
Chapter 1

Introduction

Optimization, in simplest terms, is the act of making the best of anything. Broadly

speaking, optimization is a set of mathematical principles and techniques for de-

termining the minima/maxima of a function over a set of constraints that express

restrictions on the problem. Classical optimization and its various branches now have

solid theoretical foundations and are supported by a large collection of advanced al-

gorithms and software. Mathematical optimization, in this day and age, has been

transformed into an innovatory tool for powerful modeling and decision-making oc-

currences in all quantitative disciplines from Computer Science and Engineering to

Operations Research and Economics.

Mathematically, an optimization problem comprises of three key ingredients—

• Decision variable is a collection of variables that designates a value that can

change within the context of the given optimization problem.

• Constraints are the logical conditions, allowable values, or scopes for variables

in an optimization problem that must be satisfied by the solution to a given

problem.
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• An objective function that expresses the main criteria of the problem is either

to be minimized or maximized satisfying the restrictions.

Although this is the era of digital computers, due to the limited representation ca-

pability of machines, we often need to round-off the values of the initial data for the

sake of calculations. This rounding off causes errors. Sometimes, these errors can be

significant and may lead to a wrong or inaccurate conclusion. For instance, in 1991,

an inefficient error management algorithm of the guidance system of an American

patriot missile battery failed to track and ambush the attacking missile. Also, in

1996, due to overflow, the Ariane 5 rocket launched by the European space agency

exploded. It is now known that use of standard interval analysis could have possibly

detected these errors in both failures (for details see [80]).

Although there are numerous theories and optimization tools for obtaining optimal

solutions to classical optimization problems, due to the error or uncertainty in the

given data, it is inadequate to model real-life problems by conventional optimiza-

tion problems. To handle the uncertainty of the given data, these problems are

often modeled by IOPs. Therefore, IOPs provide an alternative means to handle

the uncertainty in the optimization problems. Further motivation to give special

attention to interval optimization along with stochastic and fuzzy optimization can

be found in [111].

1.1 Interval Analysis

When performing mathematical computations, the collected and recorded data fre-

quently contain measurement errors or are otherwise uncertain due to rounding
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errors and approximations. Making interval bounds is one way to deal with these

errors. Contemporary research is focused on developing practical interval algorithms

that generate sharp (or nearly sharp) bounds, i.e., interval bounds that can be as

narrow as possible, for the solution of numerical computing problems. As a result,

it is preferable to gain a better understanding of real interval spaces and interval

analysis.

Interval analysis is a new and growing branch of applied mathematics. It gives an

idea to computing that treats an interval as a new kind of number. The results

produced by the methods of interval analysis with properly-rounded interval arith-

metic contain both ordinary machine arithmetic results as well as infinite precision

arithmetic results. Thus, we have, at the outset, a completely general mechanism

for bounding the accumulation of round off errors in any machine computation. If

round off is the only error present, then the widths of the intervals will tend to zero

as the length of the machine word increases.

Many real-world problems have imprecise or uncertain knowledge of the underlying

parameters that influence the behaviour of the mathematical problems. Generally,

one cannot measure the parameters affected by imprecision or uncertainties with

exact values. In such cases, a real number cannot be used to determine the param-

eters. We usually overcome this deficiency by using interval or stochastic values,

which is a natural way of incorporating the uncertainties of parameters. The goal of

using intervals in such mathematical problems is to provide upper and lower bounds

on the parameters.
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1.2 Interval-valued Function

Even though intervals are crucial elements in dealing with uncertainty, we are un-

able to describe the world’s various uncertain problems without a proper function

whose involving parameters are intervals. A function whose involving parameters

are intervals is known as interval-valued function (IVF); an IVF is a mathematical

function of one or more variables whose domain is a nonempty subset of a finite

dimensional Banach space and whose range is a subset of RI . For each argument

point x ∈ X , where X is a finite-dimensional Banach space, an IVF F : X → RI , is

presented by (see [32]):

F(x) =
[
f(x), f(x)

]
,

where f and f are real-valued functions on X . The functions f and f are called the

lower and the upper boundary functions of F, respectively.

An IVF can be expressed in another (see [18, 52]) way as:

Let Ĉ ∈ Rk
I , i.e., Ĉ = (C1, C2, . . . ,Ck)

⊤, where Cj = [cj, cj] ∈ RI for j =

1, 2, · · · , k. Parametrically, the vector Ĉ is given by the following set

{
c(t)

∣∣∣ c(t) = (c1(t1), c2(t2), · · · , ck(tk))⊤, cj(tj) = cj + tj(cj − cj),

t = (t1, t2, · · · , tk)⊤, 0 ≤ tj ≤ 1, j = 1, 2, · · · , k
}
.

