
Chapter 3

An efficient robust domain decom-

position method for singularly per-

turbed coupled systems of parabolic

problems

In this chapter, we consider the following coupled system of parabolic singularly

perturbed problems

 Lu(x, t) := (∂tu+ E∂2xu+Au)(x, t) = f(x, t), (x, t) ∈ Ω = (0, 1)× (0, T ],

u(x, 0) = 0, x ∈ [0, 1], u(0, t) = g0(t),u(1, t) = g1(t), t ∈ (0, T ],

(3.1)

where

E =

−ε1 0

0 −ε2

 , A =

a11(x, t) a12(x, t)

a21(x, t) a22(x, t)

 , f = (f1, f2)
T ,

and ε1, ε2 are perturbation parameters such that 0 < ε1 ≤ ε2 ≤ 1. We assume that

the entries of the matrix A satisfy


aij(x, t) ≤ 0, i ̸= j; aij(x, t) > 0, i = j,
2∑

j=1

aij(x, t) ≥ α > 0, i = 1, 2, (x, t) ∈ Ω.
(3.2)
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Further, assume that the data of problem (3.1) is sufficiently regular and the com-

patibility conditions g
(s)
0 (0) = g

(s)
1 (1) = 0, s = 0, 1, 2; ∂sx∂

q
t f (0, 0) = ∂sx∂

q
t f (1, 0) =

0, 0 ≤ s + 2q ≤ 2, hold to ensure that u ∈ C4,2(Ω)2 (the time partial derivatives

are continuous up to second order and the spatial partial derivatives are continu-

ous up to fourth order) [54, 94]. Also, assume that Γ0 = {(x, 0) |x ∈ [0, 1]}, and

Γ1 = {(x, t) | t ∈ (0, T ], x = 0, 1}, Γ = Γ0 ∪ Γ1. Here, perturbation parameters ε1

and ε2 can be of different magnitude and can take arbitrary small values. So, the

solution of problem (3.1) exhibits multiscale character.

Over the last two decades, domain decomposition based numerical methods have at-

tracted many researchers to find approximate solutions to partial differential equa-

tions (see [30, 31, 67, 90, 112–116] and the references therein). Particularly, for

problem (3.1), we are aware of only one paper [53] in which a domain decomposition

algorithm of SWR type is developed and analyzed. It is proved that the algorithm

gives robust numerical approximations for the exact solution. However, the compu-

tational cost of this algorithm is high, since at each time level the components of the

approximate solution are coupled. To decrease this computational cost, in this paper

we consider two additive (or splitting) schemes [107, 117] for the discretization that

allow the computation of the components of the approximate solution in a decou-

pled way at each time level. We provide convergence analysis of the algorithm using

some auxiliary problems and the algorithm is shown to be robust convergent. In

the fitted mesh framework, additive schemes for problem (3.1) are analyzed in [55].

Firstly, the time semidiscretization is introduced and some auxiliary semidiscrete

problems are defined. Then the spatial discretization is introduced by discretizing

these auxiliary semidiscrete problems. The time semidiscrete scheme and spatial

discretization are analyzed separately, and to analyze the robust convergence of the

spatial discretization a priori bounds on the solution of the semidiscrete auxiliary
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problems are derived, which is an additional task and require more regularity and

higher order compatibility conditions. However, in the present paper, the totally

discrete scheme is considered directly for analysis. Further, best to our knowledge,

this is the first time additive (or splitting) schemes are analyzed in the domain

decomposition framework for singularly perturbed systems.

The work in this chapter is arranged as follows. In Section 3.1, a priori bounds are

given. In Section 3.2, we introduce a domain decomposition algorithm for problem

(3.1). In Section 3.3, we analyze the algorithm using some auxiliary problems and

establish the robust convergence of the algorithm. In Section 3.4, numerical results

are given to validate the theoretical convergence and also to verify the efficiency of

the algorithm. Further, some concluding remarks are given in Section 3.5.

3.1 Derivative bounds

The exact solution of (3.1) can be decomposed as u = v + w (see [54]), where v is

the regular part satisfying

Lv = f in Ω, v = ζ on Γ1, v = 0 on Γ0, (3.3)

where ζ satisfies

∂tζ +Aζ = f, (x, t) ∈ {0, 1} × (0, T ], ζ(x, 0) = 0, x ∈ {0, 1}, (3.4)

and w is the singular part satisfying

Lw = 0 in Ω, w = u− v on Γ. (3.5)
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We next provide bounds on the derivatives of each part of the decomposition; for

