Chapter 2
An efficient fitted mesh method for

coupled systems of singularly per-

turbed delay problems

In this chapter, we consider the following parabolic delay system having different

perturbation parameters

Lu(z,t) ;== Lu(x,t) + Bu(z,t — 1) = flz,t), (z,t) € Q=D x (0,T], (2.1)
subject to initial and boundary conditions

w(0,1) = g,(t), wu(l,t)=gt), 0<t<T,
u(z,t) =gy(z,t), 0<x<1, —7<t<0,

with

Lu(z,t) = dyu(x,t) — E?u(z,t) + Au(z,t),
8 _ €1 O 7 A _ all(x,t) alg(l’,t) ’ B _ bll(fﬂ,t) blg(x,t) 7 f: fl .
0 & asi(x,t) ag(x,t) bar(x,t) bag(x,t) fa
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The entries of matrices A and B satisfy

@ij SO’ 7’7&]’ ’bZ]’ Sﬂa i?j:172,

a; > 0, iaij >a>0,1=1,2.
j=1
We define I' = T'y U T, UT,, where I'y and I, represent the left and the right
boundaries of the domain Q and T', = D x [~7,0], D = (0,1). Further, we define
T = nr for some positive integer n. The data of problem (2.1) is supposed to be
enough smooth and satisfies compatibility conditions in order that u € C*?(Q)?

[94, 95]. The parameters ¢;,7 = 1,2, are such that 0 < g1 < ey < 1.

Robust numerical methods for scalar singularly perturbed delay ordinary differential
equations (ODEs) and partial differential equations (PDEs) have also been devel-
oped extensively in the literature, see e.g. [96-100] for ODEs and [91, 101-106] for
PDEs. In particular, for a scalar singularly perturbed parabolic partial differential
equation with time delay, the authors in [101] provided a robust numerical method
by discretizing the problem using a finite difference scheme on a Shishkin mesh.
The authors in [103] developed a robust domain decomposition method of Schwarz
waveform relaxation type. The authors in [102] developed a fitted operator method.
In spite of these interesting research available in literature on singularly perturbed
delay differential equations, the work related to the numerical solution of systems of

singularly perturbed delay differential equations is still at infant stage.

The main purpose of this chapter is to develop an adaptive numerical method for
problem (2.1). The current work utilizes two splitting schemes [107] that decouple
the components of the approximate solution at each time level and hence resulted
in a reduced computational time. To approximate the solution of the problem, we

consider two splitting schemes on uniform meshes for time discretization and the
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central difference scheme on Shishkin and generalised Shishkin meshes for space
discretization. It is shown that the proposed numerical method is robust convergent
of order one in time and almost two in space. Further, the CPU time comparison
shows that the splitting schemes are computationally more efficient than the classical

backward Euler scheme [52].

This work is arranged as follows. We describe the splitting schemes based numerical
method for problem (2.1) in Section 2.2. Convergence analysis of the numerical
method is discussed in Section 2.3. In Section 2.4, numerical results are reported
which confirm the theory and efficiency of the proposed numerical method. Finally,

conclusions are given in Section 2.5.

2.1 A priori bounds on the solution derivatives

In this section, we derive a priori bound for the exact solution of problem (2.1) and
its derivatives. These bounds will be used later in defining layer adapted meshes
and to derive error estimates for the proposed numerical method. To deduce the
appropriate a priori bound we frequently use the following maximum principle result,

which can be proved using the standard arguments [54, 108].

Lemma 2.1. If z(z,t) > 0, for (x,t) € T' and Lz(x,t) > 0, for (z,t) € Q, then

2(z,t) > 0, for (z,t) € Q.
The following comparison principle result is an immediate consequence of the above
maximum principle.

Corollary 2.2. If [¢(x,t)] < @p(x,t), for (z,t) € T' and |Lp(z,t)| < Lep(x,t), for
(z,t) € Q, then |9p(x,t)] < p(x,t) for (z,t) € Q.
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Lemma 2.3. The solution of problem (2.1) satisfies
10fuwe|lg < C, for s=0,1,2, £=1,2.

Proof. We first prove the result for ¢ € (0, 7] using mathematical induction on s. Set
¢ = C(1+ 1), then result for s = 0 follows using the barrier function ¢ with the
comparison principle result for L. In the hypothesis step, we assume that the result
holds for s =0,...,k — 1, 1 < k < 2. Next, we need to prove the result for s = k.

