Chapter 6

A robust domain decomposition method
for time delayed singularly perturbed
parabolic reaction-diffusion problems

with Robin boundary conditions

In the present work, we consider the following singularly perturbed time delayed

parabolic reaction-diffusion problem

Lu(x,t) == Lu(z,t) + b(z, )u(z,t — 1) = f(x,t), (z,t) €, (6.1)

with initial condition
u(z,t) = gy(x,t), (x,t) €y =10,1] x [-7,0],

and Robin boundary conditions

Cou(z,t) ;= u(x,t) — Veug(x,t) = go(t), on v ={(0,t):0<t<T},
Cou(z, t) :=u(z, t) + Veug(z, t) = g.(t), on~, ={(1,t):0<t<T}

where

Lu(z,t) = u(x,t) — g (z, t) + alz, t)u(z, ).
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We define Q := D x (0,7], D = (0,1). Suppose 7 = v, U, U7, and 7 = v, U, U,
where v, = [0,1] x {0}. Also0 <e < 1,7 >0anda+b> >0, b <0. The
terminal time 7" is assumed to be T' = k7, k > 0. The data of the problem (6.1)-(6.2)

is supposed to be enough smooth and satisfy the compatibility conditions to ensure

that u € C*2)(Q) [76].

There are only a few research articles available in the literature that study singularly
perturbed problems with Robin boundary conditions; e.g. [76, 77, 92]. In this work,
we develop a domain decomposition based Schwarz waveform relaxation (SWR)
method for solving problem (6.1)-(6.2). This is the first time Robin boundaries have
been analyzed using the domain decomposition approach for singularly perturbed
delayed reaction-diffusion problem. We split the domain into three overlapping
subdomains (one is a regular subdomain and two are layer subdomains) with the help
of a subdomain parameter. The problem (6.1) on each subdomain is discretized by
using backward Euler scheme in time and the standard central difference scheme in
space on uniform mesh while a specific finite difference scheme is used to approximate
the boundaries (6.2) in order to ensure the desired accuracy. Then, using the barrier
function approach we prove that the proposed method is robust convergent having
the order of accuracy one in time and almost two in space. More importantly,
we showed that only one iteration is needed for small values of the perturbation

parameter €. The convergence analysis is supported by the numerical results.

The work is arranged as follows. The continuous maximum principle and the deriva-
tives bounds of the solution are discussed in Section 6.1. In Section 6.2 we introduce
an algorithm which is analyzed in Section 6.3. Numerical results are presented
in Section 6.4 for two test problems and some concluding remarks are included in

Section 6.5.
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6.1 A priori bounds on solution derivatives

We discuss some bounds on the derivatives of the solution of (6.1)-(6.2). For this
purpose, first we introduce a continuous maximum principle for the operator £ which

is defined as Lu(x,t) := Lu(z,t) + b(x, t)u(z,t — 1), (z,t) € Q.

Lemma 6.1. Suppose T'py(0,t) > 0, Ty(1,t) > 0 on (0,7] and y(z,t) > 0 on .

Then Ly(z,t) > 0 on Q implies that y(z,t) > 0 on .

Proof. Suppose y attains its minima at (z,%) and y(,t) = min, ,)qy(r,t) < 0.

Clearly, (Z,t) is not inside of v,. Let (Z,%) € Q. Then
Ly(Z,t) = (4 — €Yz + ay) (T, ) <O,

as y;(Z,t) = 0 and y,.(T,t) > 0, which contradicts the assumption.

Let (Z,t) € 7,. Then

Loy(T.7) = y(7,7) — Vey.(7,7) <0,

as y.(T,t) = 0, which contradicts the assumption. A similar contradiction can be
obtained assuming (T, ) € v,. Hence, we have the proof. O
Lemma 6.2. Suppose z be a function satisfying 1'pz(0,t) > 0, T'.z(1,£) > 0 on

(0,T) and z(z,t) > 0 on . Then Lz(z,t) >0 on Q implies that z(z,t) > 0 on .

