a nonempty convex subset of Rn and F : K → RI be gH-

differentiable. If x̄ is a solution of MIVIP with T = ∇F, then x̄ is a weak efficient

solution of IOP (5.12).

Proof. Let y ∈ K be arbitrary. Consider the IVF ϕ(y) = F(x̄ + λ(y − x̄)) for all

λ ∈ [0, 1]. Since ϕ′(λ) = (y − x̄)⊤ ⊙∇F(x̄+ λ(y − x̄)) and x̄ is a solution of MIVIP

with T = ∇F, it follows that for each λ ∈ 0, 1

0 ⪯ (y − x̄)⊤ ⊙∇F(x̄+ λ(y − x̄)) = ϕ′(λ).

Thus, by Lemma 1.33, ϕ is monotonic increasing on [0, 1], and therefore

F(x̄) = ϕ(0) ⪯ ϕ(1) = F(y).

Hence, x̄ is a weak efficient solution of IOP 5.12.
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Figure 5.1: The objective function F(x1, x2) of Example 5.3

To see that converse of Theorem 5.17 may not be true, consider the IVF T as given

in Example 5.1. Note that T(0, 0) ⪯ T(x1, x2) for all x1, x2 ∈ [−1, 0]. That is,

(0, 0) is an efficient point. However, we have seen in Example 5.1 that (0, 0) is not

a solution of MIVIP.
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5.4 Concluding Remarks

In this chapter, the concepts of Stampacchia and Minty IVIs have been introduced.

Relationship between the solution sets of these variational inequalities has been ex-

plored. Under the assumption of gH-hemicontinuity and pseudomonotonicity, the

solution sets of these VIs are shown to be closed and convex. Existence and unique-

ness results have been derived for the solutions of the proposed VIs. A necessary

optimality condition has been presented for a constrained IOP with the help of

gH-differentiability. We have also given a first-order necessary condition for convex

IVFs. Further, we have provided a necessary and sufficient optimality condition

for a constrained IOP in terms of proposed SIVIs. Finally, a sufficient optimality

condition for a constrained IOP is derived in terms of proposed MIVIs.

Based on the proposed research of this chapter, in future, one can work in the

following directions.

• There is a huge literature [54, 69, 101] on the iterative methods to solve con-

ventional Stampacchia and Minty VIs. In future, one can try to extend some

classical iterative techniques to solve Stampacchia and Minty IVIs.

• Recently several authors proposed many game theoretic solutions to solve IOPs

[17, 56, 73]. One can try to explore the relationships between the proposed

IVIs and game theoretic problems under interval uncertainties.

***********
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