Then an IVF FĈ : X → RI , can be represented as a collection of a bunch of real-

valued functions fc(t)’s, i.e., for all x ∈ X ,

FĈ(x) =
{
fc(t)(x)|fc(t) : X → R, c(t) ∈ Ĉ, t ∈ [0, 1]k

}
.
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1.3 Interval Optimization Problem

The data collected by decision-makers in real-world problems is always assumed to

be real numbers with a specific value. In this scenario, the objective function of op-

timization problems is a real-valued function. However, there are some optimization

problems in which the objective function is uncertain due to imprecise data. For ex-

ample, suppose that a factory can produce two products, say P1 and P2, with input

quantities x1 and x2, subject to budget constraint S ⊆ R2. For selling the products

P1 and P2 in the market, we assume that the factory can earn c1 and c2 dollars for

per unit sales of x1 and x2 respectively. In this case, the aim is to maximize the

objective function c1x1+c2x2 subject to the budget constraint set S ⊆ R2. We know

that the prices of products may vary from time to time in the financial market, so

it is more reasonable to take the prices to be uncertain quantities in nature. There

are three different methodologies available that can model uncertain quantities by

using: random variables, fuzzy numbers, and intervals. If the coefficients c1 and

c2 are random, the problem is transformed into a stochastic optimization problem.

Birge and Louveaux in 1997 [20], Kall in 1976 [68], and Vajda in 1972 [103] have

explained the main stream of stochastic optimization problems and also introduced

some useful methods to solve such optimization problems. If the coefficients c1 and

c2 are fuzzy in nature, then the problem becomes a fuzzy optimization problem. The

stochastic and fuzzy optimization problems are not easy to be tackled. The usual

way is to transform them into conventional optimization problems, frequently, these

problems are very complicated. On the other hand, if we assume the coefficients c1

and c2 to be in the compact intervals of real numbers, then although the prices may

fluctuate from time to time, we can always make sure that the prices will fall within

the corresponding intervals, in this case, problem becomes an interval optimization
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problem (IOP). Under this assumption, the optimization problem will be easier to

be solved than a stochastic or fuzzy optimization problem.

As we know that in most of the cases, the coefficients of the objective function in

the stochastic optimization problems are considered as random variables with known

distributions. However, the specifications of the distributions are very subjective.

For example, many researchers invoke the Gaussian (normal) distributions with dif-

ferent parameters in stochastic optimization problems. However very often these

specifications do not completely match the real problems. Therefore, the interval-

valued optimization problems may provide a better alternative choice to tackle the

uncertainty involved in the optimization problems. That is to say, that the coef-

ficients of the objective function in the interval-valued optimization problems are

considered to be compact intervals. Although the specifications of compact inter-

vals may still be judged as subjective viewpoint, we can argue that the bounds of the

uncertain data (i.e. determining the compact intervals, which give the upper and

lower bounds of the possible observed data) are easier to be handled than specified

by the Gaussian distributions in the stochastic optimization problems.

Alike conventional optimization problems, IOPs are classified into two categories –

unconstraint and constraint.

Let F : X → RI be an IVF. An unconstraint IOP is defined below.

(UIOP): min
x∈X

F(x). (1.1)

Further, a constraint IOP is defined below.

(CIOP): min
x∈S

F(x), (1.2)
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where S = {x ∈ X | Gj(x) ⪯ 0 for all j ∈ J , Hl(x) = 0 for all k ∈ K}, Gj’s

are IVFs on X for each j ∈ J = {1, 2, . . . , p}, and Hl’s are IVFs on X for each

k ∈ K = {1, 2, . . . , q}.

Unlike R, the set of compact intervals RI is not thoroughly ordered, which will be

explored in the next chapter, the solutions of IOPs can only be ordered partially.

The basic difference between IOPs and conventional optimization problems is that

in the case of conventional optimization problems, only one global optimum exists;

however, in the case of IOPs, conflicting real objectives can cause a situation where

no solution is superior to the others. Thus, usually, there are many solutions to an

IOP. The feasible solutions which can be improved without causing simultaneous

deterioration in at least one criterion can not certainly be the optimal solution of

the considered IOP. This concept consequently leads to the foundation of efficient

solutions and nondominated solutions.

Definition 1.1. (Efficient solution [46]). We say x̄ ∈ X as an efficient solution (ES)

of UIOP (1.1) if there is no x ̸= x̄ in X satisfying F(x) ≺ F(x̄).

Definition 1.2. (Nondominated solution). If x̄ ∈ X is an ES of the UIOP (1.1),

then F(x̄) is said to be a nondominated solution of the UIOP (1.1).

1.4 Preliminaries

The following basic definitions and basic properties of intervals are used throughout

this thesis.
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1.4.1 Interval Arithmetic

Throughout the thesis, the bold letters A,B,C, . . ., are used for denoting the ele-

ments of RI and an element J of RI is represented by the corresponding small letter:

J = [j, j].

Arithmetic of intervals is a foundational tool in interval analysis. In the first place,

we study interval arithmetic proposed by Moore [81]. Subsequently, we study the

concepts of gH-difference and ordering for intervals [63].

For intervals J = [j, j] and K =
[
k, k
]
. The addition of J and K, denoted J⊕K, is

given as

J⊕K =
[
j + k, j + k

]
.

The subtraction of K from J, denoted J⊖K, is given as

J⊖K =
[
j − k, j − k

]
.