the regular part v = (v1, v2)
t it holds

||∂pt v||Ω ≤ C, ||∂pxv||Ω ≤ C, p = 0, 1, 2,

||∂pxv1||Ω ≤ C(1 + ε
(1−p/2)
1 ), ||∂pxv2||Ω ≤ C(1 + ε

(1−p/2)
2 ), p = 3, 4,

and for the singular part w = (w1, w2)
t it holds

|∂ptwn(x, t)| ≤ CBε2(x), n = 1, 2, 0 ≤ p ≤ 2,

|w1(x, t)| ≤ CBε2(x), |w2(x, t)| ≤ CBε2(x),

|∂pxw1(x, t)| ≤ C(ε
−p/2
1 Bε1(x) + ε

−p/2
2 Bε2(x)),

|∂pxw2(x, t)| ≤ C(ε
−p/2
2 Bε2(x)), p = 1, 2,

|∂pxw1(x, t)| ≤ C(ε
−p/2
1 Bε1(x) + ε

−p/2
2 Bε2(x)), p = 3, 4,

|∂pxw2(x, t)| ≤ Cε−1
2 (ε

−(p−2)/2
1 Bε1(x)+ε

−(s−2)/2
2 Bε2(x)), p = 3, 4, ∀ (x, t) ∈ Ω.

Further, for ε1 < ε2 and ε2 ≤ α/2, the singular part w = (w1, w2)
T can be further

decomposed as w1 = ŵ1,ε1 + ŵ1,ε2 , w2 = ŵ2,ε1 + ŵ2,ε2 , where

|ŵ1,ε1(x, t)| ≤ Bε1(x), |∂2xŵ1,ε1(x, t)| ≤ ε−1
1 Bε1(x), |∂4xŵ1,ε2(x, t)| ≤ ε−2

2 Bε2(x),

|ŵ2,ε1(x, t)| ≤ Bε1(x), |∂2xŵ2,ε1(x, t)| ≤ ε−1
2 Bε1(x), |∂4xŵ2,ε2(x, t)| ≤ ε−2

2 Bε2(x).

for (x, t) ∈ Ω. One can see a detailed proof of these bounds in [54].

3.2 Splitting schemes based domain decomposi-

tion method

From these bounds we observe that the solution u has overlapping layers near

x = 0, 1. So, we divide the original domain into five overlapping subdomains. The

decomposition of the domain is as follows: Ωp = Dp × (0, T ], p = ℓℓ, ℓ,m, r, rr,

where Dℓℓ = (0, 4ρ1), Dℓ = (ρ1, 4ρ2 − 3ρ1), Dm = (ρ2, 1 − ρ2), Dr = (1 − 4ρ2 +
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Figure 3.1: Decomposition in space.

3ρ1, 1− ρ1), Drr = (1− 4ρ1, 1) with subdomain parameters ρ1 and ρ2 (see [118])

ρ2 = min

{
4

26
, 2

√
ε2
α

lnN

}
, ρ1 = min

{
ρ2
4
, 2

√
ε1
α

lnN

}
, (3.6)

whereN is the spatial discretization parameter. Here, two are sublayer subdomains,

one is a regular subdomain, and two subdomains are subdomains overlapping with

sublayer subdomains and the regular subdomain. We remark that the parameters

ρ2 and ρ1 considered in the paper are slightly different from than those used in [118].

The parameters are defined keeping in mind that the subdomains Ωℓ and Ωr do not

overlap, and further the subdomains Ωℓℓ and Ωrr do not overlap with the subdomain

Ωm.

We consider a rectangular mesh DN
p × ωM on each subdomain Ωp = Dp × (0, T ].

For Dp = (c, d), we define a uniform mesh D
N

p = {xi}Ni=0 with hp = (d− c)/N such

that c = x0 < x1... < xN−1 < xN = d. Let ωM = {tj}Mj=0 be a uniform mesh in time

direction with step length ∆t = T/M. SupposeDN
p = D

N

p ∩Dp and ω
M = ωM∩(0, T ].

On each subdomain ΩN,M
p , we consider the following discretization

LN,M
p [Up]i,j := L

N,M
p [Up]i,j − Si,j[Up]i,j−1 = fi,j,
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where

LN,M
p [Up]i,j := [δtUp]i,j + E [δ2xUp]i,j + P i,j[Up]i,j

with

[δtUp]i,j =
(Up;i,j −Up;i,j−1)

∆t
, [δ2xUp]i,j =

(Up;i+1,j − 2Up;i,j +Up;i−1,j)

h2p
,

and Ai,j = P i,j − Si,j. When P i,j = Ai,j, the discretization reduces to the implicit

Euler scheme in time and the central difference scheme in space, which is considered

in [53]. Here, in order to decouple the system and reduce the computational time,

we consider P i,j as follows [55, 107, 117]

P i,j ∈


a11(xi, tj) 0

0 a22(xi, tj)

 ,

a11(xi, tj) 0

a21(xi, tj) a22(xi, tj)


 .

The above two choices are considered for P i,j. We also use the notation P i,j =

diag(Ai,j) for the first matrix, and P i,j = ltr(Ai,j) for the second matrix. Further,

using Ai,j = P i,j − Si,j, Si,j is defined accordingly.