Proof. Assuming y = z for (z,t) € D x [~7,7]. Therefore, we have y(0,t) >

0, y(1,t) > 0 on (0, 7], and y(x,t) > 0 on ~,. Further,

Ly(z,t) > =b(z,t)y(z,t —7) >0, (z,t) € D x (0,7],
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as b < 0andy > 0 for (x,t) € D x [—7,0]. Therefore, z = y > 0 for (z,t) €
D x [0,7] by applying Lemma 6.1. Repeating the above arguments and knowing
the fact that = > 0 for (z,t) € D x [(j — 1)7,57], we can show that z > 0, V

(z,t) €D x [j7,(j + 1)7], j > 1. U

The continuous solution u of (6.1)-(6.2) satisfies the following estimates that can be

proved using arguments in [76]:

A further decomposition of the solution u is required to prove the convergence anal-

651+52u

O0x30t5

< Ce™/? for 0< s, + 285y <4 (6.3)

Q

ysis of the numerical method. The actual solution u is decomposed as u = v + w.

The component v solves

Lv=—bv(z,t —7)+ f, inQ,
I'w =Ty, I'o=T0, iny U,

U = G, in Vo,

where vy is the solution of the problem (by setting ¢ = 0 in (6.1)-(6.2)):

Oyvo + avg = —bvg(x,t — 7) + f, in Q,

Vo = G, in Vo-
The component w solves
Lw = —bw(z,t — 1), in Q,

Fow = ge —T'vo, I''w = g, — I'yvg, in vy, Uy,

w =0, in 7.



Chapter 6. A robust domain decomposition method for time delayed singularly
perturbed parabolic reaction-diffusion problems with RBC's 111

Using the arguments in [76], we can prove that the solution components v and w

satisfy the following bounds:
185 0llg < C(1 + @072, (6.4)

03 w(a,1)] < Cem /2 (emoVIIE 4 m0mVArE), (6.5)

for (z,t) €Q, 51 =0,...,4.

6.2 Domain decomposition method

The computational domain 2 is divided into three overlapping subdomains €2, =
D, x(0,T] such that p = ¢, m,r where Qy = (0,2p)x(0,T] and Q, = (1-2p,1)x (0,7

are the layer subdomains and €, = (p,1 — p) x (0,77 is regular subdomain with

p:min{i, 2\/glnN}. (6.6)

Each subdomain 2, = D, x (0, T, where D,, = (¢, d) is discretized using a rectangular

subdomain parameter

mesh which is formed by the uniform meshes in both the directions. We define
Yop = D, X ©,, where &, = [—7,0]. The uniform mesh ﬁ;v in spatial direction is
defined as E;V ={z; = c+ihy, h, = (d — ¢)/N}Y,, while w?", W are the meshes
in time direction with uniform length At = T'/M, where the subintervals m, and
M = nim, are obtained by dividing [—7,0] and [0, T]. Defining D)’ = E;V N D, and
w" =w" N (0,T], then on each subdomain, meshes Q)" and ~,™" are defined as
QNM = DN x wM and 4" = ﬁ;v X w where N and M are the discretization

parameters in space and time direction respectively.
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QN,M

On each subdomain , p = £,m,r, the backward Euler and central difference

schemes are employed to discretize the time and spatial variables respectively. Thus,

we have

L]])V’MUp(iCi, t]) + b(l’i,tj)Up(ZEi,tj_mT) = f(l’i,tj), (67)

where
LéV’MUp(.Ti,tj) = (StU (.Z'Z, ) €5 U (SC“ )—i—a(a:i,tj)Up(xi,tj).

The boundary conditions are discretized with a special second order scheme as fol-

lows:
( TV (0,15) = U(0,t;) — \/_F+U(O t) + 22 (all + 8,U)(0, ;)
= gu(t;) + ( b(0,2;)U(0,tj—m,) + f(0,t;)),
FiV’MUp(l,tj) U(1,t;) + \/_F U(l,t;) + "E(aU +6,U)(1,¢) (6.8)
:gr(t )+ 2 ( b<1 tj )U(Ltj—mf)"i_f(latj))a
\ Up(l‘iatj) :gb(l’i,t]‘)
Here,
Yier; — 2Vi; + Vi1,
2 i+1, 7, i—1,
[0, Y]ij = ’ hlgy] 2,
Yii—Yij Yiji; —Yi; o Yii—Yio;
Y ]ig = TS (Y] o= T Ty T Tl
o At ? h, ? h,

Setting @Y = (@ \ Q) ua M

U (ﬁiVM \ ©2,,), the numerical solution of (6.1)-
(6.2) is computed using the step by step process defined as follows. Suppose the
initial approximation U is

