
Chapter 2

An efficient fitted mesh method for

coupled systems of singularly per-

turbed delay problems

In this chapter, we consider the following parabolic delay system having different

perturbation parameters

Lu(x, t) := Lu(x, t) +Bu(x, t− τ) = f(x, t), (x, t) ∈ Ω = D × (0, T ], (2.1)

subject to initial and boundary conditions

 u(0, t) = gℓ(t), u(1, t) = gr(t), 0 < t ≤ T,

u(x, t) = gb(x, t), 0 ≤ x ≤ 1, − τ ≤ t ≤ 0,

with

Lu(x, t) = ∂tu(x, t)− E∂2xu(x, t) +Au(x, t),

where

E =

ε1 0

0 ε2

 , A =

a11(x, t) a12(x, t)

a21(x, t) a22(x, t)

 , B =

b11(x, t) b12(x, t)

b21(x, t) b22(x, t)

 , f =

f1
f2

 .

17
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The entries of matrices A and B satisfy


aij ≤ 0, i ̸= j; |bij| ≤ β, i, j = 1, 2,

aii > 0,
2∑

j=1

aij ≥ α > 0, i = 1, 2.

We define Γ = Γb ∪ Γℓ ∪ Γr, where Γℓ and Γr represent the left and the right

boundaries of the domain Ω and Γb = D × [−τ, 0], D = (0, 1). Further, we define

T = nτ for some positive integer n. The data of problem (2.1) is supposed to be

enough smooth and satisfies compatibility conditions in order that u ∈ C4,2(Ω)2

[94, 95]. The parameters εi, i = 1, 2, are such that 0 < ε1 ≤ ε2 ≤ 1.

Robust numerical methods for scalar singularly perturbed delay ordinary differential

equations (ODEs) and partial differential equations (PDEs) have also been devel-

oped extensively in the literature, see e.g. [96–100] for ODEs and [91, 101–106] for

PDEs. In particular, for a scalar singularly perturbed parabolic partial differential

equation with time delay, the authors in [101] provided a robust numerical method

by discretizing the problem using a finite difference scheme on a Shishkin mesh.

The authors in [103] developed a robust domain decomposition method of Schwarz

waveform relaxation type. The authors in [102] developed a fitted operator method.

In spite of these interesting research available in literature on singularly perturbed

delay differential equations, the work related to the numerical solution of systems of

singularly perturbed delay differential equations is still at infant stage.

The main purpose of this chapter is to develop an adaptive numerical method for

problem (2.1). The current work utilizes two splitting schemes [107] that decouple

the components of the approximate solution at each time level and hence resulted

in a reduced computational time. To approximate the solution of the problem, we

consider two splitting schemes on uniform meshes for time discretization and the
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central difference scheme on Shishkin and generalised Shishkin meshes for space

discretization. It is shown that the proposed numerical method is robust convergent

of order one in time and almost two in space. Further, the CPU time comparison

shows that the splitting schemes are computationally more efficient than the classical

backward Euler scheme [52].

This work is arranged as follows. We describe the splitting schemes based numerical

method for problem (2.1) in Section 2.2. Convergence analysis of the numerical

method is discussed in Section 2.3. In Section 2.4, numerical results are reported

which confirm the theory and efficiency of the proposed numerical method. Finally,

conclusions are given in Section 2.5.

2.1 A priori bounds on the solution derivatives

In this section, we derive a priori bound for the exact solution of problem (2.1) and

its derivatives. These bounds will be used later in defining layer adapted meshes

and to derive error estimates for the proposed numerical method. To deduce the

appropriate a priori bound we frequently use the following maximum principle result,

which can be proved using the standard arguments [54, 108].

Lemma 2.1. If z(x, t) ≥ 0, for (x, t) ∈ Γ and Lz(x, t) ≥ 0, for (x, t) ∈ Ω, then

z(x, t) ≥ 0, for (x, t) ∈ Ω.

The following comparison principle result is an immediate consequence of the above

maximum principle.

Corollary 2.2. If |ψ(x, t)| ≤ φ(x, t), for (x, t) ∈ Γ and |Lψ(x, t)| ≤ Lφ(x, t), for

(x, t) ∈ Ω, then |ψ(x, t)| ≤ φ(x, t) for (x, t) ∈ Ω.
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Lemma 2.3. The solution of problem (2.1) satisfies

∥∂st uℓ∥Ω ≤ C, for s = 0, 1, 2, ℓ = 1, 2.

Proof. We first prove the result for t ∈ (0, τ ] using mathematical induction on s. Set

φ = C(1 + t), then result for s = 0 follows using the barrier function φ with the

comparison principle result for L. In the hypothesis step, we assume that the result

holds for s = 0, . . . , κ − 1, 1 ≤ κ ≤ 2. Next, we need to prove the result for s = κ.

Defining Ψ = ∂κt u , it holds
LΨ(x, t) := ∂tΨ(x, t)− E∂2xΨ(x, t) +AΨ(x, t)

= ∂κt f(x, t)−
∑κ−1

l=0

(
κ
l

)
Aκ−l

t ∂ltu(x, t)−
∑κ

l=0

(
κ
l

)
Bκ−l

t ∂ltu(x, t− τ)

:= Ψκ in Ω1 = (0, 1)× (0, τ ],

and  |Ψ(x, 0)| ≤ C in D,

|Ψ(x, t)| ≤ max{|g(κ)
ℓ (t)|, |g(κ)

r (t)|} ≤ C for (x, t) ∈ {0, 1} × (0, τ ],

where the above boundary estimates follows from the assumption on data of problem

(2.1). Now using inductive hypothesis we get |Ψκ(x, t)| ≤ Lφ(x, t). Thus, we get the

required result using the comparison principle together with the barrier function φ.

So, we have the result on the domain [0, 1]× [0, τ ]. For t ∈ (τ, 2τ ], u is a solution of

Lu(x, t) = F (x, t), (x, t) ∈ Ω2 = D×(τ, 2τ ], where F (x, t) = f (x, t)−Bu(x, t−τ).