Setting Ω
N,M

:= (Ω
N,M

ℓℓ \Ωℓ)∪(Ω
N,M

ℓ \Ωm)∪Ω
N,M

m ∪(ΩN,M

r \Ωm)∪(Ω
N,M

rr \Ωr), the iter-

ative procedure to find the approximate solution of (3.1) is defined as follows: choos-

ing the initial approximation U[0] such that U[0](xi, tj) = 0, (xi, tj) ∈ (0, 1)× (0, T ],

with U[0](xi, tj) = u(xi, 0), (xi, tj) ∈ D
N ×{0} and U[0](xi, tj) = u(xi, tj), (xi, tj) ∈

{0, 1} × ωM , we compute U[k]
p , for each k ≥ 1, by solving



[LN,M
ℓℓ U

[k]
ℓℓ ]i,j − Si,j[U

[k]
ℓℓ ]i,j−1 = fi,j for (xi, tj) ∈ ΩN,M

ℓℓ ,

U
[k]
ℓℓ (xi, 0) = 0 for xi ∈ D

N

ℓℓ ,

U
[k]
ℓℓ (0, tj) = g0(tj) for tj ∈ ωM ,

U
[k]
ℓℓ (4ρ1, tj) = IjU

[k−1](4ρ1, tj) for tj ∈ ωM ,

(3.7)



Chapter 3. An efficient robust domain decomposition method for singularly
perturbed coupled systems of parabolic problems 47

[LN,M
rr U[k]

rr ]i,j − Si,j[U
[k]
rr ]i,j−1 = fi,j for (xi, tj) ∈ ΩN,M

rr ,

U[k]
rr (xi, 0) = 0 for xi ∈ D

N

rr,

U[k]
rr (1− 4ρ1, tj) = IjU

[k−1](1− 4ρ1, tj) for tj ∈ ωM ,

U[k]
rr (1, tj) = g1(tj) for tj ∈ ωM ,

(3.8)



[LN,M
r U[k]

r ]i,j − Si,j[U
[k]
r ]i,j−1 = fi,j for (xi, tj) ∈ ΩN,M

r ,

U[k]
r (xi, 0) = 0 for xi ∈ D

N

r ,

U[k]
r (1− 4ρ2 + 3ρ1, tj) = IjU

[k−1](1− 4ρ2 + 3ρ1, tj) for tj ∈ ωM ,

U[k]
r (1− ρ1, tj) = IjU

[k]
rr (1− ρ1, tj) for tj ∈ ωM ,

(3.9)

[LN,M
ℓ U

[k]
ℓ ]i,j − Si,j[U

[k]
ℓ ]i,j−1 = fi,j for (xi, tj) ∈ ΩN,M

ℓ ,

U
[k]
ℓ (xi, 0) = 0 for xi ∈ D

N

ℓ ,

U
[k]
ℓ (ρ1, tj) = IjU

[k]
ℓℓ (ρ1, tj) for tj ∈ ωM ,

U
[k]
ℓ (4ρ2 − 3ρ1, tj) = IjU

[k−1](4ρ2 − 3ρ1, tj) for tj ∈ ωM ,

(3.10)



[LN,M
m U[k]

m ]i,j − Si,j[U
[k]
m ]i,j−1 = fi,j for (xi, tj) ∈ ΩN,M

m ,

U[k]
m (xi, 0) = 0 for xi ∈ D

N

m,

U[k]
m (ρ2, tj) = IjU

[k]
ℓ (ρ2, tj) for tj ∈ ωM ,

U[k]
m (1− ρ2, tj) = IjU

[k]
r (1− ρ2, tj) for tj ∈ ωM ,

(3.11)

where IjZ is the piecewise linear interpolant of the mesh function Z at time level tj.

The above iterative process is repeated until ||U[k] −U[k−1]||
Ω

N,M ≤ γ (user chosen

parameter) is not satisfied, where the solution U[k] is computed as follows

U[k] =



U
[k]
ℓℓ in Ω

N,M

ℓℓ \ Ωℓ,

U
[k]
ℓ in Ω

N,M

ℓ \ Ωm,

U[k]
m in Ω

N,M

m ,

U[k]
r in Ω

N,M

r \ Ωm,

U[k]
rr in ∈ Ω

N,M

rr \ Ωr.

(3.12)
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3.3 Convergence analysis

For convergence analysis, firstly we split the global error into the discretization error

||u − Ũ||
Ω

N,M and the iterative error ||Ũ − U[k]||
Ω

N,M using the following triangle

inequality

||u −U[k]||
Ω

N,M ≤ ||u − Ũ||
Ω

N,M + ||Ũ−U[k]||
Ω

N,M , (3.13)

where Ũ is constructed from the following auxiliary problems in the similar way as

(3.12):