0, (w3,t5) € (0,1) x (0,77,

U[O](jS,tj) =
u(xivtj)7 (xu ) [0 1] [ 7—70]’
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and compute Uy], p={,m,r for k> 1, by solving following set of equations

Ly MU i+ 005U, = Fig (wi,t5) € Q)
U (@i, ty) = gvlwi, ty), (@i 1) € Yoy
TY MU0, 45) = go(ty) + 252 (=b(0, 1)U (0,5 -m,) + F(0,1)), 15 € W

\ UM (2p,t;) = ZUK-1(2p, 1), t; € wM,

( LU+ by U = Fige (i, t;) € Y,
UM (2, t5) = gl t)), (2ist5) € 7™
UM (1= 2p,t;) = ZUK(1 - 2p, t)), t; € wM

\ Fq]«V7MUr[k]<1;t]) = gr(tj> + 2?;5<_b(17tj)U(17t]'*m7—) + f(l’tj))’ tj < WM’

[LYMUl, b U = fij, (i, t;) € QNM

m;i, ] —mr
U (zi,t;) = gyl 1;), (i, t5) € oo™,
U (p.t)) = TUM (p, 1)), t; € wM

H(l—p,) IjUyc](l—p,tj), tjGwM,

\

Iterate the above process until ||[UF+1 — U7 [k]HﬁN,M < § is not reached where 0 is a

user defined threshold and the approximate solution U*! of (6.1)-(6.2) is defined by

( k —N,M , =
UM ity (wnt;) € Q0 \ D,

UM t) = UMnty), (et e (6.9)
Waity),  (ont) €07\ Qy.
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6.3 Convergence analysis

To prove the convergence of the proposed method first we are introducing the maxi-
mum principle for the discrete operators [LYM U, ; and [L)M U] ; = [LYM U 5+
b; jUpi j—m, forall (z;,t;) € Qév’M. Suppose the operator Q]ﬁV’M, p =L, m,r, is defined
as G, M Z(0,t;) = T)°MZ(0,t5), GNMZ(1,t;) = TNMZ(1,t;) and GYMZ(a,t;) =

Z(a,t;) at the points a = p,2p,1 — p,1 —2p for t; € w™
Lemma 6.3. Suppose Z,,, p = {, m,r, be a mesh function satisfying ngMZp(:co, tj) >

0, GNMZ,(xn,t;) =0, t; € WM and Zy(2;,t;) > 0, (23,t;) € " Then

LYMZy (x5, t5) >0, (xi,t;) € QFM implies that Z,(zi,t5) > 0, (24,t5) € ﬁg’M

Proof. We prove the result for p = . A similar argument can be used for p = m,r.

Suppose the mesh function Z, attains its minima at (7;,¢;) and

Zg(Ti,t_j) = mz’n(r“ )EQN MZ@(.TZ, ) < 0.

N,M
Q )

Clearly, (7;,1;) is not the member of fy I (T, ty) € , then

LM Z0(@i, ;) = (0.2 — €622 + aZy)(Ti, ;) < 0,

as 0,Z,(T;, t;) < 0 and 62Z,(z;, ¢;) > 0, which contradicts the assumption.

Now, suppose (Z;, ;) € v, then

v

as 0:Z,(T;,t;) < 0 and FfZ,(%;,t;) > 0, which contradicts the assumption. Hence,

the proof is complete. n
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Lemma 6.4. Suppose Y, p = {,m,r, be a mesh function satisfying QI])V’MY (2o, t5) >
0, GVMY,(xn,t;) > 0, t; € w™ and Yy(zi,t;) > 0, (z;,t;) € ’yévpmf. Then

LYMY, (23, t;) >0, (w5, 8;) € QM implies that Y,(x;,t;) > 0, (24,t5) € Q, vt

Proof. Define Qp n = D Xwym,p=~Lm,r,q=0,1...,n, where wy" is defined
by splitting [(¢1 — 1)7, ¢17] into m, intervals of equal length. Further, we introduce
—N,mr, . . . . .

Qpirr = D X Wy, where W77 is obtained by splitting the interval [(q1 — 1), ga7]

into (¢2 — ¢1 + 1)m, intervals of equal length.

Assuming Z,(x;, t;) = Yy(x;, t5), (zi,t;) € ﬁ;vo 1 - Therefore, we have

Zy(xiyt;) >0, (2,1 )Evé\;mf and G Z,(wo, t;) > 0, GIM Z,(xn, 1) > 0, t; € W™,

and

[LYMZ)is > —bi i Zy(istjom,) =0, (w,t;) € Q™.