So, we use the barrier function φ = C(1 + t) with C a sufficiently large positive

constant together with the comparison principle and the previous arguments to

obtain ∥∂st uℓ∥Ω2
≤ C, for s = 0, 1, 2, ℓ = 1, 2, where Ω2 = D × (τ, 2τ ]. Finally, the

result is proved using mathematical induction.
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Now we decompose the solution of problem (2.1) as u = v + w , where v is the

regular part and w is the singular part of the solution. The regular part is the

solution of the problem


Lv(x, t) +Bv(x, t− τ) = f (x, t) for (x, t) ∈ Ω,

v(x, t) = gb(x, t) for (x, t) ∈ Γb,

v(x, t) = χ(x, t) for (x, t) ∈ Γℓ ∪ Γr,

(2.2)

and the singular part is the solution of the problem

 Lw(x, t) +Bw(x, t− τ) = 0 for (x, t) ∈ Ω,

w(x, t) = (u − v)(x, t) for (x, t) ∈ Γ,
(2.3)

where χ is the solution of the problem

 ∂tχ(x, t) +Aχ(x, t) +Bχ(x, t− τ) = f(x, t), (x, t) ∈ Γℓ ∪ Γr,

χ(x, t) = gb(x, t), (x, t) ∈ Γb.
(2.4)

Lemma 2.4. The solution v of problem (2.2) satisfies

∥∂st vℓ∥Ω ≤ C for s = 0, 1, 2, ℓ = 1, 2. (2.5)

∥∂sxvℓ∥Ω ≤ C(1 + ε
1−s/2
ℓ ) for s = 1, 2, 3, 4, ℓ = 1, 2. (2.6)

Proof. The proof of (2.5) follows using similar arguments as in the proof of Lemma

2.3. We next establish (2.6). For t ∈ (0, τ ], differentiating the equation in (2.2)
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twice with respect to x and setting z = ∂κxv , κ = 2, we get

|Lz (x, t)| =
∣∣∂κxf (x, t)−∑κ−1

l=0

(
κ
l

)
Aκ−l

x ∂lxv(x, t)−
∑κ

l=0

(
κ
l

)
Bκ−l

x ∂lxv(x, t− τ)
∣∣ ,

≤ (1 + ∥∂xv∥Ω1
)C.

(2.7)

Further, since problem (2.4) is independent of the perturbation parameters, it holds

|z (x, 0)| ≤ C in D, |z (x, t)| ≤ C for (x, t) ∈ {0, 1}× (0, τ ]. Then using the compar-

ison principle for L with the barrier function φ = C(1 + ∥∂xv∥)t, we get

∥∥∂2xv∥∥Ω1
≤ C∗(1 + ∥∂xv∥Ω1

). (2.8)

Further, by using the argument in [109, Lemma 3] and the mean value theorem, we

obtain

∥∂xv∥Ω1
≤ C +

∥∥∂2xv∥∥Ω1
/2C∗. (2.9)

From (2.8) and (2.9), we get

∥∂sxvℓ∥Ω1
≤ C for s = 1, 2 ℓ = 1, 2.

Next, before establishing bounds on ∥∂sxvℓ∥Ω1
, for s = 3, 4, ℓ = 1, 2, we need to

derive bounds on
∥∥∂1,1x,tv

∥∥
Ω1

and
∥∥∂2,1x,tv

∥∥
Ω1
. For this, we differentiate (2.2) twice and

once with respect to x and t, respectively, and define z̃ = ∂κ,1x,t v , κ = 2, to get

Lz̃ (x, t) = ∂κ,1x,t f (x, t)−
∑κ

l=0

(
κ
l

)
Aκ−l,1

x,t ∂lxv(x, t)−
∑κ−1

l=0

(
κ
l

)
Aκ−l

x ∂l,1x,tv(x, t)

−
∑κ

l=0

(
κ
l

)
Bκ−l,1

x,t ∂lxv(x, t− τ)−
∑κ

l=0

(
κ
l

)
Bκ−l

x ∂l,1x,tv(x, t− τ),

and hence

|Lz̃ (x, t)| ≤ (1 +
∥∥∂1,1x,tv

∥∥
Ω1
)C.
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Again using the fact that problem (2.4) is independent of the perturbation parame-

ters, it holds |̃z (x, 0)| ≤ C in D, |̃z (x, t)| ≤ C for (x, t) ∈ {0, 1}×(0, τ ]. On applying

the comparison principle together with the barrier function φ1 = Ct(1+
∥∥∂1,1x,tv

∥∥
Ω1
)

gives
∥∥∂2,1x,tv

∥∥
Ω1

≤ C∗(1 +
∥∥∂1,1x,tv

∥∥
Ω1
). Again using the mean value theorem we get

∥∥∂1,1x,tv
∥∥
Ω1

≤ C +
∥∥∂2,1x,tv

∥∥
Ω1
/2C∗ (2.10)

Thus, we have
∥∥∂1,1x,tv

∥∥
Ω1

≤ C and
∥∥∂2,1x,tv

∥∥
Ω1

≤ C.

Now from the ℓth, ℓ = 1, 2, equation of system (2.7) for κ = 2, with previously

obtained bounds, we get ∥∂4xvℓ∥Ω1
≤ cε−1

ℓ . Now we apply the argument in [110] to

obtain ∥∂3xvℓ∥Ω1
≤ cε

−1/2
ℓ . For t ∈ (τ, 2τ ], taking the delay term to the right-hand

side, the right-hand side of (2.2) becomes f (x, t)−Bv(x, t−τ), and hence we can use

the previous arguments to get ∥∂sxvℓ∥Ω2
≤ C(1 + ε

1−s/2
ℓ ), for s = 1, 2, 3, 4, ℓ = 1, 2.

The proof is completed by using mathematical induction.

Before we continue further, we define Bεℓ(x) = e−x
√

α/εℓ+e−(1−x)
√

α/εℓ , ℓ = 1, 2, x ∈

Ω. In the following lemma, we derive bounds on the singular part and its derivatives.