Defining ¥ = J;u, it holds

LY(z,t) := 0,¥(x,t) — ED?V(x,t) + AP (x,1)
= O fle,t) = S5 (AT (e, t) = 30, (5) By 'Ofu(a, t —7)
=W, inQ =(0,1) x (0,7],

and

[¥(2,0)| <C inD,
@ (2, )| < max{|gl™ (1)], g (1)} < C for (z,) € {0,1} x (0,7],

where the above boundary estimates follows from the assumption on data of problem
(2.1). Now using inductive hypothesis we get |W,(z,t)| < Ley(x,t). Thus, we get the
required result using the comparison principle together with the barrier function ¢.
So, we have the result on the domain [0, 1] x [0, 7]. For t € (7,27], u is a solution of
Lu(z,t) = F(x,t), (x,t) € Qy = Dx(7,27|, where F(z,t) = f(x,t)— Bu(x,t—7).
So, we use the barrier function ¢ = C(1 + t) with C a sufficiently large positive
constant together with the comparison principle and the previous arguments to
obtain [|0fuyllg, < C, for s =0,1,2, £ = 1,2, where 0y = D x (7,27]. Finally, the

result is proved using mathematical induction. O]
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Now we decompose the solution of problem (2.1) as u = v + w, where v is the

regular part and w is the singular part of the solution. The regular part is the

solution of the problem

Lv(x,t)+ Bv(z,t —7) = f(x,t) for (z,t) € Q,
v(z,t) = gy(z,t) for (z,t) € T,

v(z,t) = x(z,t) for (z,t) e T, UT,,

and the singular part is the solution of the problem

Lw(z,t)+ Bw(x,t —7) =0 for (x,t) € Q,

w(z,t) = (u— v)(x,t) for (z,t) €T,

where x is the solution of the problem

ox(z,t) + Ax(z,t) + Bx(x,t — 1) = fle,t), (z,t) € T,UT,,

X(l‘,t) = gb(x>t)v (l‘,t) ery.

Lemma 2.4. The solution v of problem (2.2) satisfies
|0} vellg < C for s=0,1,2, £ =1,2.

1050lg < C(L+e,%%) for s=1,2,3,4, £=1,2.

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

Proof. The proof of (2.5) follows using similar arguments as in the proof of Lemma

2.3. We next establish (2.6). For ¢ € (0, 7], differentiating the equation in (2.2)
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twice with respect to x and setting z = dfv, Kk = 2, we get

Lz(e, )] = |05F (x.t) = X0 (AT Bo(a,t) — Yiy (5B dlv(a,t — 7))

< (14 [|0:]lg,)C.
(2.7)

Further, since problem (2.4) is independent of the perturbation parameters, it holds
|2(2,0)] < Cin D, |z(z,t)| < C for (x,t) € {0,1} x (0, 7]. Then using the compar-

ison principle for L with the barrier function ¢ = C(1 + ||0,v]|)t, we get
H@ivHﬁl < CL(1+[|0:v]lg,)- (2.8)

Further, by using the argument in [109, Lemma 3| and the mean value theorem, we
obtain

10:v]lg, < C + ||;v||5, /2C.. (2.9)

From (2.8) and (2.9), we get
|0svellg, < C for s=1,2 £=1,2.

Next, before establishing bounds on [|0jv||g, , for s = 3,4, £ = 1,2, we need to
derive bounds on ||8ij v Hﬁl and Haﬁtl v||§1 . For this, we differentiate (2.2) twice and

once with respect to x and t, respectively, and define Z = 8:3 v,k = 2, to get

Lz(x,t) = O f (2,1) = 2, (1) AL 0o, t) = 1) (7) A0 0(a,t)
— Yo (B O (a t — 1) = 300, (1) By 9y (e,t — 1),

and hence

LE(2, )] < (1+ ||k v]4)C.
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Again using the fact that problem (2.4) is independent of the perturbation parame-
ters, it holds | Z(z,0)| < C'in D, |Z(z,t)] < C for (z,t) € {0,1}x(0,7]. On applying
the comparison principle together with the barrier function ¢, = Ct(1+ Ha;tl v ||§1)

gives ((9 ’tl v < C*(]. _|‘ ()11,’% Vll= ) Agaln USIHg the mean Vallle llleO €111 we ge
’ Q1 ) 1 ‘
H Ilztll H&zl <_ C"* ||6a::tll’HQI /20* (210)

Thus, we have H@;:tlv”ﬁl < (C and H@ijivHﬁl < C.

Now from the (*" ¢ = 1,2, equation of system (2.7) for k = 2, with previously
obtained bounds, we get [|02ve|lg, < ce;'. Now we apply the argument in [110] to
obtain [|03v,[lg, < 0521/2. For t € (7,27], taking the delay term to the right-hand
side, the right-hand side of (2.2) becomes f(z,t)— Bwv(z,t—7), and hence we can use
the previous arguments to get ||0;vllg, < C(1 + E;_S/z), for s =1,2,3,4, { =1,2.

The proof is completed by using mathematical induction. O]

Before we continue further, we define B.,(z) = e *V Y/ peU-Ve/ee g — 1 2 g€

Q. In the following lemma, we derive bounds on the singular part and its derivatives.

Lemma 2.5. The solution w of problem (2.3) satisfies

CB.,(z), k=0,(=1,2,

Ce"?B., (z) + &,"?B.,(z)), k=1,2,3,4,0=1,
|07 we(z, )| <
Cey™*Be(2), k=1,2,0=2

Cey (7" P8, (2) + e, P8, (2), Kk=3,4,0=2,
(2.11)
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for all (z,t) € Q. Further, the solution w = (w1, ws)T of problem (2.3) can be

expressed as Wy = Wy, + Wpe, and Wy = Wee, + Wiy, L = 1,2, where
By (2, 0)] < £ Bey(2), 103Brma(w8)] < 5% Brs(), (212)

02, (2,0)] < "By (2), 100 (2,1)] < £3°Bey(2), (2.13)

for all (x,t) € €.