Hence, Lemma 6.3 implies that Y, (z;,t;) = Z,(x;,t;) > 0, (x;,t;) € ﬁg’lmf. Similarly,

for ¢; > 2, we can establish Y, (z;,t;) > 0, (z;,t;) € ﬁg&TT using the fact Y, (x;, t;) >

—N,m,
p,q1—1"

0, (z;,t5) € Q O

Next, we define the quantities that will appear in further analysis.

o = e { g (O = T 1), g T = D)1= )]

Pop = max{tnégi(f](Ug Um)(2p,tj)],érég}1§j](ﬁr—ﬁm)(1—2p,tj)!}>

b = o { ana [T - ZUR o) ma |G~ ZUF - 2.1
e = max {10 = UM||gon g N0 = Ui gy, 110 = U9 g
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Further, we define the following auxiliary problems that we shall use to prove the

convergence of the method.

[LéV’Mﬁé]i,j + bi,jﬁf;i,j—mT = fij, (i, 15) € QéV’Ma
~ N,m,
Up(, t5) = u(i, t5), (Tistj) € Vg s

TYMU,0,t) = DYMUK(0, 1), Ul(2p,t;) = u(2p,ty), t; € wM,

[L%’Mﬁm]i,j + bi,jﬁm;i,j—mf = fij, (i, tj) € Q%’Ma
~ N,m,
Un(zi,t5) = u(zs, t5), (i t5) € YVyom

Um(p7 tj) = u(p7 tj)? Um<1 - P tj) = u(l — P tj)? tj = wM7

[LNMTi 5+ i Unijome = i (2,1;) € 2,
~ Nmr,
Ur(xi, t;) = u(zs, t5), (i, t5) € Vor

{ ﬁr(l — 2p, tj) = ’LL(l — 2p, tj), Fy’M[77»<1,tj) = Fiv’MU[k](l,t]), tj S OJM.

Lemma 6.5. The numerical solutions ﬁp defined by the auziliary problems and the

solution u of (6.1)-(6.2) satisfy
||u = Uyl[gvar < C(At+ N"2In® N). (6.10)

Proof. For (x;,t;) € QéV’M, p=4Lm,r,

LYM (o — U,) (i ty) = LM (g, ) — Lu(w,t;)
= (6w — wy) (4, t5) — € (63U — ugy) (24, 1) (6.11)

Applying Taylor expansions and bounds in (6.3) with h, < Cy/eN~!'In N we have

L3 (w = T)ig| <

9
(t5 = ty) Jae(, M,y + 132 Nt 1)

[x’i—l7xi+1]

(6.12)

N | —
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< C(At+ N7?In*N).
Next, for t; € w™ we have (u — Uy)(p, t;) = 0 and equations (6.2) and (6.8) follows

FéV,M(u—[?g)(O,tj) = (U—\/EF+U+F(GU+51,U) (u \/Eux)—Q\/_ )(Ot)
hy

g7z (DO, )u(0,15.)

= Ve (us — Ffu) (0,t) + Qh—\;g((au — [ 4 ue)(0,4;) + b(0,2;)u(0,t;_r,))
hz

NG
+ h[ hg
= \/g UI—FxU—FEU;m (O,tj)—i—Z—\/E((Stu—ut) (O,t]’).

(0pu — uy) (0, 1)

Now, using Taylor expansions and bounds in (6.3), we get

~ hy
Ly (u—U)(0,1;) 6 i Ntwa (83, 50 + 4—\/5(153- — i) Nwee(zi, M, 0y

< C(At+ N?In*N).

Further, applying Lemma 6.4 to the mesh function ¢*(z;,t;) = C(At+N~2In* N)+

(u — ﬁ[)(xi,tj), we get
||U— Ug||—NM < O(At+N 21n? N)

Similarly,
| — Uy ||gvar < C(At+ N721n® N).

Now, we consider two cases to find an estimate for ||u — Unn ||*NM.

Case 1: If p = 1/4, then h,, = 1/(2N) and ¢! < C'In* N. Now, using (6.3) and
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equation (6.11) with Taylor expansions we get

104 (0 = T)lig| < C(AL+ NI N), - (2t;) € Q5.