Lemma 2.5. The solution w of problem (2.3) satisfies

|∂κxwℓ(x, t)| ≤



CBε2(x), κ = 0, ℓ = 1, 2,

C(ε
−κ/2
1 Bε1(x) + ε

−κ/2
2 Bε2(x)), κ = 1, 2, 3, 4, ℓ = 1,

Cε
−κ/2
2 Bε2(x), κ = 1, 2, ℓ = 2

Cε−1
2 (ε

−(κ−2)/2
1 Bε1(x) + ε

−(κ−2)/2
2 Bε2(x)), κ = 3, 4, ℓ = 2,

(2.11)
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for all (x, t) ∈ Ω. Further, the solution w = (w1, w2)
T of problem (2.3) can be

expressed as wℓ = ŵℓ,ε1 + ŵℓ,ε2 and wℓ = w̃ℓ,ε1 + w̃ℓ,ε2 , ℓ = 1, 2, where

|∂2xŵℓ,ε1(x, t)| ≤ ε−1
ℓ Bε1(x), |∂3xŵℓ,ε2(x, t)| ≤ ε

−3/2
2 Bε2(x), (2.12)

|∂2xw̃ℓ,ε1(x, t)| ≤ ε−1
ℓ Bε1(x), |∂4xw̃ℓ,ε2(x, t)| ≤ ε−2

2 Bε2(x), (2.13)

for all (x, t) ∈ Ω.

Proof. The proof of (2.11) can be done using the barrier function approach and the

method of steps. It can be done similar to [109]. The proof of (2.12)-(2.13) utilizes

(2.11) and can be done similar to [109].

Lemma 2.6. The solution w of problem (2.3) satisfies

|∂stwℓ(x, t)| ≤ CBε2(x), for s = 0, 1, 2, ℓ = 1, 2, (x, t) ∈ Ω.

Proof. For t ∈ (0, τ ], note that |w(x, t)| ≤ |u(x, t)|+ |v(x, t)| ≤ maxt∈[0,τ ]{|gℓ(t)|,

|gr(t)|} + C ≤ C for x ∈ {0, 1}, and |w(x, 0)| ≤ C, x ∈ D, using (2.3). Thus,

for s = 0, the result is proved with the barrier function φ2 = Ce2αtBε2(x). To

use mathematical induction here, suppose that the result of this lemma holds for

s = 0, . . . ,m − 1, 1 ≤ m ≤ 2. Now we will derive a bound for s = m. Define

g̃ = ∂mt w , we have


Lg̃(x, t) := ∂tg̃(x, t)−E∂2xg̃(x, t) +Ag̃(x, t)

= −
∑m−1

l=0

(
m
l

)
A

(m−l)
t ∂ltw(x, t)−

∑m
l=0

(
m
l

)
B

(m−l)
t ∂ltw(x, t− τ)

:= g̃m in Ω1 = (0, 1)× (0, τ ],
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and |g̃(x, 0)| ≤ C in D,

|g̃(x, t)| ≤ max{|gm
ℓ (t)|, |gm

r (t)|}+ |∂mt v | ≤ C for (x, t) ∈ {0, 1} × (0, τ ],

where bounds on the boundary conditions follow from (2.3). Using mathematical

induction, we get |g̃m(x, t)| ≤ Lφ2(x, t). Hence, using the maximum principle for the

operator L with the barrier function φ2 we get the required result for t ∈ (0, τ ]. For

t ∈ (τ, 2τ ], we apply the previous arguments to get |∂stwℓ(x, t)| ≤ CBε2(x), for s =

0, 1, 2, ℓ = 1, 2. The result is completed using mathematical induction.

2.2 Splitting schemes based fitted mesh method

From the asymptotic behavior described in the above lemmas, it follows that the

solution has overlapping layers at x = 0 and x = 1. Thus, the domain Ω is discretized

as Ω
N,M

= D
N × ωM , where D

N
= {xi}Ni=0 denotes the space discretization using

a layer adapted mesh and ωM = {tj}Mj=0 denotes the time discretization using a

uniform mesh. We define ΩN,M = Ω
N,M ∩ Ω;ΓN,M = Ω

N,M \ ΩN,M ;ΓN,M
γ = ΓN,M ∩

Γγ, γ = ℓ, r. Also, Ω
N,mτ

p = D
N × ωmτ

p , where ωmτ
p = {tj : (p − 1)τ = tpmτ <

tpmτ+1 < · · · < tpmτ+mτ−1 < t(p+1)mτ = pτ}; ΩN,mτ
p = Ω

N,mτ

p ∩ Ωp, where Ωp =

D × ((p − 1)τ, pτ ]; ΓN,mτ
p = Ω

N,mτ

p \ ΩN,mτ
p ;ΓN,mτ

p,γ = ΓN,mτ
p ∩ Γγ, p = 0, . . . , n, γ =

ℓ, r. Further, the mesh spacing in space and time directions are defined as hi =

xi − xi−1, i = 1, . . . , N, and ∆t = T/M with M = nmτ , where mτ denotes the

number of subintervals on each [(p − 1)τ, pτ ]. The following two layer adapted

meshes are used in the spatial direction.

Shishkin mesh [109]: The space domain [0, 1] is partitioned into five subdomains

D1 = [0, ρ1], D2 = [ρ1, ρ2], D3 = [ρ2, 1−ρ2], D4 = [1−ρ2, 1−ρ1] and D5 = [1−ρ1, 1]
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such that D = ∪5
i=1Di. On each subdomain Dq, q = 1, 2, 4, 5, a uniform mesh with

N/8+1 mesh points is placed and on the subdomainD3 a uniform mesh with N/2+1

mesh points is placed. The transition parameters are taken as follows

ρ2 = min

{
1

4
, 2

√
ε2
α

lnN

}
, ρ1 = min

{
ρ2
2
, 2

√
ε1
α

lnN

}
.

In our analysis, for simplicity, we will consider the most interesting case ρ2 =

2
√

ε2
α
lnN and ρ1 = 2

√
ε1
α
lnN.