The multiplication of J and K, denoted by J⊙K, is defined by

J⊙K =
[
min

{
j k, jk, jk, jk

}
, max

{
j k, jk, jk, jk

}]
.

The multiplication by a real number τ to J, denoted τ ⊙ J or J⊙ τ , is given by

τ ⊙ J = J⊙ τ =


[τj, τj], if τ ≥ 0

[τj, τj], if τ < 0.

Note that the definition of τ ⊙ J follows from the fact τ = [τ, τ ] and the definition

of multiplication J⊙K. We use the following definition for the difference between
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a pair of intervals being the most general definition of difference (see [52] for the

reason why it is most general).

Definition 1.4.1 (gH-difference of intervals [97]). Let J, K ∈ RI . The gH-difference

of J and K, denoted by J⊖gH K, is given as

J⊖gH K =
[
min

{
j − k, j − k

}
, max

{
j − k, j − k

}]
.

It is obvious that unlike the real numbers, intervals are not linearly ordered. There-

fore, in order to develop the analysis of IVFs and interval optimization, we use the

following order relation in this thesis.

Definition 1.4.2 (Dominance of intervals [18]). Let J, K ∈ RI . Then,

(i) K is called dominated by J if j ≤ k and j ≤ k, and we write J ⪯ K;

(ii) K is called strictly dominated by J if J ⪯ K and J ̸= K, and then we write

J ≺ K. Equivalently, J ≺ K if and only if any of the these cases hold:

• Case 1. j < k and j ≤ k,

• Case 2. j ≤ k and j < k,

• Case 3. j < k and j < k;

(iii) if neither J ⪯ K nor K ⪯ J, then none of J and K dominates the other, or J

and K are not comparable. Identically, J and K are not comparable if either

‘j < k and j > k’ or ‘j > k and j < k’;

(iv) K is said to be not dominated by J if either K ⪯ J or J and K are not

comparable, and then we write J ⊀ K.

(RI , ∥.∥RI
) is a normed quasilinear space (see [75]) with operations {⊕,⊖gH ,⊙},

where ∥.∥RI
is defined as following.
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Definition 1.4.3 (Norm on RI [79]). For an J =
[
j, j
]
in RI , the function ∥.∥RI

:

RI → R+, given as

∥J∥RI
= max{|j|, |j̄|},

is said to a norm on RI . In rest of thesis, we use the notation ‘∥·∥’ to represent

Euclidean norm on Rn.

1.4.2 Basic Properties of Interval Analysis

The following basic properties of interval analysis hold with the help of dominance

relation of intervals, norm of a interval, and gH-difference of two intervals, and these

are used throughout the thesis.

Lemma 1.3. Let A, B, C,D ∈ RI . Then,

(i) ∥A⊕B∥RI
≤ ∥A∥RI

+ ∥B∥RI
,

(ii) if A ⪯ C and B ⪯ D, then A⊕B ⪯ C⊕D.

Proof. See Appendix A.1.

Lemma 1.4. For A, B, C, D ∈ RI and ϵ > 0, we have

(i) ∥A⊖gH B∥RI
< ϵ ⇐⇒ B⊖gH [ϵ, ϵ] ≺ A ≺ B⊕ [ϵ, ϵ],

(ii) A⊖gH [ϵ, ϵ] ⊀ B =⇒ A ⪯̸ B.

Proof. See Appendix A.2.

Lemma 1.5. (See [80]). For A ∈ RI and α, β ∈ R,

A⊙ (α + β) ⊆ A⊙ α⊕A⊙ β.
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Lemma 1.6. (See [47]). For A, B ∈ RI , A ⪯ B ⇐⇒ A⊖gH B ⪯ 0.

Lemma 1.7. For α ∈ [0, 1] and A ∈ RI , (1− α)⊙A = A⊖gH α⊙A.

Proof. Let A = [a, a]. Then, (1− α)⊙A = [(1− α)a, (1− α)a] as 1− α ≥ 0. Also,

A⊖gH α⊙A = [min{a− αa, a− αa},max{a− αa, a− αa}]

= [min{(1− α)a, (1− α)a},max{(1− α)a, (1− α)a}]

= [(1− α)a, (1− α)a] because 1− α ≥ 0.

Lemma 1.8. For A, B ∈ RI , we have

(i) 0 ⪯ A⊖gH B ⇐⇒ B ⪯ A,

(ii) −1⊙ (A⊖gH B) = B⊖gH A.

Proof. See Appendix A.3.

1.4.3 Sequence of Intervals

Definition 1.9. (Infimum of a subset of RI). Let X ⊆ RI . We say, an interval

P̄ ∈ RI a lower bound of X if P̄ ⪯ K for all K in X. A lower bound P̄ of X is called

an infimum of X if for all lower bounds R of X in RI , R ⪯ P̄. We denote infimum

of X by infX.

Example 1.1. Let X =
{[

1
n
, 1
]
: n ∈ N

}
. The set of lower bounds of X is

{[α, β] : −∞ < α ≤ 0 and −∞ < β ≤ 1}.
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Therefore, the infimum of X is [0, 1] because [α, β] ⪯ [0, 1] for all −∞ < α ≤

0 and −∞ < β ≤ 1.