Case 2: If p = 2\/5111 N, then h,, < CN~!. So by using Taylor expansion and
(6.3), we get

[(8eu — ug) (zi, ;)| < CAt for (x4,t5) € QNM.

And to calculate the bound for the term e |(62u — uyy,) (24,t;)| we use the solution

decomposition © = v + w such that
(620 — uga) (w3, 85)] < e |(020 — vaa) (i, 85)| + € [ (2w — wyy) (2, 85)] -

Now, by using Taylor expansions and bounds in (6.4), (6.5), we get

IN

Cehl, [Vnzaa (., )]

e |(62u — ugs) u(zi, t)))| |+ Ce flwaa(., £5)]

[i—1,2541 [zi—1,2441]

< CN72
Thus, for (z;,t;) € QN we have
LM (u — Up)iy| < C(AL+ N721In* N).
[ m 5

Now, applying Lemma 6.4 to the mesh function C(At+N~21In% N)+ (u—U,,)(x;, t),
we get

||t — Up|[gnvar < C(A+ N~2In® N).

Hence, the desired result can be obtained by combining the above bounds. O]



Chapter 6. A robust domain decomposition method for time delayed singularly
perturbed parabolic reaction-diffusion problems with RBC's 119

In the underlying theorem we have shown that the method converges uniformly for

p:2\/%lnN.

Theorem 6.6. The solution of (6.1)-(6.2) and the first iterate of the proposed

scheme satisfy

lu — UM[|gvar < C(At+ N2 In* N).

Proof. Suppose
U (a0, 1) = Wl ) £ (U = UM (@i, 17),
is the mesh function, where W, is the solution of following problem

(

0:We(i,5) — e02Wy(i,5) + ‘Ife(l J)+ ﬂ\Ifz( —m,) =0, (z;,t;)€Q",

q%(xl’tj) = M[l]%u (xut ) € fYéngT?
fév’M‘I/g(O,tj> =0, t; € wM,
\Ijé(pa t]) = ,u[l]a Zfj € wMa

where the operator féVM is defined as

VMW, (0,85) = Ug(0, ) — VEFFUy(0,15) + ——=(BY + 6,9,)(0,t;),

2\/_

©1 = 2\/Ehg—25(C1—1)—|—h§a , P2 = 2\/Ehg—25(@—1)—|—h§a and Cl = 51 +52, Cz =
51 — /82 Wlth

e (W) e (B2 ) (32)

and ﬁg — Uem satisfies

LM (U~ UM (@i ty) = 0, (24,t5) € QM (U= UM (i t5) = 0, (wi,t)) € 4™
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and I (0 = Up)(0.45) =0, |(Te = U)2p. )] < i, 1 € ™.
The problem (6.13) has the solution such that

_ %28 — 16

v Tyt N
@ ty) 02 — 1Y

(6.14)

which satisfies Wy(z,t;) > 0, (z5,t;) € Q" and it is monotonically increasing.
Also, we have U*(z;,t;) > 0 for (z;,¢;) € ylf\fémf, MU0, ) > 0, 0% (2p,t5) >
0 for t; € wM, and ,Cév’M\Ifi(xi,tj) > 0, for (z;,t;) € QéV’M. Thus, by applying

Lemma 6.4 to the mesh function ¥*(z;,t;), we get
(U — UMY (i, )] < Wolity)  for (wit;) € Q.

Since z; < p for (x;,t;) € ﬁév’M\ﬁm, the equation (6.14) implies that

N/2 N/2 N/2 N/2
261" — P16y [1] MG =G
Wy (i, 1) < pl! = =gy A= 2/,
! paly’ — 016y AGH =&Y

o [Achv — }
AN 4 LA -6

Therefore, we have

Wo(zi,t5) <
RIS

Mm [AZ— g/CfV} < CA
A= AT AP+

as A > 1 and (3/(; < 1, we have [%} < C\. Hence, we get
2 1

Wire

1%

\I/g(l'i, t]) S T/Q
1
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Further, using the arguments in [3, Lemma 5.1] and plt! < C; we get W(z;,t;) <
CN~2 for (z;,t;) € ﬁévM\ﬁm Thus

- <ON™2 (6.15)

r7 1
10 = U Igyang,

Similarly

1T, = UPlgrang, < CN7>. (6.16)