Generalized Shishkin mesh [111]: This mesh also uses two transition parameters

ρ2 = min
{

1
4
, 2
√

ε2
α
λ
}
, ρ1 = min

{
ρ2
2
, 2
√

ε1
α
λ
}
, where λ = λ(N) satisfies ln(lnN) ≤

λ ≤ lnN and e−λ ≤ λ/N. Let N = 8k, where k is a positive integer. Then, the

mesh points are defined as

xi =

 ψ(i/N), for i ≤ N/2,

1− ψ((N − i)/N), for i > N/2.
(2.14)

For ρ2 = 1/4 and ρ1 = 1/8 the mesh will be uniform; we consider ρ1 = 2
√

ε1
α
λ which

is the most interesting case in practice. For ρ2 ̸= 1/4, the mesh generating function

ψ ∈ C1[0, 1/2] is given by

ψ(ζ) =


8ζρ1, ζ ∈ [0, 1

8
],

83(ρ2 − 2ρ1)(ζ − 1
8
)3 + 8ρ1(ζ − 1

8
) + ρ1, ζ ∈ [1

8
, 1
4
],

64(1
2
− 7ρ2 + 10ρ1)(ζ − 1

4
)3 + (24ρ2 − 40ρ1)(ζ − 1

4
) + ρ2, ζ ∈ [1

4
, 1
2
].

We assume that ψ′(ζ) ≥ 0 that ψ′′(ζ) ≥ 0, so that ψ(ζ) is increasing function and

hi ≥ hi−1, i = 2, . . . , N/2. Thus, the condition 1/2−7ρ2+10ρ1 ≥ 0 must be satisfied.

Note that this mesh is uniform on [0, ρ1] and [1− ρ1, 1], and nonuniform on [ρ1, ρ2],

[ρ2, 1 − ρ2] and [1 − ρ2, 1 − ρ1]. Further, following [111] we have hγ ≤ CN−1, γ =
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1, . . . , N , and

|hγ+1 − hγ| =

 Cε
1/2
2 N−2λ, N/8 ≤ γ ≤ N/4− 1,

CN−2, N/4 ≤ γ ≤ N/2− 1.

Otherwise, if ρ2 = 1/4 or 1/2− 7ρ2 + 10ρ1 < 0, the mesh is defined by

xi =

 ψ̃(i/N), for i ≤ N/2,

1− ψ̃((N − i)/N), for i > N/2,
(2.15)

with ψ̃ ∈ C2[0, 1] and

ψ̃(ζ) =

 8ζρ1, ζ ∈ [0, 1
8
],

(8/3)3(1
2
− 4ρ1)(ζ − 1

8
)3 + 8ρ1(ζ − 1

8
) + ρ1, ζ ∈ [1

8
, 1
2
].

Here the mesh spacing satisfy |h̃γ+1 − h̃γ| ≤ CN−2 for γ = N/8, . . . , N/2− 1.

On the domain Ω
N,M

, we discretize problem (2.1) by

LN,MU(xi, tj) +Bi,jU(xi, tj−mτ ) = f (xi, tj), (xi, tj) ∈ ΩN,M , (2.16)

with U(xi, tj) = gb(xi, tj) for (xi, tj) ∈ Ω
N,mτ

0 ,

U(x0, tj) = gℓ(tj),U(xN , tj) = gr(tj) for tj ∈ ωM ,
(2.17)

where

LN,MU(xi, tj) = (δtU− Eδ2xU+ P i,jU)(xi, tj)− Si,jU(xi, tj−1),

δ2xYi,j =
2

hi + hi+1

(
Yi+1,j −Yi,j

hi+1

− Yi,j −Yi−1,j

hi

)
, δtYi,j =

Yi,j −Yi,j−1

∆t
,
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and Ai,j = P i,j − Si,j. Note that if P i,j = Ai,j, the time discretization uses the

classical implicit scheme which is considered in [52]. Here, in order to decouple the

components of the solution, we consider P i,j as follows [107]

P i,j ∈ {diag(Ai,j), ltr(Ai,j)} ,

diag(Ai,j) =

a11(xi, tj) 0

0 a22(xi, tj)

 , ltr(Ai,j) =

a11(xi, tj) 0

a21(xi, tj) a22(xi, tj)

 .

So, we have two choices for P i,j. Then, we use Ai,j = P i,j − Si,j to find Si,j

accordingly. Both the choices decouple the system, and hence, resulted in a reduced

computational time.

2.3 Convergence analysis

In this section, we analyze the uniform convergence of the scheme (2.16)-(2.17) on the

rectangular meshes Ω
N,M

generated using Shishkin mesh and generalized Shishkin

mesh (2.14) in space and a uniform mesh in time. The uniform convergence analysis

on the rectangular mesh Ω
N,M

generated using generalized Shishkin mesh (2.15) in

space can be done in similar way. We first introduce the maximum principle for

the discrete operator and then establish the theorem concerning the convergence

analysis.

Lemma 2.7. If the mesh function ϕ satisfies ϕ(xi, tj) ≥ 0 for (xi, tj) ∈ ΓN,M ,

and discrete operator LN,M satisfies LN,Mϕ(xi, tj) ≥ 0 for (xi, tj) ∈ ΩN,M . Then

ϕ(xi, tj) ≥ 0 for (x, t) ∈ Ω
N,M

.

Proof. The proof follows using the arguments in ([108]).
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Theorem 2.8. The uniform error estimate associated to the scheme (2.16)-(2.17)

satisfies

||u−U||
Ω

N,M ≤ C

 ∆t+N−2 ln2N for Shishkin mesh,

∆t+N−2λ2 for generalized Shishkin mesh.

(2.18)

Proof. Taking (xi, tj) ∈ Ω
N,mτ

1 and P i,j =


a11(xi, tj) 0

0 a22(xi, tj)


 , we have

LN,M(u−U)(xi, tj) = [LN,Mu−Lu ](xi, tj)

= [δtu−∂tu ](xi, tj)−E [δ2xu−∂2xu ](xi, tj)+Si,j[u(xi, tj)−u(xi, tj−1)]

Define LN,M = (LN,M
1 , LN,M

2 )T . Thus, for m = 1, 2, we can write

|LN,M
m (u− U)(xi, tj)| ≤ | (δt − ∂t)um(xi, tj)|+ C|(u3−m(xi, tj)− u3−m(xi, tj−1))|+

εm |(∂2x − δ2x)um(xi, tj)| .