[LN,M

ℓℓ Ũℓℓ]i,j − Si,j[Ũℓℓ]i,j−1 = fi,j for (xi, tj) ∈ ΩN,M
ℓℓ ,

Ũℓℓ(xi, 0) = 0 for xi ∈ D
N

ℓℓ ,

Ũℓℓ(η, tj) = u(η, tj) for (η, tj) ∈ {0, 4ρ1} × ωM ,


[LN,M

rr Ũrr]i,j − Si,j[Ũrr]i,j−1 = fi,j for (xi, tj) ∈ ΩN,M
rr ,

Ũrr(xi, 0) = 0 for xi ∈ D
N

rr,

Ũrr(η, tj) = u(η, tj) for (η, tj) ∈ {1− 4ρ1, 1} × ωM ,
[LN,M

r Ũr]i,j − Si,j[Ũr]i,j−1 = fi,j for (xi, tj) ∈ ΩN,M
r ,

Ũr(xi, 0) = 0 for xi ∈ D
N

r ,

Ũr(η, tj) = u(η, tj) for (η, tj) ∈ {1− 4ρ2 + 3ρ1, 1− ρ1} × ωM ,
[LN,M

ℓ Ũℓ]i,j − Si,j[Ũℓ]i,j−1 = fi,j for (xi, tj) ∈ ΩN,M
ℓ ,

Ũℓ(xi, 0) = 0 for xi ∈ D
N

ℓ ,

Ũℓ(η, tj) = u(η, tj) for (η, tj) ∈ {ρ1, 4ρ2 − 3ρ1} × ωM ,
[LN,M

m Ũm]i,j − Si,j[Ũm]i,j−1 = fi,j for (xi, tj) ∈ ΩN,M
m ,

Ũm(xi, 0) = 0 for xi ∈ D
N

m,

Ũm(η, tj) = u(η, tj) for (η, tj) ∈ {ρ2, 1− ρ2} × ωM ,
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Next, we are going to introduce some notations and the discrete maximum principle

which we shall use to establish convergence of the algorithm.

µρ1 =max{max
tj∈ωM

|(Ũℓ − Ũℓℓ)(ρ1, tj)|, max
tj∈ωM

|(Ũr − Ũrr)(1− ρ1, tj)},

µρ2 =max{max
tj∈ωM

|(Ũm − Ũℓ)(ρ2, tj)|, max
tj∈ωM

|(Ũm − Ũr)(1− ρ2, tj)},

µ4ρ1 =max{max
tj∈ωM

|(Ũℓℓ − IjŨℓ)(4ρ1, tj)|, max
tj∈ωM

|(Ũrr − IjŨr)(1− 4ρ1, tj)},

µ4ρ2−3ρ1 =max{max
tj∈ωM

|(Ũℓ − IjŨm)(4ρ2 − 3ρ1, tj)|, max
tj∈ωM

|(Ũr − IjŨr)(1− 4ρ2 + 3ρ1, tj)},

µ[k] =max{max
tj∈ωM

|(Ũℓℓ − IjU
[k−1])(4ρ1, tj)|, max

tj∈ωM
|(Ũrr − IjU

[k−1])(1− 4ρ1, tj)|,

max
tj∈ωM

|(Ũℓ − IjU
[k−1])(4ρ2 − 3ρ1, tj)|, max

tj∈ωM
|(Ũr − IjU

[k−1])(1− 4ρ2 + 3ρ1, tj)|}.

Lemma 3.1. Let Zp be the mesh function such that Zp(x0, tj) ≥ 0 and Zp(xN , tj) ≥

0 for tj ∈ ωM , and Zp(xi, 0) ≥ 0 for xi ∈ D
N

p . If LN,M
p Zp ≥ 0 in ΩN,M

p , then Zp ≥ 0

in Ω
N,M

p .

Lemma 3.2. For u and Ũp, respectively, the solution of (3.1) and auxiliary prob-

lems, we have

||u− Ũp||ΩN,M
p

≤ C(∆t+N−2 ln2N).

Proof. Suppose P i,j =


a11(xi, tj) 0

0 a22(xi, tj)


 , then for (xi, tj) ∈ ΩN,M

p , we

have

[LN,M
p (u−Ũp)]i,j = [LN,M

p u−Lu]i,j = [δtu−ut]i,j+E [δ2xu−uxx]i,j+Si,j[ui,j−ui,j−1].

Define LN,M = (LN,M
1 ,LN,M

2 )T . For n = 1, 2, it holds

|LN,M
p,n (u− Ũp)i,j| ≤ | (δt − ∂t)un;i,j|+C|(u3−n;i,j − u3−n;i,j−1)|+ εn

∣∣(δ2x − ∂2x
)
un;i,j

∣∣ .
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By Taylor expansions and bounds on the derivatives in Section 3.1, we get

| (δt − ∂t)un;i,j|+ C|(u3−n;i,j − u3−n;i,j−1)| = C(tj − tj−1)
(
∥∂tu3−n(xi, .)∥[tj−1,tj ]

)
+

C(tj − tj−1)
(
∥∂2t un(xi, .)∥[tj−1,tj ]

)
≤ C∆t for (xi, tj) ∈ ΩN,M

p , n = 1, 2.