Proof. The proof of (2.11) can be done using the barrier function approach and the
method of steps. It can be done similar to [109]. The proof of (2.12)-(2.13) utilizes

(2.11) and can be done similar to [109]. O
Lemma 2.6. The solution w of problem (2.3) satisfies

|0y we(z,t)| < CB.,(x), fors=0,1,2, {=1,2,(x,t) €.

Proof. For t € (0,7], note that |w(x,t)| < |u(z,t)| + |v(z,t)| < maxep{|g(t)],

lg. )|} +C < C for x € {0,1}, and |w(z,0)| < C,z € D, using (2.3). Thus,
for s = 0, the result is proved with the barrier function ¢, = Ce**B.,(x). To
use mathematical induction here, suppose that the result of this lemma holds for
s=10,....m—1,1 < m < 2. Now we will derive a bound for s = m. Define

I m
g = 0;"w, we have

Lg(z,t) := 0,g(x,t) — EO*g(x,t) + Ag(x,t)
= = (M AT G () — S, ()BT dbw (2, t — 1)

=g, inQ =(0,1) x (0,7],
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and

§(z,0)| <C in D,
8(x, )| < max{|g;* (1), g ()|} +|07"v| < C for (x,1) € {0,1} x (0, 7],

where bounds on the boundary conditions follow from (2.3). Using mathematical
induction, we get |g,,(x,t)| < Ly,(x,t). Hence, using the maximum principle for the
operator L with the barrier function ¢, we get the required result for ¢ € (0, 7]. For
t € (7,27], we apply the previous arguments to get |0fwy(z,t)| < CB.,(z), for s =

0,1,2, £ =1,2. The result is completed using mathematical induction. O]

2.2 Splitting schemes based fitted mesh method

From the asymptotic behavior described in the above lemmas, it follows that the
solution has overlapping layers at x = 0 and « = 1. Thus, the domain {2 is discretized
as QM = DV x @M, where D" = {x;}X, denotes the space discretization using
a layer adapted mesh and w™ = {tj}jj‘io denotes the time discretization using a

—N,M

uniform mesh. We define QVM = Q" 0 Q:TVM = Q \ QM I‘]VV’M =TV

Ly = bor Also, B = DY 3, whore 37 = {1+ (0= )7 = by, <

—N,m,

tomot1 < 0 < tpmogmi—1 < tprym, = PT}; Qév’mf = Qp N Q,, where 2, =

—N,m,

D x ((p— 1)1, prl; I‘;V’mf =Q, \Qg’mT;Fg’me = I‘év’mT NL,p=0,...,n,v =
¢, r. Further, the mesh spacing in space and time directions are defined as h; =
r; —xi_1, 1 = 1,...,N, and At = T/M with M = nm,, where m, denotes the

number of subintervals on each [(p — 1)7,p7]. The following two layer adapted

meshes are used in the spatial direction.

Shishkin mesh [109]: The space domain [0, 1] is partitioned into five subdomains

Dy =10, p1], Dy = [p1,p2), D3 = [p2,1—pa], Dy = [1—p2,1—p1] and D5 = [1—py, 1]
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such that D = U?_, D;. On each subdomain D,, ¢ = 1,2,4,5, a uniform mesh with
N/8+1 mesh points is placed and on the subdomain D3 a uniform mesh with N/2+1

mesh points is placed. The transition parameters are taken as follows

1
P2 = minq —, 2 6—2111]\7 , p1 = min @,2 ilnN .
4 « 2 @

In our analysis, for simplicity, we will consider the most interesting case py =

2,/%InN and p; =2,/ In N.

Generalized Shishkin mesh [111]: This mesh also uses two transition parameters
pe =min {1,2,/ZA}, p; =min {£,2,/Z\}, where A = A(N) satisfies In(In N) <
A <InN and e < A/N. Let N = 8k, where k is a positive integer. Then, the
mesh points are defined as

. W(i/N), for i < N/2, (2.14)

1 —((N —i)/N), fori> NJ2.

For p; = 1/4 and p; = 1/8 the mesh will be uniform; we consider p; = 2,/%2 X which
is the most interesting case in practice. For ps # 1/4, the mesh generating function

Y € C'0,1/2] is given by

8Cpl> C € [07 %]7
V(O = 8(p2—201)(C — §)* +8p1(C — §) + p1, ¢€ls il
64(3 — Tp2 + 10p1)(C — 1)* + (24p2 — 40p1) (¢ — ) +p2,  C € [§.35)-

We assume that ¢'(¢) > 0 that 1/”(¢) > 0, so that ¢({) is increasing function and
hi > hi_1, i =2,...,N/2. Thus, the condition 1/2—7py+10p; > 0 must be satisfied.
Note that this mesh is uniform on [0, p;] and [1 — py, 1], and nonuniform on [py, p2],

[p2,1 — po] and [1 — po, 1 — py]. Further, following [111] we have h, < CN~t v =
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1,...,N, and

" " CelPN-2\, N/8<~y< N/4—1,
y+1 — Ny | =
CN-2, N/4<y< N/2-1.