Using Taylor expansions and bounds in Lemma 2.3, we get

| (δt − ∂t)um(xi, tj)|+C|u3−m(xi, tj)− u3−m(xi, tj−1)|

≤ C(tj − tj−1)
(
∥∂tu3−m(xi, .)∥[tj−1,tj ]

+
∥∥∂2t um(xi, .)∥∥[tj−1,tj ]

)
≤ C∆t for (xi, tj) ∈ ΩN,mτ

1 , m = 1, 2.

Next, we need the bound for εm|[∂2xum − δ2xum](xi, tj)|. We distinguish two cases

depending on the mesh used in the spatial direction. Suppose Shishkin mesh is used

in the space. Now, using the arguments in [52] we have
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εm|[∂2xum−δ2xum](xi, tj)| ≤



C(N−1 lnN)2, xi ̸= ρ1, ρ2, 1− ρ1, 1− ρ2, tj ∈ ωmτ
1 ,

m = 1, 2,

C
√
ε1√
ε2
N−1 + CN−2, xi ∈ {ρ1, 1− ρ1}, tj ∈ ωmτ

1 ,m = 1,

C
√
ε2√
ε1
N−1 + CN−2, xi ∈ {ρ1, 1− ρ1}, tj ∈ ωmτ

1 ,m = 2,

C ε1√
ε2
N−1 + CN−2, xi ∈ {ρ2, 1− ρ2}, tj ∈ ωmτ

1 ,m = 1,

C
√
ε2N

−1 + CN−2, xi ∈ {ρ2, 1− ρ2}, tj ∈ ωmτ
1 ,m = 2.

(2.19)

Otherwise when generalized Shishkin mesh is used, using the arguments in [52] we

have

εm|[∂2xum − δ2xum](xi, tj)| ≤ CN−2λ2. (2.20)

Next, we define the mesh function

ψ :=

 Ĉ∆t+ ĈN−2 ln2N(1 + φε1 + φε2)± (u −U) for Shishkin mesh,

Ĉ∆t+ ĈN−2λ2 ± (u −U) for generalized Shishkin mesh,

(2.21)

where φεm , m = 1, 2, are defined as follows

φεm(x, t) =



x
ρm
, 0 ≤ x ≤ ρm, 0 ≤ t ≤ τ

1, ρm ≤ x ≤ 1− ρm, 0 ≤ t ≤ τ,

1−x
ρm
, 1− ρm ≤ x ≤ 1. 0 ≤ t ≤ τ.

(2.22)

Note that

−δ2x(φε1)i,j ≥


αN

32
√
ε1

√
ε2 ln

2 N
, if xi ∈ {ρ1, 1− ρ1},

0, otherwise
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and

−δ2x(φε2)i,j ≥


√
αN

2
√
ε2 lnN

, if xi ∈ {ρ2, 1− ρ2},

0, otherwise.

Clearly,

ψ(xi, tj) ≥ 0 for (xi, tj) ∈ ΓN,mτ

1,ℓ ∪ ΓN,mτ

1,r ∪ ΓN,mτ

b .

Now recalling the truncation error bound we can choose Ĉ sufficiently large, inde-

pendent of the perturbation parameters ε1 and ε2, so that

LN,Mψ(xi, tj) ≥ 0 for ΩN,mτ

1 .

Hence, using the discrete maximum principle we get ψ(xi, tj) ≥ 0 for (xi, tj) ∈ Ω
N,M

1 .

Consequently

||u −U||
Ω

N,mτ
1

≤ C

 ∆t+N−2 ln2N for Shishkin mesh,

∆t+N−2λ2 for generalized Shishkin mesh.
(2.23)

Next, for (xi, tj) ∈ Ω
N,mτ

2 , we have

|LN,M(u −U)(xi, tj)| ≤ |Bi,j(u −U)(xi, tj−mτ )|+ |(δtu − ∂tu)(xi, tj)|+

E|(∂2xu − δ2xu)(xi, tj)|+ |Si,j(u(xi, tj)− u(xi, tj−1))|.

The bound for the first term follows using (2.23) as (xi, tj−mτ ) ∈ Ω
N,mτ

1 . Further, us-

ing Taylor expansion and Lemma 2.3, we have |(δtu−∂tu)(xi, tj)|+ |Si,j(u(xi, tj)−

u(xi, tj−1))| ≤ C∆t. Using previous arguments, we can derive bounds similar to
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(2.19)-(2.20) for E|(∂2xu − δ2xu)(xi, tj)|. Now, applying the discrete maximum prin-

ciple to the barrier function (2.21)-(2.22) it holds

||u −U||
Ω

N,mτ
2

≤ C

 ∆t+N−2 ln2N for Shishkin mesh,

∆t+N−2λ2 for generalized Shishkin mesh.
(2.24)

Thus, the final result (2.18) follows using the mathematical induction. Further, we

can obtain similar bounds for another choice of P i,j using the above arguments.

2.4 Numerical results

We perform numerical experiments on two test problems to validate our theoretically

proven results of the previous section.

Example 2.1. Consider problem (2.1) with the following data

 u(x, t) = gb(x, t) = 0, 0 ≤ x ≤ 1,−1 ≤ t ≤ 0,

u(0, t) = gℓ(t) = 0,u(1, t) = gr(t) = 0, 0 < t ≤ 2,

where

A =

 3(1 + x)2 −1− x3

−2 cos(πx/4) 4 exp(1− x)

 , B =

 −1 0

0 − 1

 , f =

 cos(πx/2)

x

 .