Definition 1.10. (Supremum of a subset of RI). Let X ⊆ RI . We say, an interval

P̄ ∈ RI an upper bound of X if K ⪯ Ā for all K in X. An upper bound P̄ of X is

called a supremum of X if for all upper bounds R of X in RI , P̄ ⪯ R. We denote

supremum of X by supX.

Example 1.2. Let X =
{[

1
n2 + 1, 3

]
: n ∈ N

}
. The set of upper bounds of X is

{[α, β] : 2 ≤ α < +∞ and 3 ≤ β < +∞}.

Therefore, the supremum of X is [2, 3] because [2, 3] ⪯ [α, β] for all 2 ≤ α <

+∞ and 3 ≤ β < +∞.

Remark 1.11. Let X =
{
[pα, qα] ∈ RI : α ∈ Γ and Γ being an index set

}
. There-

fore, by Definitions 1.9 and 1.10, we get infX =

[
inf
α∈Γ

pα, inf
α∈Γ

qα

]
and supX =[

sup
α∈Γ

pα, sup
α∈Γ

qα

]
. It is easy to see that if infX and supX exist for an X, then they

are unique.

Definition 1.12. (Infimum of an IVF ). Let S (̸= ∅) ⊆ X and F : S → RI be an

extended IVF. Then infimum of F, denoted as inf
S
F, is defined by

inf
S
F = inf{F(x) : x ∈ S}.

Definition 1.13. (Sequence in RI). An IVF I defined on the set of naturals is called

a sequence in RI . We denote a sequence I by {I(n)}.

Example 1.3. (i) F : N → RI given as F(n) = [n, n+ 1] is a sequence.

(ii) F : N → RI given as F(n) =
[
n
4
, n
2

]
is also a sequence.
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Definition 1.14. (Convergent sequence in RI). A sequence {I(n)} is called conver-

gent to U ∈ RI if for each ϵ > 0, there exists an integer m > 0 satisfying

∥I(n)⊖gH U∥RI
< ϵ for all n ≥ m.

The interval U is known as the limit of the sequence {I(n)} and it is denoted by

lim
n→+∞

I(n) = U or I(n) → U.

We need the following definition of floor function in the next example.

Definition 1.15. (See [82]). Given any real number x, the floor function denoted

by ⌊x⌋ is defined as

⌊x⌋ = max{m ∈ Z|m ≤ x}.

Example 1.4. Take the sequence I(n) =
[
1
n
, 1
]
, n ∈ N, in RI .

Let ϵ > 0 be given. Note that

∥I(n)⊖gH [0, 1]∥RI
=

∥∥∥∥[ 1n, 1
]
⊖gH [0, 1]

∥∥∥∥
RI

=

∥∥∥∥[0, 1n
]∥∥∥∥

RI

=
1

n
< ϵ whenever n >

1

ϵ
.

So, by taking m = ⌊1
ϵ
⌋+ 1, where ⌊·⌋ is the floor function, we get

∥I(n)⊖gH [0, 1]∥RI
< ϵ for all n ≥ m.

Thus, lim
n→+∞

I(n) = U = [0, 1].

Note 1. Consider a sequence {I(n)} in RI with I(n) =
[
i(n), i(n)

]
, where {i(n)}

and
{
i(n)

}
are two convergent sequences in R. Then, {I(n)} is convergent and

lim
n→+∞

I(n) =

[
lim

n→+∞
i(n), lim

n→+∞
i(n)

]
.
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The reason is as follows.

Suppose i(n) and i(n) are convergent sequences with limits u1 and u2, respectively.

Then, for each ϵ > 0, we have two positive integers m1 and m2 satisfying

|i(n)− u1| < ϵ for all n ≥ m1, and
∣∣i(n)− u2

∣∣ < ϵ for all n ≥ m2

⇐⇒ max
{
|i(n)− u1| ,

∣∣i(n)− u2

∣∣} < ϵ for all n ≥ m, where m = max{m1,m2}

⇐⇒
∥∥[i(n), i(n)]⊖gH [u1, u2]

∥∥
RI

< ϵ for all n ≥ m

i.e., ∥I(n)⊖gH [u1, u2]∥RI
< ϵ for all n ≥ m.

Hence,

lim
n→+∞

I(n) = [u1, u2] =

[
lim

n→+∞
i(n), lim

n→+∞
i(n)

]
.

Definition 1.16. (Bounded sequence in RI). A sequence {I(n)} is called bounded

above if there is an interval K1 ∈ RI satisfying

I(n) ⪯ K1 for all n ∈ N.

{I(n)} is bounded below if there is an interval K2 ∈ RI satisfying

K2 ⪯ I(n) for all n ∈ N.

{I(n)} is bounded if it is both bounded above and below.

Definition 1.17. {I(n)} is called monotonic increasing if I(n) ⪯ I(n + 1) for all

n ∈ N.