Thus, we are left to obtain a bound for |(δ2x − ∂2x)un;i,j| . For simplicity let us consider

ρ2 = (2
√
ε2 lnN)/

√
α and ρ1 = (2

√
ε1 lnN)/

√
α, that is ε1 and ε2 are small and of

different magnitude. This is the most interesting case and other cases can be dealt

accordingly. For (xi, tj) ∈ ΩN,M
p , p = ℓℓ, rr, n = 1, 2, using Taylor expansions and

bounds in Section 3.1 with hp ≤ C
√
ε1N

−1 lnN, we get

εn
∣∣(δ2x − ∂2x

)
un;i,j

∣∣ ≤ Cεnh
2
p

∥∥∂4xun(., tj)∥∥[xi−1,xi+1]
≤ CN−2 ln2N.

For (xi, tj) ∈ ΩN,M
p , p = ℓ, r, use the solution decomposition un = vn + wn, wn =

ŵn,ε1 + ŵn,ε2 , Taylor expansions, bounds on the derivatives, and the mesh width to

get

εn
∣∣(δ2x − ∂2x

)
un;i,j

∣∣ ≤ Cεnh
2
p

∥∥∂4xvn(., tj)∥∥[xi−1,xi+1]
+ Cεn

∥∥∂2xŵn,ε1(., tj)
∥∥
[xi−1,xi+1]

+Cεnh
2
p

∥∥∂4xŵn,ε2(., tj)
∥∥
[xi−1,xi+1]

≤ CN−2 ln2N.

Next, for (xi, tj) ∈ ΩN,M
m , we again use the decomposition un = vn + wn, Taylor

expansions and bounds on derivatives in Section 3.1 to get

εn
∣∣(δ2x − ∂2x

)
un;i,j

∣∣ ≤ εn
∣∣(δ2x − ∂2x

)
vn;i,j

∣∣+ εn
∣∣(δ2x − ∂2x

)
wn;i,j

∣∣
≤ Cεnh

2
m

∥∥∂4xvn(., tj)∥∥[xi−1,xi+1]
+ Cεn

∥∥∂2xwn(., tj)
∥∥
[xi−1,xi+1]

≤ C(∆t+N−2).
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Thus, we have |[LN,M
p (u− Ũp)]i,j| ≤ C(∆t+N−2 ln2N). Now, using Lemma 3.1 to

the mesh function C(∆t+N−2 ln2N)± (u− Ũp)(xi, tj), we get

||u− Ũp||ΩN,M
p

≤ C(∆t+N−2 ln2N).

Repeating the above arguments, we can obtain the same bound for the other choice

of P i,j.

Theorem 3.3. Let U[k] be the kth iterate of the present algorithm and Ũ be the

solution of the auxiliary problems. Then, it holds

||Ũ−U[k]||
Ω

N,M ≤ C2−k + C(∆t+N−2 ln2N). (3.14)

Proof. For (xi, tj) ∈ ΩN,M
ℓℓ , Ũℓℓ −U

[1]
ℓℓ satisfies


LN,M

ℓℓ (Ũℓℓ −U
[1]
ℓℓ ) = 0 in ΩN,M

ℓℓ ,

(Ũℓℓ −U
[1]
ℓℓ )(xi, 0) = 0 for xi ∈ D

N
,

(Ũℓℓ −U
[1]
ℓℓ )(0, tj) = 0, |(Ũℓℓ −U

[1]
ℓℓ )(4ρ1, tj)| ≤ µ[1]1 for tj ∈ ωM .

Thus, using Lemma 3.1 to the mesh function xi

4ρ1
µ[1]1± (Ũℓℓ −U

[1]
ℓℓ )(xi, tj), we get

|(Ũℓℓ −U
[1]
ℓℓ )| ≤

xi
4ρ1

µ[1]1 for (xi, tj) ∈ Ω
N,M

ℓℓ .

Hence,

||Ũℓℓ −U
[1]
ℓℓ ||ΩN,M

ℓℓ \Ωℓ
≤ 4−1µ[1]. (3.15)

Similarly,

||Ũrr −U[1]
rr ||ΩN,M

rr \Ωr
≤ 4−1µ[1]. (3.16)
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Next, we have



LN,M
ℓ (Ũℓ −U

[1]
ℓ ) = 0 in ΩN,M

ℓ ,

(Ũℓ −U
[1]
ℓ )(xi, 0) = 0 for xi ∈ D

N
,

|(Ũℓ −U
[1]
ℓ )(4ρ2 − 3ρ1, tj)| ≤ µ[1]1 for tj ∈ ωM ,

|(Ũℓ −U
[1]
ℓ )(ρ1, tj)| ≤ 4−1µ[1]1+ µρ11 for tj ∈ ωM ,

where the last bound follows by adding and subtracting Ũℓℓ. Now, using Lemma 3.1

for φ(xi)µ
[1]1+ µρ11± (Ũℓ −U

[1]
ℓ )(xi, tj), we have

|(Ũℓ −U
[1]
ℓ )(xi, tj)| ≤ φ(xi)µ

[1]1+ µρ11, (xi, tj) ∈ Ω
N,M

ℓ ,

where φ(x) =
−x2 + (13ρ2 − 11ρ1)x+ 12ρ22 + 24ρ21 − 37ρ1ρ2

48(ρ2 − ρ1)2
, x ∈ [ρ1, 4ρ2 − 3ρ1].