The maximum pointwise errors EN,∆t
ε1,ε2

for this problem are computed using double

mesh principle as follows

EN,∆t
ε1,ε2

= ||UN,∆t −U2N,∆t/4||
Ω

N,M
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Figure 2.1: Solution profile with P i,j = diag(Ai,j) for Example 2.1 using
Shishkin mesh for ε1 = 10−5, ε2 = 10−4 with N = 64,M = 32.
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Figure 2.2: Solution profile with P i,j = diag(Ai,j) for Example 2.1 using gen-
eralized Shishkin mesh for ε1 = 10−5, ε2 = 10−4 with N = 64,M = 32.

where the solution UN,∆t is obtained on the layer adapted mesh with N + 1 mesh

points in space and ∆t step length in time direction, and U2N,∆t/4 is computed on

the layer adapted mesh with 2N + 1 mesh points in space and ∆t/4 step length in

time direction but with the same values of transition parameters as for UN,∆t.

The solution plots are given in Figures 2.1 and 2.2 showing the boundary layers
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Table 2.1: Uniform errors EN,∆t and uniform convergence rates RN,∆t using
Shishkin mesh for Example 2.1.

Schemes N = 32 N = 64 N = 128 N = 256 N = 512

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

EN,∆t
1 8.0703e-02 5.5478e-02 2.7588e-02 9.5568e-03 2.4838e-03

P i,j = diag(Ai,j) RN,∆t
1 0.540 1.007 1.529 1.944

EN,∆t
2 2.7366e-02 1.3156e-02 5.5693e-03 2.0507e-03 7.3946e-04

RN,∆t
2 1.056 1.240 1.441 1.471

EN,∆t
1 7.4751e-02 5.2969e-02 2.6753e-02 9.3441e-03 2.4384e-03

P i,j = ltr(Ai,j) RN,∆t
1 0.496 9.854 1.517 1.938

EN,∆t
2 2.5404e-02 1.3047e-02 5.5491e-03 2.0525e-03 7.3969e-04

RN,∆t
2 0.961 1.233 1.434 1.472

EN,∆t
1 7.9563e-02 5.5220e-02 2.7527e-02 9.5459e-03 2.4822e-03

P i,j = Ai,j RN,∆t
1 0.526 1.004 1.527 1.943

EN,∆t
2 3.4391e-02 1.6963e-02 5.9513e-03 2.0574e-03 7.0051e-04

RN,∆t
2 1.019 1.511 1.532 1.554

Table 2.2: Uniform errors EN,∆t and uniform convergence rates RN,∆t using
generalized Shishkin mesh for Example 2.1.

Schemes N = 32 N = 64 N = 128 N = 256 N = 512

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

EN,∆t
1 8.0703e-02 5.5478e-02 2.7588e-02 9.5568e-03 2.4838e-03

P i,j = diag(Ai,j) RN,∆t
1 0.540 1.007 1.529 1.944

EN,∆t
2 2.6458e-02 1.0421e-02 3.2445e-03 9.3228e-04 2.6066e-04

RN,∆t
2 1.344 1.683 1.799 1.838

EN,∆t
1 7.4751e-02 5.2969e-02 2.6753e-02 9.3441e-03 2.4384e-03

P i,j = ltr(Ai,j) RN,∆t
1 0.496 0.985 1.517 1.938

EN,∆t
2 2.5404e-02 9.3939e-03 3.0725e-03 8.9322e-04 2.5237e-04

RN,∆t
2 1.435 1.612 1.782 1.823

EN,∆t
1 7.9563e-02 5.5220e-02 2.7527e-02 9.5459e-03 2.9737e-03

P i,j = Ai,j RN,∆t
1 0.526 1.004 1.527 1.710

EN,∆t
2 3.4391e-02 1.6963e-02 5.9513e-03 1.9340e-03 6.0213e-04

RN,∆t
2 1.019 1.511 1.622 1.683

at x = 0 and x = 1. In Tables 2.1 and 2.2 we report the componentwise uniform

errors EN,∆t with corresponding uniform convergence rates RN,∆t which are com-

puted using the three choices of P i,j on Shishkin and generalized Shishkin meshes,

respectively, for Example 2.1.

Example 2.2. Consider problem (2.1) with the following data

 u(x, t) = gb(x, t), 0 ≤ x ≤ 1,−1 ≤ t ≤ 0,

u(0, t) = gℓ(t),u(1, t) = gr(t), 0 < t ≤ 2,
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with

A =

 3 − 1

−1 3

 , B =

 −1 0

0 − 1

 ,

where f = (f1, f2)
T ,gb,gℓ and gr are determined taking components of the exact

solution as follows

u1(x, t) = t(η1(x) + η2(x)− 2) + t(1 + x)e−t,

u2(x, t) = ε1(η1(x)− 1)(1− e−t) + t(η2(x)− 1)(1− t),

with

ηj(x) =
exp
(
−x/√εj

)
+ exp

(
−(1− x)/

√
εj
)

1 + exp
(
−1/

√
εj
) , j = 1, 2.

Since the exact solution is available, the maximum pointwise errors for this problem

are calculated as EN,∆t
ε1,ε2

= ||u −UN,∆t||
Ω

N,M . The uniform errors EN,∆t for both the

problems are calculated as follows

EN,∆t = max
ε1

EN,∆t
ε1

where EN,∆t
ε1

= max{EN,∆t
ε1,1

,EN,∆t
ε1,10−1 , . . . ,E

N,∆t
ε1,10−k} is calculated for a fixed ε1 = 10−k,

k is a non-negative integer. Further, we define the uniform rates of convergence as

follows

RN,∆t = log2(E
N,∆t/E2N,∆t/4).

Tables 2.3 and 2.4 display the componentwise uniform errors EN,∆t with correspond-

ing convergence ratesRN,∆t for Example 2.2. The reported results show that the uni-

form errors have similar behavior for the splitting schemes and the classical scheme

P i,j = Ai,j. Further, second order uniform convergence in space is clearly seen from

these tables. In order to show the convergence in time, we display uniform errors
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Figure 2.3: Solution profile with P i,j = diag(Ai,j) for Example 2.2 using
Shishkin mesh for ε1 = 10−7, ε2 = 10−5 with N = 64,M = 32.
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Figure 2.4: Solution profile with P i,j = diag(Ai,j) for Example 2.2 using gen-
eralized Shishkin mesh for ε1 = 10−7, ε2 = 10−5 with N = 64,M = 32.
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Table 2.3: Uniform errors EN,∆t and uniform convergence rates RN,∆t using
Shishkin mesh for Example 2.2.