Lemma 1.18. A bounded above monotonic increasing sequence of intervals is con-

vergent and converges to its supremum.
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Proof. Let {I(n)} be a bounded above monotonic increasing sequence with supre-

mum M.

By Definition 1.10, we get

(i) I(n) ⪯ M for all n ∈ N and

(ii) for a given ϵ > 0, there is an integer m > 0 satisfying M⊖gH [ϵ, ϵ] ≺ I(m).

Since {I(n)} is a monotonic increasing,

M⊖gH [ϵ, ϵ] ≺ I(m) ⪯ I(m+ 1) ⪯ I(m+ 2) ⪯ · · · ⪯ M.

That is, M ⊖gH [ϵ, ϵ] ≺ I(m) ≺ M ⊕ [ϵ, ϵ] for all n ≥ m. Therefore, {I(n)} is

convergent and lim
n→+∞

I(n) = M.

1.4.4 Few Elements of Convex Analysis

Note 2. (See [82]). For any x̄ ∈ X and S ⊆ X, we have

∂f dist(x̄, S) = N̂(x̄, S) ∩ B,

where ∂f dist(x̄, S) represents the Fréchet subgradient of the distance function dist(x̄, S)

and N̂(x̄, S) denotes the Fréchet normal cone to S at x̄, defined by

N̂(x̄, S) =

{
y ∈ Rn : lim sup

x
S−→x̄

y⊤(x− x̄)

∥x− x̄∥
≤ 0

}
,

where x
S−→ x̄ means that x → x̄ with x ∈ S.
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1.4.5 Some Basic Definitions and Properties of Interval-

valued Functions

This section presents some basic definitions for interval-valued functions which are

used throughout the thesis.

Definition 1.4.4 (Convex IVF [110]). Let W ⊆ Rn be a convex set. An IVF I : W →

RI is called convex on W if for any t1 and t2 in W ,

I(γ1t1 + γ2t2) ⪯ γ1 ⊙ I(t1)⊕ γ2 ⊙ I(t2) for all γ1, γ2 ∈ [0, 1] with γ1 + γ2 = 1.

Lemma 1.19 (See [110]). An IVF I(t) = [i(t), i(t)] is convex on W if and only if i

and i are convex on W .

Definition 1.20. (Proper IVF [72]). An IVF I : W → RI is called a proper

function if there exists an x̄ ∈ X satisfying I(x̄) ≺ [+∞,+∞] and [−∞,−∞] ≺

I(x) for all x ∈ W.

Definition 1.21. (Linear IVF [49]). An IVF I : W → RI is called linear if it

satisfies

(i) I(γ t) = γ ⊙ I(t) for all t ∈ W and γ ∈ R, and

(ii) for all t1, t2 ∈ W ,

either I(t1)⊕I(t2) = I(t1+t2) or ‘none of I(t1)⊕I(t2) and I(t1+t2) dominates the other’.

Definition 1.22. (gH-limit of an IVF [110]). Let I : W → RI be a proper IVF.

The function I is called tending to a limit U ∈ RI as t tends to t̄, denoted by lim
t→t̄

I(t),

if for each ϵ > 0, we have a δ > 0 satisfying

∥I(t)⊖gH U∥RI
< ϵ whenever 0 < ∥t− t̄∥ < δ.
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Definition 1.23. (gH-continuity [110]). Let I : W → RI be an IVF. The function

I is called gH-continuous at t̄ ∈ W if for each ϵ > 0, we have a δ > 0 satisfying

∥I(t)⊖gH I(t̄)∥RI
< ϵ whenever ∥t− t̄∥ < δ.

Definition 1.24. (gH-derivative [26]). Let W ⊆ R. The gH-derivative of a proper

extended IVF I : W → RI at x̄ ∈ W is defined by

I′(x̄) = lim
τ→0

1

τ
⊙ (I(x̄+ τ)⊖gH I(x̄)), provided the limit exists.

Definition 1.25. (gH-partial derivative [90]).For an interior point t0 = (t01, t
0
2, . . . , t

0
n)

of W and h = (h1, h2, . . . , hn) ∈ Rn with t0 + h ∈ W. Define a function

Φi(xi) = I(t01, t
0
2, . . . , t

0
i−1, ti, t

0
i+1, . . . , t

0
n).

If the following limit

lim
hi→0

1

hi

⊙ (Φi(t
0
i + hi)⊖gH Φi(t

0
i ))

exists, then I has the ith partial derivative at t0, and is represented by DiI(t0), i =

1, 2, . . . , n.

Note 3. Observe that at t0, for any i = 1, 2, . . . , n, the partial derivatives of I are

given by

DiI(t0) =

[
min

{
∂i

∂ti
(t0),

∂i

∂ti
(t0)

}
,max

{
∂i

∂ti
(t0),

∂i

∂ti
(t0)

}]
.
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Definition 1.26. (gH-gradient [90]). For function I, the gH-gradient of I at a point

t0 ∈ W is given by the vector

(D1I(t0), D2I(t0), . . . , DnI(t0)).

This gH-gradient is denoted by ∇I(t0).