Otherwise, if po = 1/4 or 1/2 — Tpy + 10p; < 0, the mesh is defined by

. Y(i/N), for i < N/2, (2.15)

1 — (N —4)/N), fori> N/2,

with ¢ € C2[0,1] and

~ 8Cp1, ¢ €10,

»(¢) = !
(8/3)*(5 —4p1)(C = 5)° +8p1(C — §) + 1, CE 5,

!

N— ol

Here the mesh spacing satisfy |h, 1 — hy| < CN~2 for y = N/8,..., N/2 — 1.

On the domain QN’M, we discretize problem (2.1) by

LYMU (5, 5) + BijU(23, tjom,) = fza 1), (23,1;) € Q¥ (2.16)
with
Uz, t)) = gp(xi, t;) for (x;,t;) € Qrm
1Y) b\~ by 1Y) 0 ’ (2.17>
Ul(xo,t;) = g(t;), Ulzn, t;) = g,(t)) for t; € W,
where

LN’MU(l’i, tj) = ((StU — géiU + PZ"jU) (.I'i, t]) — Si,jU(xia tjfl),

(SQY' o 2 <Yi+1,j - Yi,j Yi,j - Yi—l,j Yi,j - Yi,j—l
x 2V

_ 6,Y; = — — Tl
hi + hia hiy1 h ) T At
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and A;; = P;; — S,;,. Note that if P, ; = A, ;, the time discretization uses the
classical implicit scheme which is considered in [52]. Here, in order to decouple the

components of the solution, we consider P;; as follows [107]
Pi,j € {dzag(Aw), ltT(AZ'J)},

a11(Zi, t; 0 a1 (x;, t; 0
diag(Am) = 11( j> s lt’f’(AiJ') = 11( J)
0 az (i, ;) az1 (i, ty)  az(wi,t;)
So, we have two choices for P;;. Then, we use A;; = P;; — S;; to find §;;

accordingly. Both the choices decouple the system, and hence, resulted in a reduced

computational time.

2.3 Convergence analysis

In this section, we analyze the uniform convergence of the scheme (2.16)-(2.17) on the
rectangular meshes o™ generated using Shishkin mesh and generalized Shishkin
mesh (2.14) in space and a uniform mesh in time. The uniform convergence analysis
on the rectangular mesh o™ generated using generalized Shishkin mesh (2.15) in
space can be done in similar way. We first introduce the maximum principle for
the discrete operator and then establish the theorem concerning the convergence

analysis.

Lemma 2.7. If the mesh function ¢ satisfies ¢(z;,t;) > 0 for (w;,t;) € TNM
and discrete operator LN satisfies L™ ¢(x;,t;) > 0 for (z;,t;) € QVM. Then

¢(z;,t;) > 0 for (z,t) € o™,

Proof. The proof follows using the arguments in ([108]). O
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Theorem 2.8. The uniform error estimate associated to the scheme (2.16)-(2.17)

satisfies
! Ul -C At + N2> N for Shishkin mesh,
u— gV M =
At + N72)\2 for generalized Shishkin mesh.
(2.18)
—Nm (i, t; 0
Proof. Taking (x;,t;) € in "and P, ; = (i) , we have
0 99 (l‘i, t])

LYM(u—U)(z,t) = [LVMu— Lu)(v;, t;)

= [dvu—0yu)(wi, t;) —E[0Tu—7u) (s, t))+ S jlu(wi, t)) —w(w tj)]

Define LNVM = (LM LIMYT  Thus, for m = 1,2, we can write
LM (w = U) (@i, t)] < (3¢ = 0) (w3, 5)| + Cl(Us—m (@i, t5) — Us—m(@i; tj-1))| +
Em [(05 = 07) um (i, ;)] -

Using Taylor expansions and bounds in Lemma 2.3, we get
| (00 = 0) um (i, )| + Clug—m(@i, 1) — us—m (i, tj-1)]

<Oty —tj1) <||5tusfm(~”€i> M, 1) + |07 wm (i, ~)H[t_7htj]>

J

< CAt for (z4,t;) € QY™ m=1,2.