Schemes N = 32 N = 64 N = 128 N = 256 N = 512

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

EN,∆t
1 2.2797e-01 1.6056e-01 7.4906e-02 2.4873e-02 6.3341e-03

P i,j = diag(Ai,j) RN,∆t
1 0.505 1.100 1.590 1.973

EN,∆t
2 2.9156e-01 7.3930e-02 2.0584e-02 5.6177e-03 1.6360e-03

RN,∆t
2 1.979 1.844 1.873 1.779

EN,∆t
1 2.2783e-01 1.6049e-01 7.4881e-02 2.4866e-02 6.3324e-03

P i,j = ltr(Ai,j) RN,∆t
1 0.505 1.099 1.590 1.973

EN,∆t
2 2.9124e-01 7.3833e-02 2.0584e-02 5.6175e-03 1.3635e-03

RN,∆t
2 1.979 1.842 1.873 2.042

EN,∆t
1 2.8318e-01 1.6957e-01 7.6240e-02 2.5064e-02 6.3611e-03

P i,j = Ai,j RN,∆t
1 0.739 1.153 1.604 1.978

EN,∆t
2 1.0499e-01 5.5195e-02 2.0617e-02 5.5727e-03 1.3576e-03

RN,∆t
2 0.927 1.420 1.887 2.037

Table 2.4: Uniform errors EN,∆t and uniform convergence rates RN,∆t using
generalized Shishkin mesh for Example 2.2.

Schemes N = 32 N = 64 N = 128 N = 256 N = 512

∆t = 1/4 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

EN,∆t
1 2.2795e-01 1.6056e-01 7.4906e-02 2.4873e-02 6.3341e-03

P i,j = diag(Ai,j) RN,∆t
1 0.505 1.100 1.590 1.973

EN,∆t
2 2.9137e-01 7.3853e-02 2.0584e-02 5.6177e-03 1.2545e-03

RN,∆t
2 1.980 1.843 1.873 2.162

EN,∆t
1 2.2780e-01 1.6049e-01 7.4881e-02 2.4866e-02 6.3324e-03

P i,j = ltr(Ai,j) RN,∆t
1 0.505 1.099 1.590 1.973

EN,∆t
2 2.9124e-01 7.3825e-02 2.0584e-02 5.6175e-03 1.2545e-03

RN,∆t
2 1.980 1.842 1.873 2.162

EN,∆t
1 2.8314e-01 1.6957e-01 7.6240e-02 2.5064e-02 6.3611e-03

P i,j = Ai,j RN,∆t
1 0.739 1.153 1.604 1.978

EN,∆t
2 1.0471e-01 5.5195e-02 2.0617e-02 5.5727e-03 1.2445e-03

RN,∆t
2 0.923 1.420 1.887 2.162

Table 2.5: Uniform errors EN,∆t and uniform convergence rates RN,∆t
⋆ using

Shishkin mesh with N = 512 for Example 2.2.

Schemes M = 8 M = 16 M = 32 M = 64 M = 128

EN,∆t
1 6.0429e-02 3.0507e-02 1.5333e-02 7.6843e-03 3.8438e-03

P i,j = diag(Ai,j) RN,∆t
1,⋆ 0.986 0.992 0.996 0.999

EN,∆t
2 1.4709e-01 7.3855e-02 3.7000e-02 1.8518e-02 9.2632e-03

RN,∆t
2,⋆ 0.993 0.997 0.998 0.999

EN,∆t
1 6.0431e-02 3.0509e-02 1.5335e-02 7.6866e-03 3.8458e-03

P i,j = ltr(Ai,j) RN,∆t
1,⋆ 0.986 0.992 0.996 0.999

EN,∆t
2 1.4690e-01 7.3761e-02 3.6953e-02 1.8494e-02 9.2512e-03

RN,∆t
2,⋆ 0.993 0.997 0.998 0.999

EN,∆t
1 3.5653e-02 1.8661e-02 9.5779e-03 4.8533e-03 2.4421e-03

P i,j = (Ai,j) RN,∆t
1,⋆ 0.933 0.962 0.980 0.990

EN,∆t
2 5.2871e-02 2.6603e-02 1.3343e-02 6.6822e-03 3.3437e-03

RN,∆t
2,⋆ 0.990 0.995 0.997 0.998
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Table 2.6: Uniform errors EN,∆t and uniform convergence rates RN,∆t
⋆ using

generalized Shishkin mesh with N = 512 for Example 2.2.

Schemes M = 8 M = 16 M = 32 M = 64 M = 128

EN,∆t
1 5.7355e-02 2.8979e-02 1.4574e-02 7.3083e-03 3.6589e-03

P i,j = diag(Ai,j) RN,∆t
1,⋆ 0.984 0.991 0.995 0.998

EN,∆t
2 1.4690e-01 7.3761e-02 3.6953e-02 1.8494e-02 9.2512e-03

RN,∆t
2,⋆ 0.993 0.971 0.998 0.999

EN,∆t
1 6.1556e-02 3.1064e-02 1.5610e-02 7.8230e-03 3.6589e-03

P i,j = ltr(Ai,j) RN,∆t
1,⋆ 0.986 0.992 0.996 0.999

EN,∆t
2 1.4560e-01 7.3105e-02 3.6624e-02 1.8329e-02 9.1687e-03

RN,∆t
2,⋆ 0.993 0.997 0.998 0.999

EN,∆t
1 3.2559e-02 1.7139e-02 8.7984e-03 4.4608e-03 2.2463e-03

P i,j = (Ai,j) RN,∆t
1,⋆ 0.925 0.961 0.979 0.989

EN,∆t
2 5.2593e-02 2.6460e-02 1.3271e-02 6.6458e-03 3.3255e-03

RN,∆t
2,⋆ 0.991 0.995 0.997 0.998

Table 2.7: Maximum errors using scheme (2.16)-(2.17) with P i,j = diag(Ai,j)
on Shishkin mesh taking N = 128 and M = 64 for Example 2.2.