Further, since φ is the increasing function and φ(ρ2) = 1/2, we have

||Ũℓ −U
[1]
ℓ ||

Ω
N,M
ℓ \Ωm

≤ 2−1µ[1] + µρ1 . (3.17)

Similarly,

||Ũr −U[1]
r ||

Ω
N,M
r \Ωm

≤ 2−1µ[1] + µρ1 . (3.18)

Next, we have

LN,M
m (Ũm −U[1]

m ) = 0 in ΩN,M
m ,

(Ũm −U[1]
m )(xi, tj) = 0 for xi ∈ D

N
,

|(Ũm −U[1]
m )(η, tj)| ≤ 2−1µ[1]1+ µρ11+ µρ21 for (η, tj) ∈ {ρ2, 1− ρ2} × ωM ,
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where the last bound is obtained by adding and subtracting Ũℓ when η = ρ2; and

adding and subtracting Ũr when η = 1− ρ2. Thus, by Lemma 3.1 we get

||Ũm −U[1]
m ||

Ω
N,M
m

≤ 2−1µ[1] + µρ1 + µρ2 . (3.19)

On combining the previous bounds we have

||Ũ−U[1]||
Ω

N,M ≤ 2−1µ[1] + µρ1 + µρ2 .

Next we require an estimate for µ[2] to bound ||Ũ − U[2]||. Applying a triangle

inequality, stability of Ij and (3.17), (3.18), (3.19), we get

|(Ũp − IjU
[1])(η, tj)| ≤ µ4ρ11 + 2−1µ[1]1 + µρ11 when {p = ℓℓ, η = 4ρ1} and {p =

rr, η = 1− 4ρ1},

|(Ũp−IjU
[1])(η, tj)| ≤ µ4ρ2−3ρ11+2−1µ[1]1+µρ11+µρ21 when {p = ℓ, η = 4ρ2−3ρ1}

and {p = r, η = 1− 4ρ2 + 3ρ1}.

Therefore,

µ[2] ≤ 2−1µ[1] + µρ1 + µρ2 + µ4ρ1 + µ4ρ2−3ρ1 .

Hence,

max
{
µ[2], ||Ũ−U[1]||

Ω
N,M

}
≤ λ+ 2−1µ[1], λ = µρ1 + µρ2 + µ4ρ1 + µ4ρ2−3ρ1 .

Repetition of the previous arguments give

max
{
µ[k+1], ||Ũ−U[k]||

Ω
N,M

}
≤ λ+ 2−1µ[k].

On simplifying we get µ[k] ≤ 2λ+ 2−(k−1)µ[1]. Therefore

||Ũ−U[k]||
Ω

N,M ≤ 2λ+ 2−kµ[1]. (3.20)
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The bound on µρ1 + µρ2 directly follows from Lemma 3.2. Note that µ4ρ1 + µ4ρ2−3ρ1

is the interpolation error. Hence, using the standard interpolation error bounds

and the arguments in Lemma 3.2 we can bound µ4ρ1 + µ4ρ2−3ρ1 . Thus, we have

λ ≤ C(∆t + N−2 ln2N). Futher, using Lemma 3.1 it follows that µ[1] ≤ C. Hence,

||Ũ−U[k]||
Ω

N,M ≤ C2−k + C(∆t+N−2 ln2N).

Theorem 3.4. Let U[k] be the kth iterate of the present algorithm and u be the

solution of (3.1). Then, it holds

||u−U[k]||
Ω

N,M ≤ C2−k + C(∆t+N−2 ln2N). (3.21)

Proof. Combining Lemma 3.2 and Theorem 3.3 together with (3.13), we have the

proof of the theorem.

3.4 Numerical results

In this section we shall consider two test problems and present the obtained numer-

ical results.

Example 3.1. Consider the following problem

 ∂tu+ E∂2xu+Au = f in Ω := (0, 1)× (0, 1],

u(x, 0) = 0, x ∈ [0, 1], u(0, t) = g0(t),u(1, t) = g1(t), t ∈ (0, T ],

where

A =

 2 −1

−1 2

 , f =

f1
f2

 ,
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and f1, f2,g0 and g1 are determined such that u = (u1, u2)
T is of the form

u1(x, t) = t(φ1(x) + φ2(x)− 2) + (1 + x)te−t,

u2(x, t) = ε1(1− e−t)(φ1(x)− 1) + t(1− t)(φ2(x)− 1),

with

φn(x) = (e−x/
√
εn + e−(1−x)/

√
εn)(1 + e−1/

√
εn)−1, n = 1, 2.