Next, we need the bound for &,,|[0%u, — 02uy)(x;,t;)|. We distinguish two cases
depending on the mesh used in the spatial direction. Suppose Shishkin mesh is used

in the space. Now, using the arguments in [52] we have
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C(Nil 1nN)2, T 7& P1, P2, 1- P1, 1— P2, tj € w’f‘f,
m=1,2,

C%N_l +CON2, ;e {p, 1 —p}, t; €Wy, m=1,

EmHagum_éium] (z4,15)] <

C%N_l +CN_2, x; € {,01,1 — ,01}, tj € ETT,m = 2,

CENT+CON2 2 € {p2,1 = po}, t; €W, m =1,

\ C’\/EN*I +CN72, T; € {pg,l —pg}, t; Ewg’”,m = 2.
(2.19)

Otherwise when generalized Shishkin mesh is used, using the arguments in [52] we

have

Eml[02 U — 62 (74, t5)] < CN72N (2.20)
Next, we define the mesh function

CAt + CN2In> N(1 + ¢., + ¢¢,) = (u — U) for Shishkin mesh,

CAt+ CN2\ £ (u —U) for generalized Shishkin mesh,
(2.21)

where ., , m = 1,2, are defined as follows

= 0<z<p, 0<t<T

Pen(:) =9 1 pn<z<l-py 0<t<T, (2.22)

e 1 p<2<1.0<t<T

Note that

, m, if z; € {p1,1—p1},
—05(er )iy =
0, otherwise
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and

alN .
2\/\\%71an7 if z; € {p271_p2}7

_6§ (SOEQ )’LJ 2
0, otherwise.

Clearly,

’(b(&?i, t]) > 0 for (.Ti, tj) S Ff{ém‘r U I‘i\;’an U I‘I])V’mf.

Now recalling the truncation error bound we can choose C sufficiently large, inde-

pendent of the perturbation parameters e; and 9, so that

LNMap(;,t5) > 0 for Q)™

Hence, using the discrete maximum principle we get ¥ (z;,t;) > 0 for (x;,t;) € ﬁiv’M

Consequently
At + N72In®> N for Shishkin mesh,

lu — Ul[gym <C (2.23)
' At + N72)\2 for generalized Shishkin mesh.

N,

Next, for (z;,t;) € Oy ", we have

|LYM(u = U) (w4, t5)| < |Bij(u — U) (@i, tjom, )| + |(Su — w) (i, )|+

E|(0u — 62u) (i, t5)| + 1Si(w(wi, ;) — w(ws, tj-1))].

The bound for the first term follows using (2.23) as (z;, tj—m,) € ﬁiv’mT. Further, us-
ing Taylor expansion and Lemma 2.3, we have |(&;u — Oyu)(x;, t;)| + |S;;(w(x;, t;) —

u(z;,tj_1))] < CAt. Using previous arguments, we can derive bounds similar to
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(2.19)-(2.20) for E|(0?u — 62u)(z;,t;)|. Now, applying the discrete maximum prin-

ciple to the barrier function (2.21)-(2.22) it holds

At + N—2In* N for Shishkin mesh,
lu = Ullgym: < C (2.24)

At + N72)\2 for generalized Shishkin mesh.

Thus, the final result (2.18) follows using the mathematical induction. Further, we

can obtain similar bounds for another choice of P; ; using the above arguments. [

2.4 Numerical results

We perform numerical experiments on two test problems to validate our theoretically

proven results of the previous section.

Example 2.1. Consider problem (2.1) with the following data

u(z,t) = gy(z,t) =0, 0<x<1,-1<t<0,

u(0,t) = go(t) = 0,u(1,t) = g,(t) =0, 0<t<2,
where

N 3(1+ z)? -1 -2 -1 0 cos(mxz/2)

—2cos(mz/4) 4dexp(l —x) 0 -1 x

N,At

ey e, for this problem are computed using double

The maximum pointwise errors E

mesh principle as follows

EZX:?; — ||UN,At . UQN,At/4| |§N,M
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Component U1 Component U2

FIGURE 2.1: Solution profile with P;; = diag(A; ;) for Example 2.1 using
Shishkin mesh for e; = 1075, 9 = 10™* with N = 64, M = 32.
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FIGURE 2.2: Solution profile with P; ; = diag(A; ;) for Example 2.1 using gen-
eralized Shishkin mesh for e = 107°, 9 = 10~* with N = 64, M = 32.

where the solution UM?! is obtained on the layer adapted mesh with N + 1 mesh

points in space and At step length in time direction, and yvAL/A4

is computed on
the layer adapted mesh with 2N + 1 mesh points in space and At/4 step length in

time direction but with the same values of transition parameters as for UNA?,

The solution plots are given in Figures 2.1 and 2.2 showing the boundary layers
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TABLE 2.1: Uniform errors ENV2! and uniform convergence rates RV2! using
Shishkin mesh for Example 2.1.