ε1 = 10−1 ε1 = 10−2 ε1 = 10−3 ε1 = 10−4 ε1 = 10−5

ε2 = 10−1 EN,∆t
1 4.8356e-03 5.0967e-03 9.0856e-03 5.7620e-02 5.6544e-02

EN,∆t
2 8.2690e-03 1.0405e-02 1.0720e-02 1.0744e-02 1.0734e-02

ε2 = 10−2 EN,∆t
1 * 7.2798e-02 7.0729e-02 6.2050e-02 5.7983e-02

EN,∆t
2 * 1.7957e-02 1.7896e-02 1.7895e-02 1.7895e-02

ε2 = 10−3 EN,∆t
1 * * 7.5923e-02 7.4630e-02 6.2262e-02

EN,∆t
2 * * 1.8339e-02 1.8334e-02 1.8330e-02

ε2 = 10−4 EN,∆t
1 * * * 2.6420e-02 2.4821e-02

EN,∆t
2 * * * 2.0578e-02 1.8451e-02

ε2 = 10−5 EN,∆t
1 * * * * 2.6461e-02

EN,∆t
2 * * * * 2.0582e-02

Table 2.8: Maximum errors using scheme (2.16)-(2.17) with P i,j = ltr(Ai,j) on
Shishkin mesh taking N = 128 and M = 64 for Example 2.2.

ε1 = 10−1 ε1 = 10−2 ε1 = 10−3 ε1 = 10−4 ε1 = 10−5

ε2 = 10−1 EN,∆t
1 4.8582e-03 5.1152e-03 9.0916e-03 5.7654e-02 5.6548e-02

EN,∆t
2 8.2178e-03 1.0361e-02 1.0698e-02 1.0751e-02 1.0735e-02

ε2 = 10−2 EN,∆t
1 * 7.2915e-03 7.0822e-02 6.2404e-02 5.8018e-02

EN,∆t
2 * 1.8756e-02 1.7895e-02 1.7895e-02 1.7895e-02

ε2 = 10−3 EN,∆t
1 * * 7.9933e-02 7.8073e-02 6.2617e-02

EN,∆t
2 * * 2.8112e-02 2.7869e-02 1.8330e-02

ε2 = 10−4 EN,∆t
1 * * * 2.9074e-02 2.8270e-02

EN,∆t
2 * * * 4.2641e-02 2.7902e-02

ε2 = 10−5 EN,∆t
1 * * * * 2.9118e-02

EN,∆t
2 * * * * 2.4004e-02

Table 2.9: The CPU time (in seconds) using Shishkin mesh for Example 2.1
with ε1 = 10−8, ε2 = 10−7.

Schemes N = 32 N = 64 N = 128 N = 256 N = 512

∆t = 1/41 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

P i,j = diag(Ai,j) 0.651 3.793 31.856 400.168 6339.446
P i,j = Ai,j 0.683 4.526 51.817 814.021 12612.586
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Table 2.10: The CPU time (in seconds) using generalized Shishkin mesh for
Example 2.1 with ε1 = 10−8, ε2 = 10−7.

Schemes N = 32 N = 64 N = 128 N = 256 N = 512

∆t = 1/41 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

P i,j = diag(Ai,j) 0.569 3.632 31.221 392.012 6287.464
P i,j = Ai,j 0.771 4.724 47.911 847.955 12560.541

Table 2.11: The CPU time (in seconds) using Shishkin mesh for Example 2.2
with ε1 = 10−8, ε2 = 10−7

Schemes N = 32 N = 64 N = 128 N = 256 N = 512

∆t = 1/41 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

P i,j = diag(Ai,j) 0.336 1.229 8.229 65.718 676.488
P i,j = Ai,j 0.351 1.293 8.732 86.521 1071.031

Table 2.12: The CPU time (in seconds) using generalized Shishkin mesh for
Example 2.2 with ε1 = 10−8, ε2 = 10−7.

Schemes N = 32 N = 64 N = 128 N = 256 N = 512

∆t = 1/41 ∆t = 1/42 ∆t = 1/43 ∆t = 1/44 ∆t = 1/45

P i,j = diag(Ai,j) 0.266 1.206 8.281 64.284 657.262
P i,j = Ai,j 0.281 1.288 8.967 84.469 1077.065

and convergence rates taking N = 512 for Example 2.2 in Tables 2.5 and 2.6. In

these tables the uniform convergence rates are computed as follows

RN,∆t
⋆ = log2(E

N,∆t/EN,∆t/2).

One can observe that these numerical results are in line with the theory. Further,

Tables 2.7 and 2.8 display the maximum errors fixing N = 128 and M = 64 and

using different values of ε1 and ε2 for Example 2.2. Here, ⋆ is used to denote that the

condition 0 < ε1 ≤ ε2 ≤ 1 is not satisfied. In Tables 2.9 and 2.10 we give the CPU

time (in seconds) to compare the computational cost taking ε1 = 10−8, ε2 = 10−7 for

Example 2.1. The results show that the choice P i,j = diag(Ai,j) requires less time

in comparison to the choice P i,j = Ai,j. Further, we observe during the experiments

that the CPU time for P i,j = ltr(Ai,j) and P i,j = diag(Ai,j) is similar. Similar

results for Example 2.2 are given in Tables 2.11 and 2.12.

In summary although all the choices have similar uniform errors and the uniform
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convergence rates, the splitting schemes P i,j = diag(Ai,j) and P i,j = ltr(Ai,j) are

computationally more efficient than the classical implicit Euler scheme P i,j = Ai,j

[52].

2.5 Conclusions

In this work, we have developed a computationally efficient numerical method for

solving the coupled system of singularly perturbed delay parabolic problems (2.1).

The numerical method constitutes two splitting schemes on uniform meshes for

time discretization and the central difference scheme on Shishkin and generalised

Shishkin meshes for space discretization. The proposed numerical method is shown

to be uniformly convergent of order one in time and almost two in space. Further, it

is computationally more efficient than the standard numerical method. Numerical

results are given to illustrate the efficiency of the splitting schemes.

***********
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