We compute the maximum pointwise errors EN,∆t
ε1,ε2

and the uniform errors EN,∆t as

follows

EN,∆t
ε1,ε2

= ||u −UN,∆t||
Ω

N,M , EN,∆t = max
ε1

EN,∆t
ε1

,

where EN,∆t
ε1

= max{EN,∆t
ε1,1

,EN,∆t
ε1,10−1 , ...,E

N,∆t
ε1,10−n} is evaluated for a fixed value of

ε1 = 10−q, q is a non-negative integer. We then define the uniform convergence

rates as follows

RN,∆t = log2(E
N,∆t/E2N,∆t/4).

Table 3.1: Present algorithm with P i,j = Ai,j : Uniform errors EN,∆t and rates
of convergence RN,∆t for Example 3.1.

N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

EN,∆t
1 8.691e-02 2.481e-02 6.409e-03 1.616e-03 4.048e-04

RN,∆t
1 1.808 1.953 1.988 1.997

EN,∆t
2 9.326e-02 2.411e-02 6.076e-03 1.522e-03 3.807e-04

RN,∆t
2 1.951 1.989 1.997 1.999

Tables 3.1, 3.2, and 3.3 display the componentwise uniform errors and rates of

uniform convergence for Example 3.1, when P i,j = Ai,j, P i,j = diag(Ai,j) (the

diagonal part of the matrix Ai,j), and P i,j = ltr(Ai,j) (the lower triangular part of

the matrix Ai,j), respectively. From these tables, we observe that the uniform errors

are similar in size for all the choices. Tables 3.4 and 3.5 display the iteration counts
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Table 3.2: Present algorithm with P i,j = diag(Ai,j): Uniform errors EN,∆t and
rates of convergence RN,∆t for Example 3.1.

N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

EN,∆t
1 8.691e-02 2.481e-02 6.409e-03 1.616e-03 4.048e-04

RN,∆t
1 1.808 1.953 1.988 1.997

EN,∆t
2 2.762e-01 7.497e-02 1.918e-02 4.822e-03 1.207e-03

RN,∆t
2 1.881 1.967 1.992 1.998

Table 3.3: Present algorithm with P i,j = ltr(Ai,j): Uniform errors EN,∆t and
rates of convergence RN,∆t for Example 3.1.

N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

EN,∆t
1 8.691e-02 2.481e-02 6.409e-03 1.616e-03 4.048e-04

RN,∆t
1 1.808 1.953 1.988 1.997

EN,∆t
2 9.160e-02 2.475e-02 6.320e-03 1.589e-03 3.977e-04

RN,∆t
2 1.888 1.969 1.992 1.998

Table 3.4: Present algorithm with P i,j = Ai,j : Iteration counts taking ε1 =
10−9 in Example 3.1.

ε2 = 10−n N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

n = 0 2 3 4 5 6
1 2 2 3 3 5
2 1 2 3 4 5
3 1 3 4 5 6
4 2 3 4 5 6
5 3 4 4 5 6
6 3 3 3 3 3
7 2 2 2 2 2
8 1 1 1 1 1
9 1 1 1 1 1

that are required to achieve the stopping criterion of the algorithm with P i,j = Ai,j

and P i,j = diag(Ai,j) or ltr(Ai,j), respectively. From these tables we note that

the number of iterations required are same for the choices P i,j = diag(Ai,j) and

P i,j = ltr(Ai,j), while the iterations differ slightly for the choice P i,j = Ai,j.
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Table 3.5: Present algorithm with P i,j = diag(Ai,j) or P i,j = ltr(Ai,j): Itera-
tion counts taking ε1 = 10−9 in Example 3.1.

ε2 = 10−n N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

n = 0 2 3 4 4 5
1 2 2 2 3 4
2 1 1 2 3 4
3 1 2 3 4 5
4 1 3 4 5 6
5 2 3 4 4 5
6 2 3 3 3 3
7 1 2 2 2 2
8 1 1 1 1 1
9 1 1 1 1 1

Example 3.2. Consider the following problem

 ∂tu+ E∂2xu+Au = f in Ω := (0, 1)× (0, 1],

u(x, 0) = 0, x ∈ [0, 1], u(0, t) = 0,u(1, t) = 0, t ∈ (0, T ],

where

A =

 2(1 + x)2 −(1 + x3)

−2 cos(πx/4) 2.2e1−x

 , f =

cos(πx/2)

x

 .

Since the exact solution of this test problem is not known, we apply the double mesh

method to compute the maximum pointwise errors as follows

EN,∆t
ε1,ε2

= ||UN,∆t −U2N,∆t/4||
Ω

N,M ,

where the approximate solution U2N,∆t/4 is obtained on a mesh that consists of same

transition parameters ρ1 and ρ2 as for the solution UN,∆t, and contains 2N+1 mesh

points in space and step size ∆t/4 in time. The uniform errors EN,∆t and uniform

convergence rates RN,∆t are calculated in the same way as earlier.
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Table 3.6: Present algorithm with P i,j = Ai,j : Uniform errors EN,∆t and rates
of convergence RN,∆t for Example 3.2.

