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PREFACE

Optimization is a way of characterizing, locating, and computing a function’s max-
ima and minima for a set of acceptable points or certain predetermined conditions.
It was initially combined with differential calculus as part of mathematical analysis.
Fermat presented the first idea of differential calculus and the rule for computing
maxima and minima in 1638. Fermat defined the optimality condition as f’(z) =0
to obtain the extremum of a differentiable algebraic function f. Fermat’s rule still
holds true for differentiable functions with multiple variables and differentiable func-

tions defined on topological and Hilbert spaces.

Optimization is not limited to the mathematical realm. Optimization methods can
be used in a variety of fields to find solutions that maximize or minimize some study
parameters, such as manufacturing a good or service, minimizing production costs,
and maximizing profits. These instances frequently have unique structures, such
as convex, nonconvex, linear, nonlinear, quadratic, semidefinite, dynamic, integer,
stochastic programming, and so on. To operate them, optimization sources vast

theoretical foundations and advanced algorithms.

In modeling many real-life problems, uncertainty can be effectively dealt with fuzzy
and stochastic optimization. However, it is not always possible to specify the mem-
bership function or probability distribution in an inexact environment. So, the use
of fuzzy and stochastic optimization may not appropriately represent the system
in such cases. Moore [79] introduced interval analysis to determine imprecise or
uncertain parameters in such problems. Interval analysis is based on the depiction
of an uncertain variable by an interval and offers a natural way of incorporating
parameter uncertainties. Modeling of a system under interval uncertainty requires
no additional information such as membership function and probability distribution.
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Also, it is often possible to establish a variation range in the data. Therefore, interval
optimization may provide an alternative choice for the consideration of uncertainty
in optimization problems. Many good examples of the use of interval optimization

in solving real-life problems can be found in [44, 91, 92, 104, 108, 112].

Moore was the first to introduce interval analysis [79]. Interval analysis, which is
based on the depiction of an uncertain variable by an interval, provides a natural way
of incorporating parameter uncertainties. Moore [79] in his book explained the im-
portance of interval analysis from both a theoretical and practical standpoint. After
the pioneering work by Moore the subject has evolved rapidly since its introduction
nearly 60 years ago. For a good survey of the developments and applications of

interval arithmetic and interval programming problems, we refer to [2, 60, 80, 107].

In this thesis, the author discusses some properties of interval analysis, smooth and
nonsmooth analysis of interval-valued functions (IVFs), interval variational analy-
sis, and optimality conditions for interval optimization problems (IOPs). The basic
introduction of optimization, interval analysis with its origin, interval-valued func-
tions, interval optimization problem with its origin are given at the begining of the
first chapter. Interval arithmetic and some important properties of intervals are also
explained. The definitions of continuity and convexity for [VFs along with their

basic results, are explained in the last section of the first chapter.

Further we have proposed Ekeland’s variational principle for IVFs. In order to
arrive at the variational principle, we study the concept of sequence of intervals and
extend the idea of gH-semicontinuity for IVFs. A condition is given that is both
necessary and sufficient for an IVF to be gH-continuous in relation to the g H-lower
and upper semicontinuity. Furthermore, we show that the level sets of the IVF can
be used to characterize gH-lower semicontinuity. We guarantee the existence of a
minimum for an extended gH-lower semicontinuous, level-bounded, and proper IVF
using this characterization result. The proposed Ekeland’s variational principle is
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applied to find approximate minima of a g H-lower semicontinuous and g H-Gateaux

differentiable IVF.

Next, to deal with nondifferentiable IVFs (not necessarily convex), we present the
notion of Fréchet subdifferentiability or gH-Fréchet subdifferentiability. In the se-
quel, we explore its relationship with gH-differentiability and develop various ana-
lytical results for g H-Fréchet subgradients of extended IVFs. By using the proposed
notion of subdifferentiability, we derive new necessary optimality conditions for un-
constrained interval optimization problems (IOPs) with nondifferentiable IVFs. We
also provide a necessary condition for unconstrained weak sharp minima of an ex-

tended IVF in terms of the proposed notion of subdifferentiability.

From the Stampacchia and Minty’s work on variational inequalities for interval-
valued functions (IVFs) it is observed that conventional Stampacchia and Minty
variational inequalities are special cases of the proposed inequalities. The relation
between the solution sets of these two variational inequalities is analyzed. Existence
and uniqueness results are established for the solutions of the proposed variational
inequalities. Moreover, a necessary optimality condition is given for a constrained
interval optimization problem (IOP) using the generalized Hukuhara differentiabil-
ity. It is observed that the first-order characterization of convex IVFs given in the
literature is not true and a new first-order necessary condition is provided for convex
IVFs. By using this new first-order necessary condition for convex IVFs and as an
application of the proposed study, a necessary and sufficient optimality condition
for a constrained IOP is discussed in terms of Stampacchia IVI. Further, a sufficient

optimality condition for a constrained IOP is provided in terms of Minty IVI.
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