Schemes N =32 N =64 N =128 N = 256 N =512
At =1/4 At = 1/42 At = 1/43 At = 1/44 At = 1/45
ENAT 8.0703e-02 5.5478¢-02 2.7588¢-02 9.5568¢-03 2.4838e-03

P;j = diag(A; ;) Ry ™ 0.540 1.007 1.529 1.944
By At 2.7366¢-02 1.3156e-02 5.5693¢-03 2.0507¢-03 7.3946¢-04

R A 1.056 1.240 1.441 1.471
EYAT 7.4751e-02 5.2969¢-02 2.6753¢-02 9.3441e-03 2.4384e-03

P j=ltr(A;;) RYS 0.496 9.854 1.517 1.938
EBYA 2.5404e-02 1.3047¢-02 5.5491e-03 2.05256-03 7.3969¢-04

R4 0.961 1.233 1.434 1.472
BT 7.9563¢-02 5.5220e-02 2.7527¢-02 9.5459¢-03 2.4822¢-03

Pij=A;; R4 0.526 1.004 1.527 1.943
E, A 3.4391e-02 1.6963¢-02 5.9513¢-03 2.0574e-03 7.0051e-04

R4 1.019 1.511 1.532 1.554

TABLE 2.2: Uniform errors ENV2! and uniform convergence rates RV2! using
generalized Shishkin mesh for Example 2.1.

Schemes N =32 N =64 N =128 N = 256 N =512
At =1/4 At = 1/42 At = 1/43 At = 1/44 At = 1/45
ENAT8.0703e-02 5.5478¢-02 2.7588¢-02 9.5568¢-03 2.4838¢-03

P;j = diag(A; ;) RYA! 0.540 1.007 1.529 1.944
Ey At 2.64586-02 1.0421e-02 3.2445¢-03 9.3228e-04 2.6066¢-04

RS 1.344 1.683 1.799 1.838
ENAT 74751602 5.2969¢-02 2.6753¢-02 9.3441e-03 2.4384e-03

P;j=ltr(A;;) Ry 0.496 0.985 1.517 1.938
E, 2" 2.5404e-02 9.3939¢-03 3.0725¢-03 8.9322¢-04 2.5237¢-04

R4 1.435 1.612 1.782 1.823
EAT T 7.9563e-02 5.5220e-02 2.7527¢-02 9.5459¢-03 2.9737¢-03

Pij=A;; RY:A 0.526 1.004 1.527 1.710
B2 3.4391e-02 1.6963¢-02 5.9513¢-03 1.9340e-03 6.0213¢-04

R4 1.019 1.511 1.622 1.683

2

at x = 0 and x = 1. In Tables 2.1 and 2.2 we report the componentwise uniform

errors EVA

with corresponding uniform convergence rates

RN,At

which are com-

puted using the three choices of P;; on Shishkin and generalized Shishkin meshes,

respectively, for Example 2.1.

Example 2.2. Consider problem (2.1) with the following data

'u,(x, t) = gb(xv t),

U(O, t) = gﬁ(t)v u(17 t) = gr(t),
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with

where f = (f1, fo)*,g,,8, and g, are determined taking components of the exact

solution as follows

ur(z,t) =t (z) +me(z) = 2) + (1 + 2)e,
up(w,t) = e (m(x) — (1 —e™) +t(m(x) — 1)(1 - 1),

with
(@) = exp(—x/\/e_j) +exp(—(1 - x)/\/@), -1

1+exp(—1/,/5;)

Since the exact solution is available, the maximum pointwise errors for this problem
are calculated as EN2! = ||u — UM |gvar. The uniform errors EYA! for both the

€1,€2

problems are calculated as follows
EVAY — max Eg’m
€1

NAt _ N,At N,A NAL - ek
where E7" = max{E_ " N JRASTRP ’Eel,w*k} is calculated for a fixed e; = 107",

k is a non-negative integer. Further, we define the uniform rates of convergence as

follows

RN,At — 10g2(EN,At/E2N,At/4).

Tables 2.3 and 2.4 display the componentwise uniform errors ENV2! with correspond-
ing convergence rates R™V'2! for Example 2.2. The reported results show that the uni-
form errors have similar behavior for the splitting schemes and the classical scheme
P;; = A, ;. Further, second order uniform convergence in space is clearly seen from

these tables. In order to show the convergence in time, we display uniform errors
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diag(A; ;) for Example 2.2 using

Shishkin mesh for e; = 1077, g9 = 107° with N = 64, M = 32.

FIGURE 2.3: Solution profile with P; ;

Comporent U,

Component U,

,
XX

ORI

Y

107° with N = 64, M = 32.

FIGURE 2.4: Solution profile with P;; = diag(A; ;) for Example 2.2 using gen-
eralized Shishkin mesh for e; = 1077, &y
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TABLE 2.3: Uniform errors ENV2? and uniform convergence rates RV2! using
Shishkin mesh for Example 2.2.

Schemes N =32 N =64 N =128 N = 256 N =512
At =1/4 At = 1/42 At =1/43 At = 1/44 At = 1/45
ENAT 22797601 1.6056e-01 7.4906¢-02 2.4873e-02 6.3341e-03

P;; = diag(A; ;) Ry 0.505 1.100 1.590 1.973
EyAY 29156601 7.3930e-02 2.0584e-02 5.6177e-03 1.6360e-03

R A 1.979 1.844 1.873 1.779
EYAT 2.2783e-01 1.6049¢-01 7.4881e-02 2.4866¢-02 6.3324¢-03

P =ltr(A;;) Ry 0.505 1.099 1.590 1.973
EJYAT 2.91246-01 7.38336-02 2.0584e-02 5.6175¢-03 1.3635e-03

R4 1.979 1.842 1.873 2.042
EAT T 2.8318e-01 1.6957¢-01 7.6240e-02 2.5064e-02 6.3611e-03

P,j=A;; R4 0.739 1.153 1.604 1.978
E;201.0499e-01 5.5195e-02 2.0617e-02 5.5727¢-03 1.3576e-03

Ry 0.927 1.420 1.887 2.037

TABLE 2.4: Uniform errors EV2! and uniform convergence rates RV2! using
generalized Shishkin mesh for Example 2.2.