Definition 1.27. (gH-differentiability [90]). An IVF I : W → RI is called gH-

differentiable at t0 ∈ W if ∇I(t0) exists and

lim
∥h∥→0

I(t̄+ h)⊖gH I(t̄)⊖gH h⊤ ⊙∇I(t0)

∥h∥
= 0.

Definition 1.28. The effective domain of an extended IVF I : X → RI denoted by

dom(I) is defined by

dom(I) =
{
x ∈ X : I(x) ≺ [+∞,+∞]

}
.

Definition 1.29. (gH-subgradients of convex IVFs [50]). Let I : W ⊆ Rn → RI be

a proper convex IVF and x̄ ∈ dom(I). Then, gH-subdifferential of I at x̄, denoted

by ∂I(x̄) is defined by

∂I(x̄) =
{
Ĝ ∈ Rn

I : (x− x̄)⊤ ⊙ Ĝ ⪯ I(x)⊖gH I(x̄) for all x ∈ W
}
. (1.3)

The elements of (1.3) are known as gH-subgradients of I at x̄.

Definition 1.30. (Weak sharp minima (WSM) for an IVF [71]). Let I : Rn → RI

be a gH-lsc and convex IVF. Let S̄ and S be two nonempty closed convex sets

satisfying S̄ ⊆ S ⊆ Rn. Further, let dom(I) ∩ S ̸= ∅. Then, S̄ is a set of WSM of I
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over the set S with modulus γ > 0 if

I(x̄)⊕ γ dist(x, S̄) ⪯ I(x) for all x̄ ∈ S̄ and x ∈ S,

where

dist(x, S̄) = inf
x̄∈S̄

∥x− x̄∥

is the distance finction.

Lemma 1.31. Let F : [a, b] → RI be a gH-differentiable IVF such that x̄ ∈ [a, b] is

a weak efficient solution of the IOP

min
x∈[a,b]

F(x). (1.4)

Then, we have the following three cases:

(i) if a < x̄ < b, then 0 ∈ ∇F(x̄);

(ii) if x̄ = a, then 0 ⪯ ∇F(x̄); and

(iii) if x̄ = b, then ∇F(x̄) ⪯ 0.

Proof. See Appendix B.1.

Theorem 1.32. (Mean value theorem for IVFs [77]). If the IVF F is gH-continuous

in △ = [α, β] and gH-differentiable in (α, β), then F(β)⊖gHF(α) ⊆ F′(△)⊙(β−α),

where F′(△) =
⋃

ξ∈△ F′(ξ).

The following lemma is an immediate consequence of Theorem 1.32.

Lemma 1.33. (See [77]) If the IVF F is gH-continuous in △ = [α, β] and gH-

differentiable in (α, β) with 0 ⪯ F′(x) for all x ∈ (α, β), then F is monotonic

increasing.
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Definition 1.34. (gH-Gâteaux derivative [49]). Let W be a nonempty open subset

of Rn and I be an IVF on W . If at x̄ ∈ W , the limit

IG (x̄)(h) := lim
λ→0+

1

λ
⊙ (I(x̄+ λh)⊖gH I(x̄))

exists for all h ∈ Rn and IG (x̄) is a gH-continuous linear IVF from Rn to RI , then

IG (x̄) is called gH-Gâteaux derivative of I at x̄. If I has a gH-Gâteaux derivative

at x̄, then IG (x̄) is called gH-Gâteaux differentiable at x̄.

Theorem 1.35. (Characterization of efficient points [49]). Let W be a nonempty

subset of Rn, I : W → RI be an IVF, and x̄ ∈ W be an efficient point of the IOP

(2.1). If the function I has a gH-directional derivative at x̄ in the direction x − x̄

for any x ∈ W , then

ID(x̄)(x− x̄) ⊀ 0 for all x ∈ W. (1.5)

We call T as an interval vector-valued function (IVVF) if T : X → Rn
I is such that

for each x ∈ X, T(x) is an n-tuple interval vector (C1,C2, . . . ,Cn)
⊤, where Ci is

an element of RI for i = 1, 2, . . . , n.

Observe that any vector-valued function T : X → Rn can be regarded as an interval

vector-valued function.

Definition 1.36. (See [52]). For t = (t1, t2, . . . , tn) ∈ Rn and Ĵ = (J1,J2, . . . ,Jn) ∈

Rn
I with Ji = [j

i
, ji] for all i = 1, 2, . . . , n, the product of t and Ĵ, represented as

t⊤ ⊙ Ĵ, is provided by

t⊤ ⊙ Ĵ = t1 ⊙ [j
1
, j1]⊕ t2 ⊙ [j

2
, j2]⊕ · · · ⊕ tn ⊙ [j

n
, jn].
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Lemma 1.37. (See [81]). For A ∈ Rn
I and τ, γ ∈ Rn,

(τ + γ)⊙A ⊆ τ ⊙A⊕ γ ⊙A.