N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

EN,∆t
1 3.086e-02 1.072e-02 3.192e-03 9.070e-04 2.545e-04

RN,∆t
1 1.526 1.748 1.815 1.833

EN,∆t
2 3.116e-02 1.094e-02 3.421e-03 1.080e-03 2.730e-04

RN,∆t
2 1.511 1.677 1.664 1.984

Table 3.7: Present algorithm with P i,j = diag(Ai,j): Uniform errors EN,∆t and
rates of convergence RN,∆t for Example 3.2.

N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

EN,∆t
1 4.274e-02 1.318e-02 3.495e-03 9.540e-04 2.658e-04

RN,∆t
1 1.697 1.915 1.873 1.843

EN,∆t
2 4.348e-02 1.472e-02 4.286e-03 1.266e-03 3.241e-04

RN,∆t
2 1.562 1.780 1.759 1.966

Table 3.8: Present algorithm with P i,j = ltr(Ai,j): Uniform errors EN,∆t and
rates of convergence RN,∆t for Example 3.2.

N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

EN,∆t
1 3.620e-02 1.115e-02 3.293e-03 9.310e-04 2.616e-04

RN,∆t
1 1.699 1.760 1.822 1.831

EN,∆t
2 3.742e-02 1.288e-02 3.813e-03 1.173e-03 2.980e-04

RN,∆t
2 1.539 1.756 1.700 1.977

Tables 3.6, 3.7, and 3.8 display the componentwise uniform errors and rates of uni-

form convergence for Example 3.2. Tables 3.9 and 3.10 give the number of iterations

that are required to achieve the stopping criterion of the algorithm. From these

tables, we have the same observations as we have had from tables corresponding to

Example 3.1.

In order to compare the computational cost of the algorithm for different choices

of P i,j we include Tables 3.11 and 3.12, where we display the used CPU time (in

seconds) for different values of N and ∆t for Examples 3.1 and 3.2, respectively,
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Table 3.9: Present algorithm with P i,j = Ai,j : Iteration counts taking ε1 =
10−9 in Example 3.2.

ε2 = 10−n N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

n = 0 3 4 5 5 6
1 2 2 3 4 5
2 1 3 4 5 6
3 2 3 5 6 7
4 3 4 5 6 7
5 3 4 5 6 6
6 3 3 3 3 3
7 2 2 2 2 2
8 1 1 1 1 1
9 1 1 1 1 1

Table 3.10: Present algorithm with P i,j = diag(Ai,j) or P i,j = ltr(Ai,j): Iter-
ation counts taking ε1 = 10−9 in Example 3.2.

ε2 = 10−n N = 25 N = 26 N = 27 N = 28 N = 29

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

n = 0 2 3 4 5 5
1 2 2 2 3 4
2 1 2 3 4 5
3 1 2 4 5 6
4 2 3 4 5 6
5 2 3 4 5 5
6 2 3 3 3 3
7 2 2 2 2 2
8 1 1 1 1 1
9 1 1 1 1 1

Table 3.11: The used CPU time in seconds for Example 3.1 with ε1 = 10−8, ε2 =
10−7.

Algorithm↓ N = 26 N = 27 N = 28 N = 29 N = 210

∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45 ∆t = 1/46

P i,j = diag(Ai,j) 1.088 5.559 42.090 392.212 4818.501
P i,j = ltr(Ai,j) 1.141 5.526 43.136 393.257 5058.971
P i,j = Ai,j 1.281 6.249 55.331 779.942 11143.219

taking ε1 = 10−8, ε2 = 10−7. From these tables, we observe that the algorithm

is more efficient for the choices P i,j = diag(Ai,j) and P i,j = ltr(Ai,j) than the
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Table 3.12: The used CPU time in seconds for Example 3.2 with ε1 = 10−8, ε2 =
10−7.

Algorithm↓ N = 26 N = 27 N = 28 N = 29 N = 210

∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45 ∆t = 1/46

P i,j = diag(Ai,j) 0.387 1.530 12.547 157.318 2913.764
P i,j = ltr(Ai,j) 0.406 1.543 11.313 154.032 3170.091
P i,j = Ai,j 0.463 2.236 41.814 917.521 19251.564

choice P i,j = Ai,j. Further, we note that the used CPU time for the choices P i,j =

diag(Ai,j) and P i,j = ltr(Ai,j) are similar. In summary, the uniform errors and the

uniform rates are similar for all the choices, while the additive (or splitting) schemes

are computationally more efficient than the standard discretization scheme.

3.5 Conclusions

A parabolic coupled system of singularly perturbed reaction-diffusion problems is

considered in which perturbation parameters can be of distinct magnitude. We

decomposed the original domain into five overlapping subdomains. On each subdo-

main, we consider two additive schemes on a uniform mesh in time and the standard

central difference scheme on a uniform mesh in space. We provided convergence anal-

ysis of the algorithm using some auxiliary problems and the algorithm is shown to

be uniformly convergent of order two in space and order one in time. Further, nu-

merical results are given in support of the theoretical convergence result and as well

as to illustrate the efficiency of the additive schemes.

***********
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