Schemes N =32 N =64 N =128 N = 256 N =512
At =1/4 At = 1/42 At = 1/43 At = 1/44 At = 1/45
ENAT 22795601 1.6056e-01 7.4906e-02 2.4873¢-02 6.3341e-03

P;j = diag(A; ;) Ry 0.505 1.100 1.590 1.973
EyAY 2.9137e-01 7.3853e-02 2.0584e-02 5.6177e-03 1.2545¢-03

R A 1.980 1.843 1.873 2.162
EFAT 22780601 1.6049¢-01 7.4881e-02 2.4866¢-02 6.3324¢-03

P;j=ltr(A;;) Ry 0.505 1.099 1.590 1.973
E, %" 2.9124e-01 7.3825¢-02 2.0584e-02 5.6175¢-03 1.2545¢-03

R A 1.980 1.842 1.873 2.162
EAT 2.8314e-01 1.6957¢-01 7.6240e-02 2.5064e-02 6.3611e-03

Pj=A;; R4 0.739 1.153 1.604 1.978
E;20 1.0471e-01 5.5195¢-02 2.0617¢-02 5.5727¢-03 1.2445¢-03

R4 0.923 1.420 1.887 2.162

TABLE 2.5: Uniform errors ENV'2! and uniform convergence rates Riv At using
Shishkin mesh with N = 512 for Example 2.2.

Schemes M =28 M =16 M =32 M =64 M =128
ENAT6.0429¢-02 3.0507e-02 1.5333e-02 7.6843e-03 3.8438e-03

P;; =diag(A;;) Ry 0.986 0.992 0.996 0.999
ENAY 1.47096-01 7.3855¢-02 3.7000e-02 1.8518¢-02 9.2632¢-03

Ry 0.993 0.997 0.998 0.999
EYAT T 6.0431e-02 3.0509¢-02 1.5335¢-02 7.6866¢-03 3.8458¢-03

P, =ltr(A;;) Ry 2! 0.986 0.992 0.996 0.999
ENA 1.4600e-01 7.3761e-02 3.6953¢-02 1.8494e-02 9.2512e-03

RS 0.993 0.997 0.998 0.999
ENAT 3.5653¢-02 1.8661e-02 9.5779¢-03 4.8533e-03 2.4421e-03

P;j=(A;) R 0.933 0.962 0.980 0.990
ENAT 50871602 2.6603e-02 1.3343e-02 6.6822¢-03 3.3437e-03

oo 0.990 0.995 0.997 0.998
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TABLE 2.6: Uniform errors ENV'2* and uniform convergence rates Riv Al using
generalized Shishkin mesh with N = 512 for Example 2.2.