Now, take (N]m — 7[,1}, which satisfies the following

LM (U = UlDig = 0, (wisty) € QM. (Un = U (s 15) = 0, (w,15) € ™

b,m

(U — U (1, 1) < iy + CON72 (n,t5) € {p, 1 — p} x w7,

Thus, Lemma 6.4 gives

Uy — UM ownr < i, + CN72, (6.17)

m

Hence

W<y, +CN2, (6.18)
Also, we note that 1, < C(At + N~2In* N) using Lemma 6.5 and (p, ;) € ﬁéV’M ,
(1—p,t;) € ﬁiV’M. Thus, we get the result on combining (6.18) and Lemma 6.5. [
For ¢ = 1/4, the method is proved to be uniformly convergent in the following
theorem.
Theorem 6.7. The exact solution of problem (6.1)-(6.2) and the approximate so-

lution U defined by (6.9) satisfy

lu— UM |[gvar < C(5/6)" + C(At + N72In N). (6.19)
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Proof. Assume the mesh function

$1+\/_ [1

(I)i(l'i,t]) == 2p—|—\/_

+ (U — U (@i, 1),
where (7@ -U Z[ll satisfies
'CéV’M<(7€ — Ué”)(gj“ ) - 0 (‘rla ) QNM (ﬁf - Ug[l])(a:u t]) = 07 (xlat ) € VévémT7

XM (U, — UMY(0,85) = 0, [(Te — UMY(2p, 1) < u, 15 € .

For t; € wM

rYMe%(0,t;) = F;VMP”L\/_ Hl]iFNM(Ug U0, ;)

2p + \/_
B plt! L1 — Xo he(ai; + biy)
= m[%‘i‘\/_ \/_< )+ 2z (zo + V)
B pu! he(ai; + biy)
] W(WTW@) =

fe. @E(x,t5) >0, (4,t;) € vy and T)M0%(0,¢5) > 0, E(2p,¢5) > 0, t; € wM
For (z;,t;) € QéV’M,

Ly
LYME (g 1) = (ag; + bis (x ) > 0.
¢ (z J) (a,J+ ,J) 20+ /2 =

Then, Lemma 6.4 leads to

T+ /e

o

) [ for (.Ti,tj) S ﬁév7M
Hence, for (z;,t;) € ﬁév’M\ﬁm, we get

U, — pV o as a; < p. (6.20)

U lgvang,, <

| Ot
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Similarly, we can show that

~ )
10: = Ul |l < gﬂm- (6.21)

Next, for the term Uy, — Uk, as (p,t;) € ﬁéV’M and (1 —p,t;) € ﬁ,{V’M, we have the

following

‘C%’M(ﬁm - UE])("E“tJ) = 07 (mivtj) € Q%7M7
(U — U (i, ty) = 0, (24,t;) € o,
~ 5
(U = U, )] <y + 6“[1}7 (n.t;) € {p,1 — p} x ™.

So, applying Lemma 6.4, we get

~ 5)
[1Um = UpMllgvas < g+ Sp. (6.22)

Next, we calculate the bound on &P for which we need to estimate ul? first. We

note that (2p,t,), (1 —2p,t;) € QZ’M. Consequently

~ 3
(T =ZUEp )] < pay+ sty + g

~ 5
(@ = UM = 2p,t)] < iyt gty 2l
Therefore, we have ul? < fop + fhp + %,u[l]. Hence
5
maX{£[1]7 M[Q]} <A+ EILL[I]7 A= Ha2p + Hp-

And repeating the above process, we have

5
max{¢, u 1y <o 2plt
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Simplifying the above expression we obtain

0 5\""

Therefore

5 k
M < 6A + (8) pll. (6.23)

Further, Lemma 6.5 gives A < C(At + N=2In* N), as (2p,t;), (1 — 2p,t;) € QZ’M
and (p,t;) € ﬁév’M and (1 — p,t;) € QTJ,V’M. Also, we have pl!l < C. Hence, we get

the proof on combining (6.23) and Lemma 6.5. O

6.4 Numerical results

Here, two test problems are considered to illustrate the numerical scheme dis-
cussed earlier. We compute the uniform error and convergence rate as EVM =
max, ENM and RMM = log, (%) taking ¢ € {1071,107",...,107®} and differ-

ent values of discretization parameters N, M. The computation of errors ENM is

given below. The stopping criterion of the algorithm for the considered problems is

U]~ | war < N2,

Example 6.1. Consider

(
PGt — 20 - (1t weulx, 1) — 09u(z, t — 1) = f(x,1)

(

u(z,t) — e3(z,t) = gult) (z,t) € {0} x (0,2],
(
(

u(z, t) + 5k (x,t) = g.(t)

u(x, t) = gb(x> t)

\

where g;, f, gs and g, are determined with the help of exact solution

—z/Ve fo(z—1)/VE
) =1 [N )

v oSt T



Chapter 6. A robust domain decomposition method for time delayed singularly
perturbed parabolic reaction-diffusion problems with RBC's

where wu is the actual solution and

stopping the iterative process.