Definition 1.38. (gH-continuity [110]). An IVVF T : X → Rn
I is called gH-

continuous at t̄ ∈ X if for each ϵ > 0, there is a δ > 0 with

∥T(t)⊖gH T(t̄)∥Rn
I
< ϵ whenever ∥t− t̄∥Rn < δ and t ∈ X.

Definition 1.39. (gH-hemicontinuity). An IVVF T : X → Rn
I is called gH-

hemicontinuous, if for any t, p ∈ X, the mapping τ 7→ T(t + τ(p − t)) defined on

[0, 1] is gH-continuous.

Definition 1.40. An IVVF T : X → Rn
I is called pseudomonotone if for all t, p ∈

X, t ̸= p,

0 ⪯ (p− t)⊤ ⊙T(t) =⇒ 0 ⪯ (p− t)⊤ ⊙T(p).

Definition 1.41. (Convergent sequence in Rn
I [50]). {T(n)} converges to L ∈ Rn

I if

for each ϵ > 0, there exists an m ∈ N with

∥T(n)⊖gH L∥Rn
I
< ϵ for all n ≥ m.

1.5 Literature Survey

1.5.1 Literature on Interval Analysis

One of the purposes of interval analysis is to provide upper and lower bounds on

the effects of errors and uncertainties on a computed quantity. Several researchers
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independently had the idea of bounding rounding errors by computing with inter-

vals, for instance, see [36], [95], [105], and [106]. However, interval analysis can be

said to have begun with the appearance of R.E. Moore’s book ‘Interval Analysis’ in

1966 [79]. Moore’s work transformed this simple idea into a practical tool for error

analysis. The interval arithmetic given in [79] is applicable to the intervals with

finite end-points. Hanson [57] and Kahan [67] each described incomplete extension

of interval arithmetic in which endpoints of intervals are allowed to be infinite. Fur-

ther, Hansen [58] described a practical interval Newton algorithm in which division

by an interval containing zero is allowed.

The conventional interval arithmetic is insufficient to find the additive inverse of

a non-degenerate interval. That is, for a given non-degenerate interval A, there

may not exist an interval B with A⊕B = 0. Infact, the conventional definition of

difference between two compact intervals has the following two deficiencies:

(i) difference between A and B is not {0}, and

(ii) If C = A ⊖ B, then A may not be equal to B ⊕ C. For instance, if we take

A = [1, 3] and B = [4, 6], then C = A⊖B = [−5,−1], thus B⊕C = [−1, 5] ̸=

A.

To overcome these deficiencies, Hukuhara [61] proposed a concept of Hukuhara dif-

ference (⊖H) between intervals. Even though this Hukuhara-difference overcame

the deficiencies of the usual difference, this difference has a major drawback that

A ⊖gH B exist only if the width of the interval A is less than or equal to the

width of interval B. For instance, if we take A = [1, 2] and B = [4, 6], then the

Hukuhara-difference between A and B does not exist [27]. To overcome the draw-

back of Hukuhara-difference, in 2009, Stefanini and Bede [98] generalized the concept
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of Hukuhara difference, which is known as generalized Hukuhara difference (⊖gH).

This generalized difference enables one to evaluate the difference between any pair

of intervals.

1.5.2 Literature on Calculus of Interval-valued Functions

To understand the characteristics of an IVF, calculus plays a crucial role. Not only

that calculus also help to develop the required techniques to obtain solutions to

various optimization problems. Initially, to develop the calculus of IVFs, Hukuhara

in 1967 [61] proposed the notion of differentiability of IVFs by using H-difference.

However, the Hukuhara differentiability (H-differentiability) is found to be restric-

tive (see [27]). To remove the deficiencies in H-differentiability, Bede and Gal in

2005 [15] defined strongly generalized derivative (G-derivative) for IVFs and derived

a Newton-Leibnitz-type formula. In order to formulate the mean-value theorem

for IVFs, Markov in 1979 [77] introduced a new concept of difference of intervals

and defined differentiability of IVFs by using this difference. In 2009 [97], Stefanini

and Bede defined the generalized Hukuhara differentiability (gH-differentiability)

of IVFs by using the concept of generalized Hukuhara difference. For deriving the

calculus of IVFs, the notions of gH-derivative, partial derivative, gradient, and dif-

ferentiability for IVFs are presented in [52, 97, 98].

Showing the restrictiveness of H-differentiability, Chalco et al. [26] introduced the

concept of π-derivative for IVFs that generalizes Hukuhara derivative andG-derivative.

Chalco-Cano et al. [27] extended the calculus of IVFs based on the modified con-

cept of the gH-difference, known as generalized-Hukuhara differentiability (gH-

differentiability), and proved thatG-derivative is equivalent to gH-derivative. There-

after, Lupulescu [74] defined delta generalized Hukuhara differentiability on time
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scales by using gH-difference. In [96], Stefanini and Bede defined level-wise gH-

differentiability. Further, in [51], Ghosh analyzed the notion of gH-differentiability

of multi-variable IVFs to propose the Newton method for IOPs. To derive a Karush-

Kuhn-Tucker (KKT) condition for IOPs, Guo et al. in 2019 [55] defined gH-symmetric

derivative for IVFs. Ramsurat et al. [49] have extended the ideas of directional

derivative, Gâteaux derivative, and Fréchet derivative for IVFs to derive the opti-

mality conditions for IOPs. The notion of second-order differentiability of IVFs has

been introduced by Van [102] to study the existence of a unique solution of interval

differential equations. Recently, Gourav and Ghosh [72] have proposed Ekeland’s

variational principle for IVFs.