Schemes M =38 M =16 M =32 M =64 M =128
ENAT 5735502 2.8979¢-02 1.4574¢-02 7.3083¢-03 3.6589¢-03
P;; =diag(A; ;) RYA 0.984 0.991 0.995 0.998
ENA 14690601 7.3761e-02 3.6953¢-02 1.8494¢-02 9.2512¢-03
Ry 0.993 0.971 0.998 0.999
ENAT6.15566-02 3.1064e-02 1.5610e-02 7.8230e-03 3.6589¢-03
P;j=ltr(A;;) RA! 0.986 0.992 0.996 0.999
ENAY 1456001 7.3105¢-02 3.6624¢-02 1.8329¢-02 9.1687e-03
RS 0.993 0.997 0.998 0.999
ENAT 32559602 1.7139¢-02 8.7984¢-03 4.4608¢-03 2.2463¢-03
P;j=(A;)  RM 0.925 0.961 0.979 0.989
EYAT 5.25936-02 2.6460e-02 1.3271e-02 6.6458¢-03 3.3255¢-03
RYA! 0.991 0.995 0.997 0.998
TABLE 2.7: Maximum errors using scheme (2.16)-(2.17) with P;; = diag(A; ;)
on Shishkin mesh taking N = 128 and M = 64 for Example 2.2.
g1 =101 e1 =102 1 =103 1 =101 €1 =105
e2=10"1 EN®T 4.8356e-03 5.0967¢-03 9.0856¢-03 5.7620e-02 5.6544e-02
E)2Y 8.2690e-03 1.0405¢-02 1.0720e-02 1.0744e-02 1.0734¢-02
2 =102 ENAT * 7.2798¢-02 7.0729¢-02 6.2050¢-02 5.7983¢-02
Ey At * 1.7957¢-02 1.7896¢-02 1.7895¢-02 1.7895¢-02
e2 =103 EA * * 7.5923¢-02 7.4630e-02 6.2262¢-02
B4 * * 1.8339¢-02 1.8334¢-02 1.8330e-02
ea =104 BT * * * 2.6420e-02 2.4821e-02
EyA * * * 2.0578¢-02 1.8451e-02
2 =105 BT * * * * 2.6461e-02
By At * * * * 2.0582¢-02
TABLE 2.8: Maximum errors using scheme (2.16)-(2.17) with P; ; = ltr(A; ;) on
Shishkin mesh taking N = 128 and M = 64 for Example 2.2.
€1 =1071 1 =102 €1 =1073 1 =10"1 €1 =107°
e2=10"1 EYN®T 4.8582¢-03 5.1152¢-03 9.0916e-03 5.7654¢-02 5.6548¢-02
B,20 8.2178¢-03 1.0361e-02 1.0698e-02 1.0751e-02 1.0735¢-02
ep=10"2 E& * 7.2915¢-03 7.0822¢-02 6.2404¢-02 5.8018¢-02
By At * 1.8756e-02 1.7895€-02 1.7895€-02 1.7895€-02
ep =103 EA * * 7.99336-02 7.8073e-02 6.2617¢-02
B2t * * 2.8112e-02 2.7869¢-02 1.8330e-02
ep =104 EA * * * 2.9074e-02 2.8270e-02
B2 * * * 4.2641e-02 2.7902e-02
ea =105 EA * * * * 2.9118e-02
B2 * * * * 2.4004e-02
TABLE 2.9: The CPU time (in seconds) using Shishkin mesh for Example 2.1
with e; = 1078, g9 =107 7.
Schemes N =32 N =64 N =128 N = 256 N =512
At =1/41 At =1/42 At =1/43 At =1/4* At =1/45
P, = diag(A, ) 0.651 3.793 31.856 400.168 6339.446

P;,;=A;; 0.683 4.526 51.817 814.021 12612.586
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TABLE 2.10: The CPU time (in seconds) using generalized Shishkin mesh for
Example 2.1 with e = 1078, ¢y = 1077.

Schemes N =32 N =64 N =128 N =256 N =512

At =1/41 At =1/42 At =1/43 At = 1/4* At =1/45

P, ; = diag(A; ;) 0.569 3.632 31.221 392.012 6287.464
P,;=A;; 0.771 4.724 47.911 847.955 12560.541

TABLE 2.11: The CPU time (in seconds) using Shishkin mesh for Example 2.2
with &1 = 1078, g3 = 1077

Schemes N =32 N =64 N =128 N =256 N =512
At = 1/41 At =1/42 At =1/43 At =1/44 At =1/45

P, ; = diag(A; ;) 0.336 1.229 8.229 65.718 676.488
P,i=A;; 0.351 1.293 8.732 86.521 1071.031

TABLE 2.12: The CPU time (in seconds) using generalized Shishkin mesh for
Example 2.2 with e = 1078, ¢y = 1077.

Schemes N =32 N =64 N =128 N = 256 N =512
At =1/41 At = 1/42 At =1/43 At = 1/44 At =1/45

P, = diag(A; ) 0.266 1.206 8.281 64.284 657.262
P, =A;; 0.281 1.288 8.967 84.469 1077.065

and convergence rates taking N = 512 for Example 2.2 in Tables 2.5 and 2.6. In

these tables the uniform convergence rates are computed as follows

RiV,At — logQ(EN,At/EN,At/Q)‘

One can observe that these numerical results are in line with the theory. Further,
Tables 2.7 and 2.8 display the maximum errors fixing N = 128 and M = 64 and
using different values of £; and e, for Example 2.2. Here, % is used to denote that the
condition 0 < e; < &9 < 1 is not satisfied. In Tables 2.9 and 2.10 we give the CPU
time (in seconds) to compare the computational cost taking e; = 1078, g, = 1077 for
Example 2.1. The results show that the choice P;; = diag(A; ;) requires less time
in comparison to the choice P, ; = A, ;. Further, we observe during the experiments
that the CPU time for P;; = ltr(A;;) and P;; = diag(A,;;) is similar. Similar

results for Example 2.2 are given in Tables 2.11 and 2.12.

In summary although all the choices have similar uniform errors and the uniform
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convergence rates, the splitting schemes P;; = diag(A;;) and P;; = ltr(A; ;) are
computationally more efficient than the classical implicit Euler scheme P;; = A, ;

52].

2.5 Conclusions

In this work, we have developed a computationally efficient numerical method for
solving the coupled system of singularly perturbed delay parabolic problems (2.1).
The numerical method constitutes two splitting schemes on uniform meshes for
time discretization and the central difference scheme on Shishkin and generalised
Shishkin meshes for space discretization. The proposed numerical method is shown
to be uniformly convergent of order one in time and almost two in space. Further, it
is computationally more efficient than the standard numerical method. Numerical

results are given to illustrate the efficiency of the splitting schemes.

Kokokokokoskook sk ko kok
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