UN’M

is the approximate solution obtained by

. . . N,M .
TABLE 6.1: Maximum pointwise errors £z ", uniform errors

convergence rate RV'M for Example 6.1.

EN’M

The maximum pointwise errors for Example are evaluated as EMY = [[u—UNY || v,

In Table 6.1 we present the maximum pointwise

e=10"P

N =25
M = 4?

N =27
M =43

N =28
M =44

N =2°
M = 4°

N =21
M = 48

—_

0~ O U W

1.683E-04
7.490E-04
7.205E-03
6.669E-02
7.316E-02
7.316E-02
7.316E-02
7.316E-02

4.279E-05
1.872E-04
1.811E-03
1.776E-02
2.647E-02
2.647E-02
2.647E-02
2.647E-02

1.067E-05
4.679E-05
4.535E-04
4.511E-03
8.832E-03
8.832E-03
8.833E-03
8.833E-03

2.675E-06
1.169E-05
1.134E-04
1.132E-03
2.815E-03
2.815E-03
2.815E-03
2.815E-03

6.686E-07
2.924E-06
2.835E-05
2.834E-04
8.708E-04
8.708E-04
8.708E-04
8.708E-04

EN’M
RN’M

7.316E-02
1.466

2.647E-02
1.583

8.833E-03
1.649

2.815E-03
1.692

8.708E-04

and uniform

TABLE 6.2: Required iteration counts to attain the convergence for Example 6.1.

N=20 N=2" N=22 N=2 N=2U
M=4 M=4 M=4" M=45 M=4°
) 6 6 7 7

e=107?

—_

O~ O ULk w o |
— = = = =N
e e )
e e
e e
— = e = = DN

errors ENM uniform errors ENV'Y and uniform convergence rate RN for Example
6.1, which verify the theoretical outcomes that we have proved earlier in Theorems
6.6 and 6.7. The iteration counts mentioned in Table 6.2 display the number of
iteration needed to satisfy the stopping criterion for the algorithm. From Table 6.2

we can notice that only one iteration is enough to stop the iterative procedure for
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FIGURE 6.1: Solution plot for Example 6.1 with ¢ = 1077 and N = 64, M = 32.

10413 9SIMJUIOd WNWiXep

F1GURE 6.2: Error plot corresponding to Example 6.1.
small values of perturbation parameters, i.e. we can get the desired approximate

solution only after one iteration of the algorithm.
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FIGURE 6.3: Solution plot for Example 6.2 with ¢ = 10~7 and N = 64, M = 32.

Example 6.2. Consider

PGt — e 4 (L4 weu(a, 1) - 0.9u(x, t — 1) = f(x,1)
u(z,t) = VEGi(x, 1) = gi(t)
u(x, t) + EGe(x,t) = g.(t)

u(z,t) = gy, t)

x,t) € Q:=D x (0,2],
x,t) € {0} x (0,2],
x,t) € {1} x (0, 2],

)

(
(
(
(,t) € [0,1] x [~1,0].

where ¢, f, ge and g, are calculated by the following exact solution

u(z,t) = (1 —e™) [Mﬁ# — cos®

The maximum pointwise errors, uniform errors and uniform rates of convergence for

Example are evaluated as in Example (6.1).

Table 6.3 displays the numerical results for Example 6.2 that agree with the theo-
retical outcomes established in Theorems 6.6 and 6.7. From this, we can conclude
that the scheme’s rate of convergence is almost two. This is evident by the fact that

in this case, the space discretization errors dominate the global errors.
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FIGURE 6.4: Error plot corresponding to Example 6.2.

10°

To indicate the contribution of time discretization errors to global errors the follow-

ing formula is used

NM _
R =log, <—E2N’2M> .