1.5.3 Literature on Interval Optimization Problem

Over the last two decades interval optimization problems (IOPs) have become an

important research topic. Tanaka et al. in 1984 [100] discussed the linear program-

ming problem with interval coefficients in the objective function. Tong in 1994 [99]

investigated the problems in which the coefficients of the objective function and the

constraints were all interval numbers. Chanas and Kuchta in 1996 [29, 30] suggested

an approach based on an order relation of interval number to convert the linear

optimization problem with uncertainty into a deterministic optimization problem.

Liu and Da in 1999 [33] proposed an interval number optimization method based

on a fuzzy constraint to deal with linear problems. Sengupta et al. in 2001 [93]

studied the linear interval number programming problems in which the coefficients

of the objective function and inequality constraints were all interval numbers. They

used the concept of the “acceptability index” to give a solution for the uncertain

linear programming. Zhang et al. in 1999 [86] assumed interval numbers as random

variables with uniform distributions and constructed a possibility degree to solve
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the multi-criteria decision problem. The above methods point out a fine way for un-

certain optimization. Ma in 2002 [76] discussed the solution methods for nonlinear

interval number programming (NINP). In this article, a deterministic optimization

method is used to obtain the interval of the nonlinear objective function, and a three-

objective optimization problem is formulated. By using the concept of Hukuhara

differentiability Wu [110], provided KKT conditions for interval optimization prob-

lems. In 2013, the KKT conditions, based on gH-differentiability, of optimization

problems with IVFs have been illustrated by Chalco-Cano and others [26]. After

that, Bhurji and Panda [19] have defined interval-valued function in the parametric

form and studied its properties, and provided a technique to study the existence

of the efficient solution of an optimization problem with IVFs. Ghosh proposed a

Newton method [52] and an updated Newton method [51] to solve IOPs. Several

other researchers have also suggested optimality conditions and solution ideas for

IOPs, for instance, see [1, 51, 53, 107] and the references therein.

1.6 Objective of the Thesis

The objectives of the thesis are:

• To extend the conventional variational analysis to the case of interval varia-

tional analysis. For instance, we extend the conventional Ekeland’s variational

principle and variational inequalities for IVFs.

• to study the notion of Fréchet subdifferentiability for nonsmooth IVFs, and

• to explore and characterize the efficient solutions of IOPs by using the proposed

theory.
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1.7 Organization of the Thesis

This thesis consists of six chapters including an introductory chapter and a chapter

comprised of conclusion and future scopes. In this chapter, which is the introductory

chapter, a concise but adequate literature of the concerned topics is presented. It

also defines the objective of the thesis.

In Chapter 2, the concept of gH-semicontinuity is introduced for IVFs. Their

interrelation with gH-continuity is shown. A characterization of the set of argu-

ment minimum of an IVF is provided with the help of gH-Gâteaux differentiability.

Further, Ekeland’s variational principle for IVFs is given. The proposed Ekeland’s

variational principle is applied to find variational principle for gH-Gâteaux differ-

entiable IVFs.

In Chapter 3, the concept of gH-Fréchet subdifferentiability is introduced. Various

calculus results for gH-Fréchet subgradients are provided. gH-Fréchet subdifferen-

tiable set for a gH- Fréchet differentiable IVF is provided. A smooth variational

description of gH-Fréchet subgradients is added. A necessary condition for uncon-

strained WSM is given.

In Chapter 4, we briefly discuss the concept of variational inequalities for IVFs.

Interval variational inequalities are introduced and a relation between their solution

sets is established. We also define interval-valued pseudoconvex and pseudomono-

tone functions. Stampacchia IVI is used to derive a necessary and sufficient condition

for a point to be an efficient solution of an IOP.

Chapter 5 is devoted to study Stampacchia and Minty variational inequalities

for IVFs. In the sequel, it is observed that conventional Stampacchia and Minty

variational inequalities are special cases of the proposed inequalities. The relation
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between solution sets of these two variational inequalities is analyzed. Existence

and uniqueness results are provided for the solutions of the proposed variational

inequalities. Moreover, a necessary optimality condition is added for a constrained

interval optimization problem (IOP) using the generalized Hukuhara differentiabil-

ity. A new first-order necessary condition is given for convex IVFs. By using this

new first-order necessary condition for convex IVFs, as an application of the pro-

posed study, a necessary and sufficient optimality condition for a constrained IOP

is provided in terms of Stampacchia IVI. Further, a sufficient optimality condition

for a constrained IOP is provided in terms of Minty IVI.

Finally, Chapter 6 completes this work by summarizing the concluding remarks

and forecasting some potential avenues for future research.

***********
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