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PREFACE

Optimization is a way of characterizing, locating, and computing a function’s max-

ima and minima for a set of acceptable points or certain predetermined conditions.

It was initially combined with differential calculus as part of mathematical analysis.

Fermat presented the first idea of differential calculus and the rule for computing

maxima and minima in 1638. Fermat defined the optimality condition as f ′(x) = 0

to obtain the extremum of a differentiable algebraic function f . Fermat’s rule still

holds true for differentiable functions with multiple variables and differentiable func-

tions defined on topological and Hilbert spaces.

Optimization is not limited to the mathematical realm. Optimization methods can

be used in a variety of fields to find solutions that maximize or minimize some study

parameters, such as manufacturing a good or service, minimizing production costs,

and maximizing profits. These instances frequently have unique structures, such

as convex, nonconvex, linear, nonlinear, quadratic, semidefinite, dynamic, integer,

stochastic programming, and so on. To operate them, optimization sources vast

theoretical foundations and advanced algorithms.

In modeling many real-life problems, uncertainty can be effectively dealt with fuzzy

and stochastic optimization. However, it is not always possible to specify the mem-

bership function or probability distribution in an inexact environment. So, the use

of fuzzy and stochastic optimization may not appropriately represent the system

in such cases. Moore [79] introduced interval analysis to determine imprecise or

uncertain parameters in such problems. Interval analysis is based on the depiction

of an uncertain variable by an interval and offers a natural way of incorporating

parameter uncertainties. Modeling of a system under interval uncertainty requires

no additional information such as membership function and probability distribution.
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Also, it is often possible to establish a variation range in the data. Therefore, interval

optimization may provide an alternative choice for the consideration of uncertainty

in optimization problems. Many good examples of the use of interval optimization

in solving real-life problems can be found in [44, 91, 92, 104, 108, 112].

Moore was the first to introduce interval analysis [79]. Interval analysis, which is

based on the depiction of an uncertain variable by an interval, provides a natural way

of incorporating parameter uncertainties. Moore [79] in his book explained the im-

portance of interval analysis from both a theoretical and practical standpoint. After

the pioneering work by Moore the subject has evolved rapidly since its introduction

nearly 60 years ago. For a good survey of the developments and applications of

interval arithmetic and interval programming problems, we refer to [2, 60, 80, 107].

In this thesis, the author discusses some properties of interval analysis, smooth and

nonsmooth analysis of interval-valued functions (IVFs), interval variational analy-

sis, and optimality conditions for interval optimization problems (IOPs). The basic

introduction of optimization, interval analysis with its origin, interval-valued func-

tions, interval optimization problem with its origin are given at the begining of the

first chapter. Interval arithmetic and some important properties of intervals are also

explained. The definitions of continuity and convexity for IVFs along with their

basic results, are explained in the last section of the first chapter.

Further we have proposed Ekeland’s variational principle for IVFs. In order to

arrive at the variational principle, we study the concept of sequence of intervals and

extend the idea of gH-semicontinuity for IVFs. A condition is given that is both

necessary and sufficient for an IVF to be gH-continuous in relation to the gH-lower

and upper semicontinuity. Furthermore, we show that the level sets of the IVF can

be used to characterize gH-lower semicontinuity. We guarantee the existence of a

minimum for an extended gH-lower semicontinuous, level-bounded, and proper IVF

using this characterization result. The proposed Ekeland’s variational principle is
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applied to find approximate minima of a gH-lower semicontinuous and gH-Gâteaux

differentiable IVF.

Next, to deal with nondifferentiable IVFs (not necessarily convex), we present the

notion of Fréchet subdifferentiability or gH-Fréchet subdifferentiability. In the se-

quel, we explore its relationship with gH-differentiability and develop various ana-

lytical results for gH-Fréchet subgradients of extended IVFs. By using the proposed

notion of subdifferentiability, we derive new necessary optimality conditions for un-

constrained interval optimization problems (IOPs) with nondifferentiable IVFs. We

also provide a necessary condition for unconstrained weak sharp minima of an ex-

tended IVF in terms of the proposed notion of subdifferentiability.

From the Stampacchia and Minty’s work on variational inequalities for interval-

valued functions (IVFs) it is observed that conventional Stampacchia and Minty

variational inequalities are special cases of the proposed inequalities. The relation

between the solution sets of these two variational inequalities is analyzed. Existence

and uniqueness results are established for the solutions of the proposed variational

inequalities. Moreover, a necessary optimality condition is given for a constrained

interval optimization problem (IOP) using the generalized Hukuhara differentiabil-

ity. It is observed that the first-order characterization of convex IVFs given in the

literature is not true and a new first-order necessary condition is provided for convex

IVFs. By using this new first-order necessary condition for convex IVFs and as an

application of the proposed study, a necessary and sufficient optimality condition

for a constrained IOP is discussed in terms of Stampacchia IVI. Further, a sufficient

optimality condition for a constrained IOP is provided in terms of Minty IVI.

xviii


	List of Figures
	Abbreviations
	Symbols
	Preface