EN,M

The results are listed in Table 6.5. From this data, we can observe that the rate

of convergence is one. Tables 6.4 and 6.6 show how many iterations the iterative

procedure requires to reach the required accuracy.

TABLE 6.3: Maximum pointwise errors E." , uniform errors EV™ and uniform
convergence rate RV'M for Example 6.2.

e=10"?

N =2°
M = 4*

N =27
M =43

N =28
M =4

N=2
M =45

N =21
M = 48

1.7501E-03
5.0496E-03
1.0580E-02
2.8278E-02
3.1430E-02
3.1426E-02
3.1425E-02
3.1425E-02

4.4629E-04
1.2733E-03
2.6743E-03
7.3827E-03
1.1480E-02
1.1479E-02
1.1479E-02
1.1479E-02

1.1214E-04
3.1903E-04
6.7038E-04
1.8647E-03
3.8707E-03
3.8705E-03
3.8705E-03
3.8705E-03

2.8072E-05
7.9800E-05
1.6771E-04
4.6736E-04
1.2453E-03
1.2453E-03
1.2453E-03
1.2453E-03

7.0201E-06
1.9953E-05
4.1935E-05
1.1691E-04
3.8822E-04
3.8822E-04
3.8822E-04
3.8822E-04

EN’M
RN’M

3.1425E-02
1.453

1.1479E-02
1.568

3.8705E-03
1.636

1.2453E-03
1.682

3.8822E-04
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TABLE 6.4: Required iteration counts to attain the convergence rate RN for

Example 6.2.
e=10"? N=20 N=21 N=28 N=29 N =20
M=4> M=4> M=4" M=4 M=45
p=1 ) 6 6 6 7
2 2 2 2 2 2
3 1 1 1 1 1
4 1 1 1 1 1
) 1 1 1 1 1
6 1 1 1 1 1
7 1 1 1 1 1
8 1 1 1 1 1

TABLE 6.5: Maximum pointwise errors Eév ’M, uniform errors ENM and uniform
N,M
convergence rate R, for Example 6.2.

N=2°
M =23

e=10""?

N =26
M =24

N =27
M =2°

N =28
M =26

N=2°
M =27

3.4408E-03
9.9801E-03
2.0719E-02
2.5421E-02
2.8453E-02
2.8455E-02
2.8456E-02
2.8456E-02

1.7690E-03
5.0470E-03
1.0478E-02
1.2764E-02
1.3283E-02
1.3394E-02
1.3423E-02
1.3432E-02

8.9756E-04
2.5377E-03
5.2684E-03
6.4047E-03
6.6825E-03
6.7437E-03
6.7598E-03
6.7646E-03

4.5203E-04
1.2725E-03
2.6416E-03
3.2086E-03
3.3515E-03
3.3836E-03
3.3920E-03
3.3945E-03

2.2684E-04
6.3713E-04
1.3226E-03
1.6060E-03
1.6783E-03
1.6948E-03
1.6990E-03
1.7003E-03

ENM
N,At
Ry

2.8456E-02
1.083

1.3432E-02
0.989

6.7646E-03
0.995

3.3945E-03
0.997

1.7003E-03

TABLE 6.6: Required iteration counts to attain the convergence rate R

Example 6.2.

NAt
* or

e=10"? N =
M_

2> N =2°
23 M =2*

N =27
M =2°

N =28
M =26

N =2
M =27

—_

o~ O U w o
— = = = = = RN O

D

el = T e T = S S )

6

el )

7

el e e )

7

— o = = =N
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The numerical solutions and corresponding error plots for Examples 6.1 and 6.2 are
represented in Figures 6.1, 6.3 and 6.2, 6.4 respectively. From the Figures 6.1 and 6.3
we can clearly observe the multiscale character of the solutions near the boundary

points and the slope obtained in error plots validate the convergence order.

6.5 Conclusions

We developed a Schwarz waveform relaxation approach for solving the time delayed
singularly perturbed parabolic Robin boundary value problem in this work. The
numerical algorithm is proved to be robust convergent, with accuracy of order one
in time and almost two in space. Also, we observed that the numerical results ob-
tained by proposed numerical algorithm corresponding to the test problems validate
the theoretical outcomes. The results presented in Tables 6.2 and 6.4 demonstrate
that only one iteration is sufficient to reach the given threshold for small values of

perturbation parameters.

kR kR kokoskok skook sk
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